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Abstract. We determine lens surgeries (i.e. Dehn surgery yielding a lens space) along

the n-twisted Whitehead link. To do so, we first give necessary conditions to yield a lens

space from the Alexander polynomial of the link as: (1) n = 1 (i.e. the Whitehead link),

and (2) one of surgery coefficients is 1, 2 or 3. Our interests are not only lens surgery itself

but also how to apply the Alexander polynomial for this kind of problems.

1. Introduction

For a µ-component link L = K1 ∪ . . .∪Kµ in an integral homology 3-sphere Σ,
Dehn surgery is an operation to Σ by attaching solid tori to the boundaries of the
exterior of L, where the way to attach a solid torus is parametrized by a rational
number or 1/0 = ∞ or ∅. The parameter is called a surgery coefficient. The result
of (r1, . . . , rµ)-surgery along L is obtained by Dehn surgery along Ki with a surgery
coefficient ri ∈ Q ∪ {∞, ∅} for every i = 1, . . . , µ. We say that Dehn surgery is a
lens surgery if the resulting space is a lens space. Let Wn = K1 ∪K2 (n ∈ Z) be
the n-twisted Whitehead link as in Figure 1, where a rectangle with an integer m
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implies a righthand m-full twists if m ≥ 0, or a lefthand |m|-full twists if m < 0. In
the present paper, we determine when Dehn surgery along Wn yields a lens space
by using the Reidemeister torsion and Rolfsen moves.

In the present paper, we are mainly concerned with the restriction on the
Alexander polynomial of a link to admit a lens surgery. Our interests are not
only lens surgery itself but also how to apply the Alexander polynomial for this
kind of problems. For examples: (i) The first author [8] gave necessary conditions
on the Alexander polynomial of an algebraically split component-preservingly am-
phicheiral link. Consideration on the sign εn in Theorem 1.1. (relation with chirality
of the links) motivates the work (see Remark 6.4.). (ii) The first author [9] deter-
mined lens surgeries along the Milnor links, and clarified that we cannot obtain
the result by only the Alexander polynomial. Our method extends to algebraically
same links with Wn (see Section 6).

L. Moser [17] determined Dehn surgery along every torus knot by the Seifert
fibered structure of the exterior. Recently, the first author and the third author [10]
determined Dehn surgery along every torus link by essentially the same method.
R. Fintushel and R. J. Stern [3], and the second author [16] gave examples of
hyperbolic knots yielding lens spaces. Moreover the second author [16] pointed out
that a 2-bridge link C(m,m) where m is odd in Conway’s notation (cf. [13, Section
2]) can yield a lens space. Note thatWn is also a 2-bridge link C(2, 2n,−2). J. Berge
[1] showed that a doubly primitive knot yields a lens space. It is conjectured that
a knot in S3 yielding a lens space is a doubly primitive knot. Ordinarily, when
we study lens surgeries along a knot or a link, we use a geometric structure of the
complement of it [15], and apply Cyclic Surgery Theorem [2] or knot Floer homology
[18] or more geometric cut and paste arguments [4].

Let M = (Wn; p1/q1, p2/q2) denote the result of (p1/q1, p2/q2)-surgery along
Wn. Since the linking number of Wn is zero, the first homology H1(M) is finite
cyclic if and only if gcd(p1, p2) = 1 and p1p2 ̸= 0, and the order of H1(M) is
p = |p1p2|. We note that W0 is the 2-component trivial link, W±1 is the Whitehead
link, and W−n is the mirror image of Wn. Hence it is sufficient to consider the case
n > 0. Thus we fix the following setting.

Setting (1) Wn = K1 ∪K2 is the 2-component link in S3 of Figure 1, where n > 0.

(2) M = (Wn; p1/q1, p2/q2) is the result of (p1/q1, p2/q2)-surgery along Wn, where
qi ≥ 1 (i = 1, 2), gcd(p1, p2) = 1 and p = |p1p2| ≥ 2.

Throughout this paper, ζd is a primitive d-th root of unity and Q(ζd) is the d-th
cyclotomic field, for an integer d ≥ 2.

Let M be a homology lens space with H1(M) ∼= Z/pZ (p ≥ 2), and T a gen-
erator of H1(M). Let d ≥ 2 be a divisor of p, and ψ : Z[H1(M)] → Q(ζd) a ring
homomorphism such that ψ(T ) = ζd. Then τψ(M) ∈ Q(ζd), the Reidemeister tor-
sion of M associated to ψ, is determined up to multiplications by ±ζmd (m ∈ Z)
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Figure 1: n-twisted Whitehead link Wn

(see [22, 23] for details on the Reidemeister torsion). For A and B in Q(ζd), if there
exists an integer m such that A = ±ζmd B, then we denote by A

.
= B.

We first state a key theorem of the present paper.

Theorem 1.1. Let M = (Wn; p1/q1, p2/q2) be as in the setting above. Then we
have the following:

(1) Let d ≥ 2 be a divisor of p2, and ψ : Z[H1(M)] → Q(ζd) a ring homomorphism
defined by ψ([m1]) = 1 and ψ([m2]) = ζd, where mi is a meridian of Ki. Then
we have

τψ(M)
.
= {nq1(ζd − 1)2 + εnp1ζd}(ζd − 1)−1(ζ q̄2d − 1)−1,

where εn = 1 or −1, and q2q̄2 ≡ 1 (mod p2).

(2) Let d ≥ 2 be a divisor of p1, and ψ : Z[H1(M)] → Q(ζd) a ring homomorphism
defined by ψ([m1]) = ζd and ψ([m2]) = 1, where mi is a meridian of Ki. Then
we have

τψ(M)
.
= {nq2(ζd − 1)2 + εnp2ζd}(ζd − 1)−1(ζ q̄1d − 1)−1,

where εn = 1 or −1, and q1q̄1 ≡ 1 (mod p1).

(3) In (1) and (2), we have ε1 = 1.

