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We demonstrate the importance of including the lensing contribution in galaxy clustering analyses

with large galaxy redshift surveys. It is well known that radial cross-correlations between different redshift

bins of galaxy surveys are dominated by lensing. But we show here that also neglecting lensing in the

autocorrelations within one bin severely biases cosmological parameter estimation with redshift surveys.

It leads to significant shifts for several cosmological parameters, most notably the scalar spectral index and

the neutrino mass scale. Especially the latter parameter is one of the main targets of future galaxy surveys.
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I. INTRODUCTION

Galaxy number counts are a key observable in cosmol-

ogy and are exploited by current [1–3] and future [4–7]

cosmological observations. Usually, the galaxy counts

are compared to the predicted power spectrum of matter

density fluctuations Pðk; zÞ, which is, however, not

directly observable. The power spectrum in harmonic space

Clðz; z0Þ on the other hand is an observable [8].

Predictions for number counts have been derived

for example in Refs. [8–10]. From these expressions, it

becomes clear that, in addition to the well-known density

perturbations and redshift space distortions that are usually

included in PðkÞ, there are additional, so-called relativistic

effects that contribute to the observed number counts.

They come from the fact that we observe photons which

have been deflected on their way from a source into the

telescopes and that not only the galaxy number but also the

volume is perturbed. For typical surveys, the most impor-

tant relativistic effect is due to lensing convergence [11,12].

In this paper, we show that neglecting lensing convergence

in the analysis of a future survey like Euclid will lead to

significant biases in the estimation of cosmological param-

eters. As a consequence, care should be taken to include

lensing. Including it in the standard matter power spectrum

PðkÞ is difficult as lensing inherently mixes different scales;

this argues in favor of the adoption of quantities like the

Clðz; z0Þ where it is straightforward to include relativistic

effects.

II. METHODOLOGY

We illustrate the bias of cosmological parameters when

neglecting lensing by analyzing Clðz; z0Þ. We employ

CLASSgal [13] to compute “observed” Cl that include

the effect of lensing convergence in addition to the matter

perturbations and to redshift space distortions and “theory”

Cl that only contain the latter two and neglect lensing. We

call the former Cobs
l

and the latter Cth
l
. In order to mimic a

PðkÞ analysis more closely, we consider not only the full set

of Clðz; z0Þ but add a case where we limit ourselves to the

autocorrelations Clðz; zÞ. More details about power spectra

are given in Appendix A.

The survey configuration which we consider here is

consistent with the Euclid photometric catalog. The number

of galaxies per redshift and per steradian, the galaxy

density, and the magnification bias are as specified in

Ref. [14]. In order to make our work more self-contained,

we repeat them in Appendix A. For the galaxy bias, we

assume bG ¼ b0
ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

[15], where b0 is varied in the

Markov chain Monte Carlo (MCMC) chains.

We adopt a covered sky fraction fsky ¼ 0.364 and divide

the N ∼ 109 photometric galaxies catalog into Nbin ¼ 5

Gaussian redshift bins containing equal numbers of galaxies

per steradian N . We assume a fiducial flat Lambda-Cold-

Dark-Matter (ΛCDM) model consistent with Planck [16],

including massive neutrinos with a normal mass hierarchy

(dominated by the heaviest neutrino mass eigenstate). More

precisely, the cosmological parameters of our fiducial model

are the reduced baryon density parameter, h2Ωb ¼ ωb ¼
2.225 × 10−2; the cold dark matter density parameter,

h2Ωcdm ¼ ωcdm ¼ 0.1198; the scalar spectral index, ns ¼
0.9645; the amplitude of curvature fluctuations, ln 1010As ¼
3.094; the Hubble constant H0 ¼ 67.27 km=s=Mpc¼
h100 km=s=Mpc; and the sum of the neutrino masses,
P

mν ¼ 0.06 eV and b0 ¼ 1.

We incorporate an error Eij
l

due to nonlinearities,

computed as a rescaling of the transfer functions based on
the HALOFIT corrections to the power spectrum (see
AppendixD ofRef. [14] for details; we neglect the parameter

dependence of the error Eij
l
). We also add a shot-noise

contribution N −1 to the power spectra. Thus, the
angular power spectrum of number count fluctuations is
modelled as
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CA;ij
l

¼ Cij
l
þ Eij

l
þN −1δij; ð1Þ

where A ¼ obs; th and i; j ¼ 1;…; Nbin are redshift bin
indices.