We have two remarks on the proof of Theorem 1.1.. (i) Since Wn is an inter-
changeable link (i.e. as an ordered link, K1 ∪K2 is ambient isotopic to an ordered
link K2 ∪K1), it is sufficient to show Theorem 1.1. (1). We will often omit a half of
the proofs by the same reason (ex. Theorem 1.2., Lemma 4.1. and Lemma 4.2.). (ii)
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To show Theorem 1.1., we applied the surgery formula of the Reidemeister torsion
due to V. G. Turaev [22, 23] (cf. Lemma 2.1.).

Let L(p, q) be a lens space which is defined as the result of p/q-surgery along
the trivial knot. By comparing the Reidemeister torsion of M as in Theorem 1.1.
and that of L(p, q) (in Example 2.2.), we have:

Theorem 1.2. Let M = (Wn; p1/q1, p2/q2) be as in the setting above. Then we
have the following:

(A) If M is a lens space, then we have n = 1.

(B) The resulting space M = (W1; p1/q1, p2/q2) is a lens space if and only if one
of the following (1), (2), (3), (4), (5) or (6) holds:

(1) p1/q1 = 1 and |p2 − 6q2| = 1.

(2) p1/q1 = 2 and |p2 − 4q2| = 1.

(3) p1/q1 = 3 and |p2 − 3q2| = 1.

(4) p2/q2 = 1 and |p1 − 6q1| = 1.

(5) p2/q2 = 2 and |p1 − 4q1| = 1.

(6) p2/q2 = 3 and |p1 − 3q1| = 1.

Moreover if (1), (2), (3), (4), (5) or (6) holds, thenM = L(p2, 4q2), L(2p2, 8q2
−p2), L(3p2, 3q2 − 2p2), L(p1, 4q1), L(2p1, 8q1 − p1) or L(3p1, 3q1 − 2p1),
respectively.

We remark that six cases in Theorem 1.2. are not exclusive, for example
(p1/q1, p2/q2) = (2, 3) in (2) and (6), and (p1/q1, p2/q2) = (3, 2) in (3) and (5).

B. Martelli and C. Petronio [15] completely determined exceptional Dehn fillings
of the complement of the chain link with three components by using hyperbolic
geometry. The complement of W−1 is a certain Dehn filling of the 3-component
chain link. Though their result overlaps with Theorem 1.2, the overlap is only
partial, our method is different from theirs, and our targets are extended (i.e. our
results are ‘not’ properly included in theirs).

In Section 2, we provide basic tools of this paper such as Reidemeister torsion
and Rolfsen moves. In Section 3, we prove Theorem 1.1. In Section 4, we prove
“only if part” of Theorem 1.2. by using Theorem 1.1. In Section 5, we prove “if part”
of Theorem 1.2. by using Rolfsen moves. In Section 6, we will apply our method
for a 2-component link and its components with the same Alexander polynomials
as Wn.

We refer to [5, 6, 7, 9, 11, 12] for studies on Dehn surgery by using the Reide-
meister torsion.
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2. Preliminaries

2.1. Reidemeister torsion

We rewrite a surgery formula due to Turaev to be suitable for the present paper.
For details, see [22, 23], and see also [6, Section 2].

Let R be a commutative ring with nonzero identity element. Then we denote
the classical ring of quotient by Q(R). Let X be a finite CW complex. Then the
maximal abelian torsion of X, denoted by τ(X), is an element of Q(Z[H1(X)]) that
is determined up to multiplication by an element of ±H1(X), which is defined from
a chain complex C∗ induced by the maximal abelian covering of X.

Let L = K1∪· · ·∪Kµ be an oriented µ-component link in an integral homology
3-sphere Σ, and ∆L(t1, . . . , tµ) the Alexander polynomial of L, where a variable ti
is represented by a meridian of Ki (i = 1, . . . , µ). We note that if the orientation
of Ki is reversed, then the variable ti is replaced with t−1

i , and that the set of the
µ-variable Alexander polynomials of µ-component links in S3 coincides with the
set of the µ-variable Alexander polynomials of µ-component links in any homology
3-sphere Σ.

Let L = K1 ∪K2 ∪K3 be a 3-component link in an integral homology 3-sphere
Σ, EL the exterior of L, mi and li a meridian and a longitude of Ki (i = 1, 2, 3)
on ∂EL respectively. Let M = (L; p1/q1, p2/q2, p3/q3) be the result of pi/qi-surgery
along Ki, and set

M = EL ∪ V1 ∪ V2 ∪ V3 and M0 = EL ∪ V1 ∪ V2,

where Vi is a solid torus glued in doing surgery along Ki. Let l′i be the core of Vi.
Note that the homology class of l′i is uniquely determined inM0 (i = 1, 2) and inM
(i = 3). We assume that M is a homology lens space with H1(M) ∼= Z/pZ (p ≥ 2).
Let T be a generator of H1(M), d ≥ 2 a divisor of p and ψ : Z[H1(M)] → Q(ζd) a
ring homomorphism such that ψ(T ) = ζd. We define ψ0 : Z[H1(M0)] → Q(ζd) by
ψ0 = ψ ◦ ι where ι : Z[H1(M0)] → Z[H1(M)] is a ring homomorphism induced from
the natural inclusion M0 →֒ M . Then we have the following surgery formula for
the Reidemeister torsion.

Lemma 2.1(surgery formula; Turaev [22, 23]).

(1) If [l′i] (i = 1, 2) has infinite order in H1(M0), then we have

τ(M0)
.
= ∆L([m1], [m2], [m3])([l

′
1]− 1)−1([l′2]− 1)−1 in Q(Z[H1(M0)]).

(2) If τ(M0) ̸= 0 and ψ([l′3]) ̸= 1, then we have

τψ(M)
.
= ψ0(τ(M0))(ψ([l

′
3])− 1)−1.



250 T. Kadokami, N. Maruyama and M. Shimozawa

Example 2.2(Reidemeister [19]). Let T be a generator of H1(L(p, q)). Let d ≥ 2
be a divisor of p, and ψ : Z[H1(L(p, q))] → Q(ζd) a ring homomorphism such that
ψ(T ) = ζd. Then we have

τψ(L(p, q))
.
= (ζid − 1)−1(ζiq̄d − 1)−1

for some i where gcd(i, d) = 1 and qq̄ ≡ 1 (mod d).

Lemma 2.3(Torres formula [21]). Let L = K1 ∪ · · · ∪ Kµ ∪ Kµ+1 (µ ≥ 1) be
an oriented (µ + 1)-component link in an integral homology 3-sphere Σ and L′ =
K1 ∪ · · · ∪Kµ a µ-component sublink. Then we have

∆L(t1, . . . , tµ, 1)
.
=











tℓ − 1

t− 1
∆K(t) (µ = 1),

(tℓ11 · · · t
ℓµ
µ − 1)∆L′(t1, . . . , tµ) (µ ≥ 2),

where ℓi = lk (Ki,Kµ+1) (i = 1, . . . , µ) is the linking number of Ki and Kµ+1, and
we set L = K1 = K, t = t1 and ℓ = ℓ1 if µ = 1.

Lemma 2.4(duality; Turaev [22]). Let L = K1 ∪ · · · ∪ Kµ be an oriented µ-
component link in an integral homology 3-sphere Σ. We set ℓij is the linking
number of Ki and Kj (1 ≤ i ̸= j ≤ µ) if µ ≥ 2, and L = K1 = K and t = t1 if
µ = 1. Then we have the following:

∆K(t) = ta∆K(t−1) (µ = 1),

∆L(t1, t2, . . . , tµ) = (−1)µta11 t
a2
2 · · · t

aµ
µ ∆L(t

−1
1 , t−1

2 , . . . , t−1
µ ) (µ ≥ 2),

where a is even and ai ≡ 1 +
∑

j ̸=i ℓij (mod 2).

Remark 2.5. Torres [21] has already shown a duality of the Alexander polynomials.
Lemma 2.4. is a refinement of the duality.

The following lemma is used effectively to prove “only if part” of Theorem 1.2.
in Section 4.

Lemma 2.6. Let ℓ ≥ 5 be a prime. Suppose that two Laurent polynomials F (t)
and G(t) ∈ Z[t, t−1] are of the form:

F (t) = a0 +

ℓ−3

2
∑

i=1

ai(t
i + t−i)

G(t) = b0 +

ℓ−3

2
∑

i=1

bi(t
i + t−i)

(

ai, bi ∈ Z ; i = 0, 1, . . . ,
ℓ− 3

2

)

and F (ζℓ) = G(ζℓ) holds for any ℓ-th root of unity ζℓ. Then we have F (t) = G(t).
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Proof. By the assumption, F (t)−G(t) is divisible by tℓ−1+tℓ−2+· · ·+t+1. Since the
degree of F (t)−G(t) does not exceed ℓ−3 by the form, we have F (t)−G(t) ≡ 0.✷

2.2. Rolfsen moves

We recall Rolfsen moves on Dehn surgery. It is known that a pair of Dehn
surgeries describes the same 3-manifold if and only if they are moved to each other
by Rolfsen moves [20]. Rolfsen move consists of two moves; an (R1)-move and an
(R2)-move. Let L = K1 ∪ · · · ∪Kµ be a µ-component link, and M = (L; r1, . . . , rµ)
the result of Dehn surgery along L.

(R1)-move: When the i-th component Ki is unknotted, we may operate u-full twists
along Ki where “u-full twists” means righthand u-full twists if u ≥ 0, and lefthand
|u|-full twists if u < 0. Then Ki, ri, Kj (j ̸= i) and rj change into K

′
i, r

′
i, K

′
j (j ̸= i)

and r′j , respectively, where

r′i =
1

u+ 1/ri
and r′j = rj + u(lk (Ki,Kj))

2

(1/0 = ∞ and 1/∞ = 0), and lk (Ki,Kj) is the linking number of Ki and Kj . In
Figure 2, an (R1)-move from the lefthand side to the righthand side is 1-full twist
along Ki.

(R2)-move: Adding a new component Kµ+1 to L with a framing ∞, and its inverse.

Ki

Kj

ri

rj

K’i
r’i

K’j
r’j

Figure 2: Rolfsen moves

Remark 2.7. R. Fintushel and R. J. Stern [3], and the second author [16] found
families of knots yielding a lens space by using another method, called “Kirby
moves” [14].

3. Proof of Theorem 1.1.

Proof of (1) and (2). We prove only the case (1). Let d ≥ 2 be a divisor of p2. Then
gcd(d, p1) = 1.

When we use the surgery formula of the Reidemeister torsion (cf. Lemma 2.1.),
not to make the denominator and the numerator vanish, we add the third component
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K3 to Wn as in Figure 3. Then Hi = Ki ∪K3 (i = 1, 2) is the Hopf link. We set
W = K1 ∪K2 ∪K3 and orient W so that lk (Ki,K3) = 1 (i = 1, 2). We compute
the Reidemeister torison of M = (W ; p1/q1, p2/q2,∞). Note that the value does
not depend on K3 because we close up K3 by ∞-surgery.

By the Torres formula (Lemma 2.3.) and that

∆Wn
(t1, t2)

.
= n(t1 − 1)(t2 − 1),

we may set as follows:

(3.1) ∆W (t1, t2, t3) = n(t1t2 − 1)(t1 − 1)(t2 − 1) + (t3 − 1)gn(t1, t2, t3)

for some gn(t1, t2, t3) ∈ Z[t±1
1 , t±1

2 , t±1
3 ].

W

K1

K3

K2

-n

Figure 3: 3-component link W

Then we have the following lemma:

Lemma 3.1.

gn(t1, 1, t3)
.
= 1 and gn(1, t2, t3)

.
= 1.