Similarly to the cosmic shear implementation of

Ref. [17], we adopt a Gaussian likelihood which leads

to a χ2 relative to the fiducial model given by

Δχ2 ¼
X

lmax

l¼2

ð2lþ 1Þfsky
�

ln
dth
l

dobs
l

þ dmix
l

dth
l

− Nbin

�

; ð2Þ

where dA
l
≡ detðCA;ij

l
Þ and dmix

l
is computed like dth

l
but

substituting in each term of the determinant one factor by

Cobs;ij
l

. The total dmix
l

is obtained by adding all different

possibilities for the insertion of Cobs;ij
l

. More details can be

found in Ref. [17]. To be conservative and keep nonlinear

effects small, we choose lmax ¼ 400 in the analysis.

Angular power spectraCl and nonlinear correctionsEl are

accurately computed using the Limber approximation only for

the lensing integral along the line of sight.We then explore the

parameter spacewith the help of aMCMC approach based on

the Metropolis-Hastings algorithm [18] first using wide flat

priors (“without priors”) and a second time using Planck [16]

priors (“Planck priors”). When computing the theoretical

spectra Cth
l
with which we want to fit the observed Cl, we

neglect lensing convergence. Our aim is to test the shift (bias)

of cosmological parameters due to this mistake. To speed up

the MCMC exploration of parameter space, the Cl of the

theoretical spectra are computed less accurately thanCobs
l
, but

we request that Δχ2 ≲ 0.2 for the fiducial parameters when

lensing is included in the analysis. Hence, the inaccuracy in

our calculations can lead to an uncertainty of the order

of Δχ2 ≲ 0.2.

III. RESULTS

In this section, we present the results of our analysis. We

first study the case (nearly) without prior knowledge and

compare the results with a Fisher matrix based analysis.

Then, we introduce Planck priors, and in a final subsection

we analyze what our results mean for the significance of the

detection of the lensing term in the Euclid photometric

survey.

A. MCMC without priors

We first determine the bias of the parameters due to

neglecting the lensing term assuming nearly no prior

knowledge. Of course, we have to assume some priors

for the MCMC chain, but they are very wide and flat.

We have fitted the generated Cij
l
data in three different

ways, where lensing convergence is (i) consistently included,

(ii) neglected, and (iii) neglected with only redshift bin

autocorrelations taken into account. The results are shown in

Table I and Fig. 1. Figure 1 shows two-dimensional contours

and one-dimensional (1D) probability distribution functions

for the marginalized posteriors of the cosmological param-

eters obtained from these analyses. The red contours

(dotted 1D distributions) show the full analysis. They should

reproduce the fiducial model. In the analyses shown by

the gray (1D solid) and blue (1D dashed) contours, lensing

is neglected. Furthermore, in the gray contours, only auto-

correlations [i.e., Clðz; zÞ] are considered, while the blue

contours use both auto and cross-correlations [i.e., Clðz; z0Þ
for all combinations of redshift bins]. The autocorrelation

case is closer to the standard PðkÞ analysis which is usually
performed in redshift bins, but caution should be taken in

comparing the two analyses since binning in redshift has

significantly different effects.

From the red contours in Fig. 1, it is evident that we

cannot determine the baryon and cold dark matter densities

TABLE I. MCMC results (flat prior). We show the mean and

best-fit values, the standard deviation, and the amplitude of the

shift of the mean and best fit with respect to the fiducial value in

units of the standard deviation, σ, of the corresponding analysis.

The large value of Δχ2 for case ii shows that cross-correlations

cannot be fitted if lensing is neglected. A shift of less than about

0.2σ is not serious and is probably due to the reduced precision

used to compute the theoretical spectra.