Proof. By (3.1), we have

∆W (t1, 1, t3) = (t3 − 1)gn(t1, 1, t3).

By the Torres formula (Lemma 2.3.),

∆W (t1, 1, t3)
.
= (t3 − 1)∆H1

(t1, t3)
.
= t3 − 1.

Hence we have gn(t1, 1, t3)
.
= 1. Similarly we have gn(1, t2, t3)

.
= 1. ✷

We define an integer εn by −εn = gn(1, 1, 1). Then εn = 1 or −1.

Lemma 3.2.

gn(t1, 1, 1) = −εnt1 and gn(1, t2, 1) = −εnt2.
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Proof. By the duality of the Alexander polynomial (Lemma 2.4.), there exists inte-
gers a, b and c such that

(3.2) ∆W (t1, t2, t3) = −ta1t
b
2t
c
3∆W (t−1

1 , t−1
2 , t−1

3 )

By substituting t3 = 1 to (3.2), we have

n(t1t2 − 1)(t1 − 1)(t2 − 1) = −nta1t
b
2(t

−1
1 t−1

2 − 1)(t−1
1 − 1)(t−1

2 − 1)

by (3.1). Then we have a = b = 2. By (3.1) and (3.2), we have

gn(t1, t2, t3) = t21t
2
2t
c−1
3 gn(t

−1
1 , t−1

2 , t−1
3 ),

and hence gn(t1, 1, 1) = t21gn(t
−1
1 , 1, 1). We then have the result by Lemma 3.1. ✷

Let EW be the exterior of W , mi and li a meridian and a longitude of Ki (i =
1, 2, 3) on ∂EW respectively, and set

M = EW ∪ V1 ∪ V2 ∪ V3 and M0 = EW ∪ V1 ∪ V2,

where Vi is a solid torus glued in doing surgery along Ki. Let m′
i and l′i be a

meridian and a longitude of Vi respectively. We may assume that, in H1(EW ),

[m′
i] = [mi]

pi [li]
qi , [l′i] = [mi]

ri [li]
si , pisi − qiri = −1 (i = 1, 2),

[m′
3] = [m3], [l

′
3] = [l3], [l1] = [l2] = [m3], [l3] = [m1][m2].

Here [ − ] denotes the homology class in H1(EW ). In the following, we also denote
the homology class in H1(M0) and H1(M) by the same symbol.

In H1(M0), we have [m′
i] = [mi]

pi [li]
qi = 1 (i = 1, 2). Hence we have

(3.3) H1(M0) ∼= ⟨[m1], [m2], [m3] | [mi]
pi [m3]

qi = 1 (i = 1, 2)⟩

We set Ti = [mi]
ri [m3]

si (i = 1, 2). Then

[mi] = [mi]
−pisi+qiri

= ([mi]
pi [m3]

qi)−si([mi]
ri [m3]

si)qi = T qii (i = 1, 2)

[m3] = [m3]
−p1s1+q1r1

= ([m1]
p1 [m3]

q1)r1([m1]
r1 [m3]

s1)−p1 = T−p1
1 = T−p2

2

(3.4)

By (3.3) and (3.4), we have

(3.5) H1(M0) ∼= ⟨T1, T2 | T p11 = T p22 ⟩

By the condition gcd(p1, p2) = 1, there exists integers u1, u2 such that u2p1+u1p2 =
1. We set T = Tu1

1 Tu2

2 . Then by (3.5), we have

T1 = Tu2p1+u1p2
1 = (Tu1

1 Tu2

2 )p2(T p11 T−p2
2 )u2 = T p2

T2 = Tu2p1+u1p2
2 = (Tu1

1 Tu2

2 )p1(T p11 T−p2
2 )−u1 = T p1 ,

(3.6)
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and
H1(M0) ∼= ⟨T | −⟩ ∼= Z.

By (3.4) and (3.6), we have

[m1] = T q11 = T p2q1 , [m2] = T q22 = T p1q2 , [m3] = T−p1
1 = T−p1p2 ,

[l′i] = Ti = T pi ̸= 1 (i = 1, 2),
[l3] = [m1][m2] = T q11 T q22 = T p2q1+p1q2 ̸= 1

(3.7)

in H1(M0).

Let ψ be as in the statement of Theorem 1.1. (1), and ψ0 = ψ ◦ ι where ι :
Z[H1(M0)] → Z[H1(M)] is a ring homomorphism induced from the natural inclusion
M0 →֒M . Then by Lemma 2.1. (1), (3.1) and (3.7), we have

τ(M0)
.
= ∆W (T p2q1 , T p1q2 , T−p1p2)(T p1 − 1)−1(T p2 − 1)−1

.
=

n(T p2q1+p1q2 − 1)(T p2q1 − 1)(T p1q2 − 1)

(T p1 − 1)(T p2 − 1)

+
(T−p1p2 − 1)

(T p1 − 1)(T p2 − 1)
gn(T

p2q1 , T p1q2 , T−p1p2)

.
= n(T p2(q1−1) + T p2(q1−2) + · · ·+ T p2 + 1)

·
(T p2q1+p1q2 − 1)(T p1q2 − 1)

T p1 − 1

−T−p1p2(T p2(p1−1) + T p2(p1−2) + · · ·+ T p2 + 1)

·
gn(T

p2q1 , T p1q2 , T−p1p2)

T p1 − 1
.

Since [m2] = T p1q2 and ψ0([m2]) = ζd, we have ψ0(T ) = ζ p̄1q̄2d where p1p̄1 ≡
q2q̄2 ≡ 1 (mod d). Hence we have

τψ(M)
.
=

{

nq1(ζd − 1)2

ζ q̄2d − 1
−
p1gn(1, ζd, 1)

ζ q̄2d − 1

}

(ζd − 1)−1

.
= {nq1(ζd − 1)2 + εnp1ζd}(ζd − 1)−1(ζ q̄2d − 1)−1

by Lemma 2.1. (2) and Lemma 3.2. ✷

Proof of (3). By computing the Alexander polynomial of W in Figure 3 for the case
n = 1, we have

g1(t1, t2, t3) = −(2t1t2 − t1 − t2 + 1),

g1(1, ζd, 1) = −ζd,
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and ε1 = 1.

Remark 3.3. We appreciate deeply that the referee computed

gn(t1, t2, t3) = −n(t1 − 1)(t2 − 1)− t1t2,

and εn = −gn(1, 1, 1) = 1. To tell the truth, we have already recognized that it
is not so defficult to calculate gn(t1, t2, t3) as the referee pointed out. But we do
not calculate it, because we do not need the explicit expression. The arguments in
this section and the next section can be applied for more extended situations after
some modifications. In Section 6, we will discuss about it (for the meaning of εn,
see Remark 6.4.).

4. Proof of “only if part” of Theorem 1.2.

We will prove two lemmas: In Lemma 4.1., we will study the case p1 (or p2)
is divisible by a prime ℓ ≥ 5. In Lemma 4.2., we will study the case p1 (or p2) is
divisible by 2 or 3. After that, we will prove “only if part” of Theorem 1.2. by the
lemmas.

Lemma 4.1. Suppose that M = (Wn; p1/q1, p2/q2) is a lens space. Then we have
the following:

(1) If p2 is divisible by a prime ℓ ≥ 5, then we have n = 1, q1 = 1, and p1 = 1, 2
or 3.

(2) If p1 is divisible by a prime ℓ ≥ 5, then we have n = 1, q2 = 1, and p2 = 1, 2
or 3.

Proof. We prove only the case (1). Suppose that M = (Wn; p1/q1, p2/q2) is a lens
space.

By Theorem 1.1. and Example 2.2., there exists integers i, j and k with
gcd(i, ℓ) = gcd(j, ℓ) = gcd(k, ℓ) = 1, k ≡ ±q̄2 (mod ℓ),

(4.1) 1 ≤ i, j ≤
ℓ− 1

2
, 1 ≤ k ≤ ℓ− 1 and i+ j ≡ k + 1 (mod 2)

such that

(4.2) {nq1(ζℓ − 1)2 + εnp1ζℓ}(ζ
i
ℓ − 1)(ζjℓ − 1)

.
= (ζℓ − 1)(ζkℓ − 1).

Case 1 i+ j ≡ 1 (mod 2).

Then the one of i and j is odd, and the other is even. By (4.1), k is even,
3 ≤ i+ j ≤ ℓ− 2 and 3 ≤ k + 1 ≤ ℓ. By (4.2), we have

ζ
− i+j−1

2

ℓ · {nq1(ζℓ − 1)2 + εnp1ζℓ} ·
(ζiℓ − 1)(ζjℓ − 1)

(ζℓ − 1)(ζ2ℓ − 1)
= ηζ

− k−2

2

ℓ ·
ζkℓ − 1

ζ2ℓ − 1
∈ R
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where η = ±1. By Lemma 2.6., we have

t−
i+j−1

2 · {nq1(t− 1)2 + εnp1t} ·
(ti − 1)(tj − 1)

(t− 1)(t2 − 1)
= ηt−

k−2

2 ·
tk − 1

t2 − 1
∈ Z[t, t−1]

Hence we have n = 1 and q1 = 1. Thus (t − 1)2 + p1t is a divisor of tk − 1, and
hence it is the third, fourth or sixth cyclotomic polynomial:

(t− 1)2 + ε1p1t = t2 + t+ 1, t2 + 1 or t2 − t+ 1.

Hence we have p1 = ε1, 2ε1 or 3ε1. Recall that ε1 = 1 (Theorem 1.1. (3)). Therefore
we have p1 = 1, 2 or 3.

Case 2 i+ j ≡ 0 (mod 2).

Then by (4.1), k is odd, 2 ≤ i+ j ≤ ℓ− 1 and 2 ≤ k + 1 ≤ ℓ− 1. By (4.2), we
have

ζ
− i+j

2

ℓ · {nq1(ζℓ − 1)2 + εnp1ζℓ} ·
(ζiℓ − 1)(ζjℓ − 1)

(ζℓ − 1)2
= ηζ

− k−1

2

ℓ ·
ζkℓ − 1

ζℓ − 1
∈ R

where η = ±1. Suppose that (i, j) ̸=
(

ℓ−1
2 , ℓ−1

2

)

. Then we have

t−
i+j
2 · {nq1(t− 1)2 + εnp1t} ·

(ti − 1)(tj − 1)

(t− 1)2
= ηt−

k−1

2 ·
tk − 1

t− 1
∈ Z[t, t−1]

by Lemma 2.6.. As in Case 1, we have the result.

Suppose that i = j = ℓ−1
2 . We set

A = ζ
− ℓ+1

2

ℓ · {nq1(ζℓ − 1)2 + εnp1ζℓ}
(

ζ
ℓ−1

2

ℓ − 1
)2

,

B = ζ
− k+1

2

ℓ · (ζℓ − 1)(ζkℓ − 1).

Then A = ηB holds. By expanding A and B, we have

A = −2(εnp1 − 2nq1)− 2nq1(ζℓ + ζ−1
ℓ ) + nq1

(

ζ
ℓ−3

2

ℓ + ζ
− ℓ−3

2

ℓ

)

+(εnp1 − nq1)
(

ζ
ℓ−1

2

ℓ + ζ
− ℓ−1

2

ℓ

)

,

B = −
(

ζ
k−1

2

ℓ + ζ
− k−1

2

ℓ

)

+
(

ζ
k+1

2

ℓ + ζ
− k+1

2

ℓ

)

.