(i) Consistently including lensing: Δχ2 ¼ 0

Parameter Mean Best fit σ shift: Mean Best-fit

ωb 0.02979 0.02285 0.00624 1.2σ 0.1σ

ωcdm 0.1455 0.1219 0.0200 1.3σ 0.1σ

ns 0.9476 0.9642 0.0387 0.4σ <0.1σ

ln 1010As 3.047 3.097 0.065 0.7σ <0.1σ

H0ð km
s·Mpc

Þ 73.84 67.84 5.48 1.2σ 0.1σ

mν (eV) 0.29 0.09 0.19 1.2σ 0.2σ

b0 1.018 1.000 0.031 0.6σ <0.1σ

(ii) Neglecting lensing: Δχ2 ¼ 2064

Parameter Mean Best fit σ shift: Mean Best-fit

ωb 0.02494 0.02120 0.00556 0.5σ 0.1σ

ωcdm 0.1532 0.1435 0.0208 1.6σ 1.1σ

ns 0.8702 0.8837 0.0446 2.1σ 1.8σ

ln 1010As 2.867 2.965 0.394 0.6σ 0.3σ

H0ð km
s·Mpc

Þ 68.73 66.76 5.14 0.3σ 0.1σ

mν (eV) 0.43 0.41 0.16 2.3σ 2.2σ

b0 1.293 1.200 0.271 1.1σ 0.7σ

(iii) Neglecting lensing: (only autocorrelations) Δχ2 ¼ 180

Parameter Mean Best fit σ shift: Mean Best fit

ωb 0.01982 0.01737 0.00520 0.5σ 0.9σ

ωcdm 0.1658 0.1552 0.0242 1.9σ 1.5σ

ns 0.7539 0.7675 0.0513 4.1σ 3.8σ

ln 1010As 2.449 2.719 0.465 1.4σ 0.8σ

H0ð km
s·Mpc

Þ 61.64 59.11 5.43 1σ 1.5σ

mν (eV) 0.41 0.41 0.14 2.6σ 2.5σ

b0 1.888 1.603 0.428 2.1σ 1.4σ
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very well with our configuration. The rather large redshift

bins of our analysis with Δz≳ 0.3 significantly smear out

the baryon acoustic oscillations, leaving only the dominant

features in the power spectrum which are fixed by the

equality scale keq ∝ ωm=H0 (at fixed radiation content and

measured in h=Mpc) and the ratio ωb=ωcdm. This leads to a

significant degeneracy between ωb, ωcdm, and H0; only the

slopes of the (ωx, H0) and the (ωb, ωcdm) contours are well

determined. The large uncertainties in these parameters, as

well as the prior mν ≥ 0, push the posterior mean value

away from the best fit (which is always very close to the

input value). We did not add realization noise in our

FIG. 1. Two- and 1-D posteriors for the cosmological parameters inferred from the full analysis including lensing (red dotted), an

analysis neglecting lensing (blue dashed) and considering only auto-correlations (gray solid). The 68% and 95% confidence intervals are

shown. Intersections between vertical and horizontal lines denote the fiducial cosmology. In this analysis no significant priors were

imposed on the parameters. Circles and squares represent the estimates for the best fits from a Fisher matrix analysis when neglecting

lensing, and for the only auto-correlations case, respectively.
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likelihood, since it is not relevant for the present study. Our

aim here is not to derive optimal parameter constraints

but to demonstrate the importance of the lensing contri-

bution in such an analysis. For this reason, our approach is

far from optimal but conservative and simple, and even

in this case, we find that not including lensing leads to

wrong results. Optimizing error contours by, e.g., intro-

ducing more nonlinear scales in the analysis is expected to

lead to even more biased results, given that the relevance of

lensing increases at higher multipoles.

If lensing is neglected in the analysis, several parameters

show a significant bias with respect to the input parameters

(given by the vertical dashed lines); cf. also Table I. First of

all, there is a very strong degeneracy between the scalar

amplitude As and the bias b0. When including lensing

which does not depend on b0, this degeneracy is broken,

and both b0 and As are determined accurately. Furthermore,

lensing (together with the magnification bias for Euclid

specifications) enhances clustering. Compensating this

with a larger value of b2
0
As leads to too much clustering

on small scales, which, in turn, is compensated by reducing

the spectral index by ð2 − 4Þσ and by increasing the

neutrino mass. The preferred neutrino mass is around

0.4 eV, which corresponds just about to the current limits

from cosmology [16]. From the degeneracy directions in

the two-dimensional contours in Fig. 1, we can also read off

that forcing mν → m
ðfidÞ
ν ¼ 0.06 eV would lead to an even

larger bias in the scalar spectral index. Therefore, to go

beyond the current state and derive accurate estimates of

the neutrino masses with galaxy surveys absolutely requires

taking lensing into account.

Formodelswith additional parameters, the possibilities to

improve the fit by choosing “wrong” values of the param-

eters increase, and we may see even larger biases, leading to

even stronger spurious detections of new physics.