If ℓ ≥ 7, then

A = −(3εnp1 − 5nq1)− (εnp1 + nq1)(ζℓ + ζ−1
ℓ )

−(εnp1 − nq1)

ℓ−5

2
∑

i=2

(ζiℓ + ζ−iℓ )− (εnp1 − 2nq1)
(

ζ
ℓ−3

2

ℓ + ζ
− ℓ−3

2

ℓ

)

.

By Lemma 2.6., we have the following:
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(i) If k = 1, then no n, p1 and q1 satisfy A = ηB.

(ii) If 3 ≤ k ≤ ℓ− 4, then no n, p1 and q1 satisfy A = ηB.

(iii) If k = ℓ− 2, then we have

B = −1−

ℓ−5

2
∑

i=1

(ζiℓ + ζ−iℓ )− 2
(

ζ
ℓ−3

2

ℓ + ζ
− ℓ−3

2

ℓ

)

,

and hence no n, p1 and q1 satisfy A = ηB.

If ℓ = 5, then we have

A = −2(εnp1 − 2nq1)− nq1(ζℓ + ζ−1
ℓ ) + (εnp1 − nq1)(ζ

2
ℓ + ζ−2

ℓ )

= −(3εnp1 − 5nq1)− εnp1(ζℓ + ζ−1
ℓ ).

(i) If k = 1, then we have B = −2 + (ζℓ + ζ−1
ℓ ), and hence we have n = p1 =

q1 = 1.

(ii) If k = 3, then we have B = −1 − 2(ζℓ + ζ−1
ℓ ), and hence we have n = 1,

p1 = 2 and q1 = 1.

Therefore this completes the proof. ✷

Lemma 4.2. Suppose that M = (Wn; p1/q1, p2/q2) is a lens space. Then we have:

(1) If n = 1 and p1/q1 = 1, then we have |p2 − 6q2| = 1.

(2) If p1 is divisible by 2, then we have |εnp2 − 4nq2| = 1.

(3) If p1 is divisible by 3, then we have |εnp2 − 3nq2| = 1.

(4) If p1 is divisible by 4, then we have |εnp2 − 2nq2| = 1.

(5) If n = 1 and p2/q2 = 1, then we have |p1 − 6q1| = 1.

(6) If p2 is divisible by 2, then we have |εnp1 − 4nq1| = 1.

(7) If p2 is divisible by 3, then we have |εnp1 − 3nq1| = 1.

(8) If p2 is divisible by 4, then we have |εnp1 − 2nq1| = 1.

Proof. (1) If n = 1 and p1/q1 = 1, then M is the result of p2/q2-surgery along the
(2, 3)-torus knot (i.e. the righthand trefoil). Hence we have |p2 − 6q2| = 1 by the
result of L. Moser [17], and then M = L(p2, 4q2). The case (5) is similarly shown.

We prove only (6), (7) and (8).

(6) Suppose that p2 is divisible by 2. Since ζ2 = −1, and i, j and k are odd in (4.2),
we have

nq1(−1− 1)2 + εnp1(−1) = 4nq1 − εnp1 = ±1

and |εnp1 − 4nq1| = 1 by (4.2). The case (2) is similarly shown.
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(7) Suppose that p2 is divisible by 3. Since |ζ3−1| = |ζi3−1| = |ζj3−1| = |ζk3 −1| ̸= 0,
and

nq1(ζ3 − 1)2 + εnp1ζ3 = ζ3(εnp1 − 3nq1),

we have |εnp1 − 3nq1| = 1 by (4.2). The case (3) is similarly shown.

(8) Suppose that p2 is divisible by 4. Since |ζ4−1| = |ζi4−1| = |ζj4−1| = |ζk4 −1| ̸= 0,
and

nq1(ζ4 − 1)2 + εnp1ζ4 = ζ4(εnp1 − 2nq1),

we have |εnp1−2nq1| = 1 by (4.2). The case (4) is similarly shown. This completes
the proof. ✷

Proof of the “only if part” of Theorem 1.2. By Lemma 4.2., it is sufficient to prove
that n = 1, and at least one of p1/q1 and p2/q2 is 1, 2 or 3.

Case 1 At least one of p1 and p2 has a prime divisor ℓ ≥ 5.

Suppose that p2 has a prime divisor ℓ ≥ 5. By Lemma 4.1. (1), we have n = 1,
and p1/q1 = 1, 2 or 3. The case that p1 has a prime divisor ℓ ≥ 5 is similarly shown.

Case 2 Otherwise, i.e. both |p1| and |p2| are of type 2a3b (a, b ∈ Z; a ≥ 0, b ≥ 0).

Recall that p1 and p2 are coprime.

Case 2-1 Either p1 or p2 is divisible by 6.

Suppose that p2 is divisible by 6. Then we have p1 = ±1 by coprimeness. This
case does not occur by Lemma 4.2. (6) or (7). The case that p1 is divisible by 6 is
similarly shown.

Case 2-2 Either p1 or p2 is divisible by 4.

Suppose that p2 is divisible by 4. By Lemma 4.2. (6) and (8), we have n = 1,
q1 = 1 and εnp1 = 3. By Theorem 1.1. (3), we have p1/q1 = 3. The case that p1 is
divisible by 4 is similarly shown.

Case 2-3 {|p1|, |p2|} = {1, 3b} or {2, 3b}.

Suppose that |p1| = 1 or 2, and |p2| = 3b. By Lemma 4.2. (7), we have n = 1,
q1 = 1 and εnp1 = 2. By Theorem 1.1. (3), we have p1/q1 = 2. The case that
|p2| = 1 or 2, and |p1| = 3b is similarly shown.

Case 2-4 {|p1|, |p2|} = {1, 2}.

By Lemma 4.2. (6), these cases do not occur. ✷

5. Proof of “if part” of Theorem 1.2.

We need the following fact proved in [10].