It is interesting that taking cross-correlations into

account helps somewhat to reduce the bias on the param-

eters. The scalar spectral index best fit in this case has a bias

of 1.8σ, as compared to 3.8σ for autocorrelations only, and

the neutrino mass is shifted by 2.2σ compared to 2.5σ;

see Table I. But this “improvement” is actually not real. It

comes to a big extent from the fact that cross-correlations

simply cannot be fitted without the lensing term as

discussed below and shown in Fig. 2. This is most manifest

in the total Δχ2 which increases from Δχ2auto ≃ 180 for the

five autocorrelation bins to more than Δχ2aþc ≳ 2000 when

adding the ten cross-correlation bins. Giving each bin

naively the same weight, we would expect an increase

by a factor 3; instead, we have Δχ2aþc=Δχ
2
auto ≳ 11. The

increase in the size of the parameter contours for some

parameters appears at first counterintuitive as including

more data improves our knowledge and therefore should

reduce the errors. This simple logic, however, only applies

if the data can actually be fitted by the model at hand or

if the likelihoods are Gaussian. Otherwise, different data

may prefer different model parameters and lead to an

increase not only in the total Δχ2 but also in the size of the

confidence contours.

We can understand our results by looking at the differences

in the harmonic power spectra shown in Fig. 2. The thick red

and thin blue lines are the angular spectra computed at the

best-fit values shown in Table I for the consistent case

including lensing and for the one neglecting it, respectively

(we include all redshift bin correlations). For the consistent

spectra including lensing, we compute 1-σ error bars at each

multipole by assuming, as for Eq. (2), Gaussian spectra (see

Eq. (2.13) of Ref. [14]). We consider the representative

correlations between the redshift bins ðijÞ ¼ ð11Þ; ð55Þ, and
(15). The plot shows that, when neglecting lensing, the

spectrum for the cross-correlation between redshift bins 1

and 5 lies outside the 1-σ error bars around the fiducial

spectrum including lensing. This confirms that the model

cannot fit the mock data.

B. Fisher analysis without priors

The shift of best-fit parameters and the change in the

figure of merit due to neglecting relativistic corrections

(hence, in particular, neglecting lensing) has been studied

previously; see, e.g., Refs. [19–22]. However, these pre-

vious works did not include massive neutrinos, and they

used a Fisher matrix analysis which gives quantitative

estimates for shifts only if these are significantly less than

one standard deviation. Hence, the results obtained in

these works can only be trusted qualitatively, while the

MCMC study presented here gives quantitative results and

FIG. 2. The thick red and the thin blue lines correspond to the

spectra at the best-fit values estimated by consistently including

lensing and by neglecting it, respectively. Gaussian error bars

accounting for cosmic variance and shot noise for the consistent

analysis are shown as gray regions. The indices for the correlated

redshift bins are shown in the legend. The model neglecting

lensing cannot fit the data, especially due to redshift cross-

correlations.

CARDONA, DURRER, KUNZ, and MONTANARI PHYSICAL REVIEW D 94, 043007 (2016)

043007-4



demonstrates that large biases, exceeding by far 1σ, are

to be expected even for not very ambitious survey

specifications.

We illustrate this here by repeating our analysis with a

Fisher matrix technique. The results are presented in Fig. 3,

where we also show the shifts of the best-fit values

estimated via Fisher matrices (see Appendix B for details).

Fisher matrix contours are reported for both cases, without

and including lensing. This information is also reported in

Table II, where the standard deviations, σ, refer to the case

FIG. 3. 2D and 1D posteriors for the cosmological parameters inferred from the Fisher analysis excluding (orange solid) and including

(red dotted) lensing. We stress that, in the former case, to compute error ellipses within the Fisher formalism, we forecast parameter

constraints in a universe where lensing is absent (see the text for more details). The 68% and 95% confidence intervals are shown.

Intersections of dashed lines denote the fiducial cosmology. The expected systematic shifts in the best fit due to neglecting lensing in the

theoretical modeling are shown, including all bin correlations (circles) and including only autocorrelations (squares). For comparison,

we also show the corresponding results from the MCMC analysis. While the Fisher formalism is reliable for a qualitative understanding

of parameter degeneracies, the systematic errors are seriously misestimated. See Table II for more details about statistical quantities.
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without lensing, which provides more conservative infor-

mation about the importance of the systematic error. We

stress that in both cases, without and with lensing, Fisher

matrices only forecast error contours around a universe

described by the fiducial parameters and assume a Gaussian

likelihood. While the MCMC analysis allows us to fit the

wrong or the correct model to the data, in the Fisher

context, this is not possible. This means that in the Fisher

formalism we predict the error contours for both a model

and a universe without lensing. Hence, while the red dotted

contours with lensing can be compared between Figs. 1 and

3, the other contours have no correspondence between the

two figures. In our case, Fisher matrices provide a good

qualitative description of degeneracy between different

parameter constraints. The 68% confidence intervals are

in disagreement with MCMC results by a factor 2–3, but

the shapes and inclinations of the ellipses very roughly

follow the MCMC contours. However, the magnitude and

direction of the best-fit shift in parameter space due to

neglecting lensing is seriously misestimated. Indeed, the

first-order formalism that we use to estimate the shift in the

best fits due to a systematic error is only valid to the extent

that the shift is small compared to the errors (error contours

are themselves meaningful only close enough to the

fiducial cosmology) and also assuming that the systematic

error does not affect the ellipse contours [23]. Neither of

these conditions is actually satisfied.