Lemma 5.1. Let L be a (2, 2s)-torus link where |s| ≥ 2, and M = (L;α1/β1,
α2/β2) the result of Dehn surgery along L where αi and βi (i = 1, 2) are integers
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such that |αi − sβi| ̸= 0. Then M is a lens space if and only if |α1 − sβ1| = 1 or
|α2 − sβ2| = 1. Moreover if |α2 − sβ2| = 1, then M = L(p, (α1 − sβ1)β2 + εβ1)
where p = α1α2 − s2β1β2 and ε = α2 − sβ2(= ±1).

Proof of the “if part” of Theorem 1.2.
(a) The case p1/q1 = 1, or p2/q2 = 1.

We have already shown the lens surgery in the proof of Lemma 4.2. (1).

(b) The case p1/q1 = 2, or p2/q2 = 2.

We prove only the case p1/q1 = 2. We have a framed link presentation of M as
in Figure 4 which is Dehn surgery along a (2, 4)-torus link where we set r = p2/q2.
Since this case is s = 2, α1 = −2, β1 = 1, α2 = p2 − 2q2 and β2 = q2 in Lemma
5.1., M is a lens space if and only if |(p2 − 2q2) − 2q2| = |p2 − 4q2| = 1, and then
M = L(2p2, 8q2 − p2).

-1-full twist

2 r 2 r
∞

r-1
-1

1

=
r-2

-2

r-2

-2

-1-full twist

(2,4)-torus link

Figure 4: (2, r)-surgery along W1

(c) The case p1/q1 = 3, or p2/q2 = 3.

We prove only the case p1/q1 = 3. We have a framed link presentation of M as
in Figure 5 which is Dehn surgery along a (2,−6)-torus link where we set r = p2/q2.
Since this case is s = −3, α1 = −3, β1 = 2, α2 = p2 − 6q2 and β2 = q2 in Lemma
5.1., M is a lens space if and only if |(p2 − 6q2) + 3q2| = |p2 − 3q2| = 1, and then
M = L(3p2, 3q2 − 2p2). The case p2/q2 = 3 is similarly shown.

Therefore this completes the proof. ✷

6. Generalization of Theorem 1.2.

Our method extends to algebraically same links withWn. Let L = K1∪K2 be a
2-component link in an integral homology 3-sphere Σ with its Alexander polynomials

(6.1) ∆L(t1, t2) = n(t1 − 1)(t2 − 1) (n ≥ 0), ∆K1
(t)

.
= 1 and ∆K2

(t)
.
= 1.

Since we can take a 3-ball B in Σ such that B ∩Ki ̸= ∅ (i = 1, 2) and (B,B ∩ L)
is a trivial 2-string tangle, we can add the third component K3 in B such that
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3 r

=

r-6
1-full twist

(2,-6)-torus link

∞

∞

3

r

-2-full twists
-2-full twists r-4

-1

-1/2

-1/2

r-4

-1

-1/2-1/2

r-4

1/21/2 -3/2

r-4

1/2

1/2

= -2-full twists

Figure 5: (3, r)-surgery along W1

Hi = Ki ∪ K3 (i = 1, 2) is the connected sum of Ki and the Hopf link, and
lk (Ki,K3) = 1 (i = 1, 2) by suitable orientations. We set L = L∪K3. Then by the
surgery formula (Lemma 2.1.) and (6.1), we have

∆Hi
(t1, t2)

.
= ∆Ki

(ti)
.
= 1 (i = 1, 2),

and by the Torres formula (Lemma 2.3.) and (6.1), we may set as follows:

(6.2) ∆L(t1, t2, t3) = n(t1t2 − 1)(t1 − 1)(t2 − 1) + (t3 − 1)gn(t1, t2, t3)

for some gn(t1, t2, t3) ∈ Z[t±1
1 , t±1

2 , t±1
3 ], which is just the same form as (3.1). We

define an integer εn by −εn = gn(1, 1, 1). Then for the case n > 0, the same
arguments as in Section 3 and Section 4 work by replacing Wn and W with L
and L, respectively, except the parts corresponding to Lemma 4.2. (1) and (5). In
particular, Lemma 3.2. also holds for the case n > 0 in the present setting.

Lemma 6.1. In the situation above, if n > 0, then εn = 1 or −1 is uniquely
determined (i.e. εn is well-defined), and |ε0| = 1.

Proof. Since Lemma 3.1. also holds by replacing W with L, we have |εn| = 1 for
every n including the case n = 0. We show uniqueness of εn for the case n > 0. Let
M = (L; ∅, 1,∞), M0 = (L; ∅, 1, ∅), EL the exterior of L, mi and li a meridian and
a longitude of Ki (i = 1, 2, 3) on ∂EL respectively, and set

M = EL ∪ V2 ∪ V3 and M0 = EL ∪ V2,

where Vi is a solid torus glued in doing surgery along Ki. Let m′
i and l′i be a



Lens Surgeries along the n-twisted Whitehead Link 261

meridian and a longitude of Vi respectively. We may assume that, in H1(EL),

[m′
2] = [m2][l2], [l

′
2] = [m2], [m

′
3] = [m3], [l

′
3] = [l3],

[l1] = [l2] = [m3], [l3] = [m1][m2].

Here [ − ] denotes the homology class in H1(EL). In the following, we also denote
the homology class in H1(M0) and H1(M) by the same symbol.

In H1(M0), we have [m′
2] = [m2][l2] = [m2][m3] = 1. Hence we have

H1(M0) ∼= ⟨[m1], [m2], [m3] | [m2][m3] = 1⟩ ∼= ⟨[m1], [m2] | −⟩ ∼= Z2.

Then by the surgery formula (Lemma 2.1.) and (6.2), we have

τ(M0)
.
= ∆L(t1, t2, t

−1
2 )(t2 − 1)−1

.
= n(t1t2 − 1)(t1 − 1)− t−1

2 gn(t1, t2, t
−1
2 )

(6.3)

In H1(M), we have [m′
3] = [m3] = 1. Hence we have

H1(M) ∼= ⟨[m1], [m2], [m3] | [m2] = [m3] = 1⟩ ∼= ⟨[m1] | −⟩ ∼= Z.

Then by the surgery formula (Lemma 2.1.), (6.3) and Lemma 3.2., we have

τ(M)
.
= {n(t1 − 1)2 − gn(t1, 1, 1)}(t1 − 1)−1

.
= {n(t1 − 1)2 + εnt1}(t1 − 1)−1.

Since τ(M) depends only on L (i.e. independent from the third component K3),
and characterizes εn, εn is uniquely determined as an invariant of L. ✷

We remark that if n = 0, then we cannot determine ε0 uniquely. The value εn
for n > 0 depends on the geometric shape of L (see Remark 6.4.).

Since the first term of the righthand side of (6.2) vanishes for the case n = 0,
we may also assume Lemma 3.2 for n = 0. Hence Theorem 1.1. (1) and (2) also
hold for n ≥ 0. Computations of the Reidemeister torsions in the present setting is
the same as that in Section 3 and Section 4 by replacing W with L. Then we have
an extension of Lemma 4.1.

Theorem 6.2. Suppose that M = (L; p1/q1, p2/q2) is a lens space. Then we have
the following:

(1) n = 0 or 1.

(2) If n = 0, then |p1| = 1 or |p2| = 1. Moreover if |p1| = 1, then M =
L(p2,±q2).

(3) If n = 1 and |p2| ≥ 5, then q1 = 1 and p1 = ε1, 2ε1 or 3ε1.

(4) If n = 1 and |p1| ≥ 5, then q2 = 1 and p2 = ε1, 2ε1 or 3ε1.
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In each case (3) and (4), ε1 = 1 or −1 which is determined uniquely depending on
L.

Proof. Firstly, we suppose n > 0. Since the arguments in the proof of Lemma 4.1.
also work in the present setting, we have n = 1, and (3) and (4). Secondly, we
suppose n = 0. Then by the value of the Reidemeister torsion, we have (2). ✷

An extensions of Theorem 1.2. (Lemma 4.2.) can also be obtained (cf. [5] for
(1) and (4)).

Theorem 6.3. Suppose that n = 1 and M = (L; p1/q1, p2/q2) is a lens space. Then
one of the following (1), (2), (3), (4), (5) or (6) holds:

(1) p1/q1 = ε1, gcd(p2, 6) = 1 and 6q2 ≡ ±1 (mod p2).

(2) p1/q1 = 2ε1 and |ε1p2 − 4q2| = 1.

(3) p1/q1 = 3ε1 and |ε1p2 − 3q2| = 1.

(4) p2/q2 = ε1, gcd(p1, 6) = 1 and 6q1 ≡ ±1 (mod p1).

(5) p2/q2 = 2ε1 and |ε1p1 − 4q1| = 1.

(6) p2/q2 = 3ε1 and |ε1p1 − 3q1| = 1.

In each case (1), (2), (3), (4), (5) and (6), ε1 = 1 or −1 which is determined
uniquely depending on L.

Proof. Since the arguments in the proof of Lemma 4.2. also work in the present
setting, we have (2), (3), (5) and (6). By the values of the Reidemeister torsions,
we have (1) and (4).

Remark 6.4. The number εn may be understood from several viewpoints. We
remark here one of them. The forms of the Reidemeister torsions in Theorem 1.1.
show that both Wn and L in this section for n > 0 are not amphicheiral. For the
case of W1, Theorem 1.2. shows its chirality more clearly. They motivate a work of
the first author [8] on the conditions for the Alexander polynomials of algebraically
split component-preservingly amphicheiral links.

Let L (n ≥ 0) be an oriented 3-component link in this section which is also
expressed as (Σ, L). We set its mirror imaged manifold pair as (Σ′, L′) = (Σ, L)!
where Σ′ is the orientation-reversed Σ, and L′ = K ′

1 ∪ K ′
2 ∪ K ′

3 has the induced
orientation from L, and set the 2-component sublink of L′ corrsponding to L as
L′ = K ′

1 ∪K
′
2 (K ′

i (i = 1, 2, 3) corresponds to Ki). Then the Alexander polynomial
of L′ is the same as that of L (up to trivial units). Though L′ looks satisfying the
same conditions as L, only lk (K ′

i,K
′
3) = −1 (i = 1, 2) is different. Thus we re-set

as L′ = K ′
1 ∪ K ′

2 ∪ (−K ′
3) where (−K ′

3) is the orientation-reversed component of
K ′

3. The Alexander polynomials of both L and L′ satisfy (6.2) where we set the
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gn(t1, t2, t3)-part for L′ as g′n(t1, t2, t3) ∈ Z[t±1
1 , t±1

2 , t±1
3 ]. Then we have

∆L′(t1, t2, t3)
.
= ∆L(t1, t2, t

−1
3 )

.
= n(t1t2 − 1)(t1 − 1)(t2 − 1) + (t−1

3 − 1)gn(t1, t2, t
−1
3 )

.
= n(t1t2 − 1)(t1 − 1)(t2 − 1) + (t3 − 1)(−t−1

3 )gn(t1, t2, t
−1
3 )

.
= n(t1t2 − 1)(t1 − 1)(t2 − 1) + (t3 − 1)g′n(t1, t2, t3).

We define an integer εn by −εn = gn(1, 1, 1). Since we can take g′n(t1, t2, t3) =
−t−1

3 gn(t1, t2, t
−1
3 ) and Lemma 6.1., we have ε′n = −εn for n > 0. Therefore L

cannot be amphicheiral in this case (i.e. only the case n = 0 can be amphicheiral),
and the statements of Theorem 6.2. and Theorem 6.3. have symmetries of this
kind. In [8], it is conjectured that the Alexander polynomial of an algebraically
split component-preservingly amphicheiral link with even components is zero.
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