C. MCMC with Planck priors

A more realistic analysis makes use of prior knowledge

of parameters from previous experiments. We therefore

repeat our MCMC analysis using Planck priors for all the

cosmological parameters except the bias, which is not

measured in Planck, and the neutrino mass. The latter is our

most interesting parameter, and we want to test how

strongly it is biased in an analysis which neglects lensing.

Planck chains are publicly available through the Planck

Legacy Archive. In this paper, we use the chain for the

extended model with a free neutrino mass based on the

Planck TT, TE, EEþ lowP likelihoods (Eq. (54c) in [16]).

We compute the covariance matrix C for the cosmological

parameters ~x ¼ ðωb;ωcdm; ns; As; H0Þ and assume a

Gaussian distribution for the prior. The χ2 relative to the

fiducial model including the Planck prior is then the Δχ2 in

Eq. (2) plus

Δχ2prior ¼
X

i;j

ðxi − xfidi Þ2C−1
ij ðxj − xfidj Þ2; ð3Þ

where ~xfid denotes parameters of the fiducial model andC−1

is the inverse of the covariance matrix. In this way, we

marginalize the Planck prior over the neutrino mass and the

optical depth, τ, which are parameters that we want to leave

free sincewewant to determine the first and our survey is not

sensitive to the second. The results are shown in Table III

and Fig. 4.

TABLE II. Fisher matrix results for the shift in the best-fit

values due to neglecting lensing, in units of standard deviations

(see Fig. 3). The numbers in parentheses refer the case including

only bin autocorrelations. For comparison, we also give in

columns 4 and 5 the corresponding values from the MCMC

analysis presented in Table I and Fig. 1. While Fisher matrices

give a good qualitative description of parameter degeneracies,

estimates of the shifts in the best fits seriously misestimate the

magnitude and direction in parameter space.

Parameter Shift of best fit For MCMC

ωb 1.2σ (0.9σ) −0.1σ (−0.9σ)

ωcdm 1.7σ (1.1σ) 1.1σ (1.5σ)

ns −1.9σ (−1.3σ) −1.8σ (−3.8σ)

ln 1010As −1.1σ (0.005σ) −0.3σ (−0.8σ)

H0ð km
s·Mpc

Þ 1.2σ (0.9σ) −0.1σ (−1.5σ)

mν (eV) 3.3σ (0.6σ) 2.2σ (2.5σ)

b0 1.7σ (0.1σ) 0.7σ (1.4σ)

TABLE III. MCMC results with Planck priors. We show the

mean and best-fit values, the standard deviation, and the

amplitude of the shift of the mean and best fit with respect to

the fiducial value in units of the standard deviation, σ, of the

corresponding analysis. The large value of Δχ2 for case ii shows

that cross-correlations cannot be fitted if lensing is neglected.

(i) Consistently including lensing: Δχ2 ¼ 0

Parameter Mean Best fit σ shift: Mean Best fit

ωb 0.02223 0.02226 0.00013 0.2σ < 0.1σ

ωcdm 0.1200 0.1196 0.0011 0.2σ 0.2σ

ns 0.9642 0.9651 0.0041 0.1σ 0.1σ

ln 1010As 3.092 3.098 0.026 0.1σ 0.2σ

H0ð km
s·Mpc

Þ 67.08 67.25 0.70 0.3σ < 0.1σ

mν (eV) 0.08 0.04 0.05 0.4σ 0.4σ

b0 1.005 0.994 0.018 0.3σ 0.3σ

(ii) Neglecting lensing: Δχ2 ¼ 2082

Parameter Mean Best fit σ shift: Mean Best fit

ωb 0.02220 0.02219 0.00017 0.3σ 0.4σ

ωcdm 0.1215 0.1214 0.0014 1.2σ 1.1σ

ns 0.9643 0.9640 0.0049 < 0.1σ 0.1σ

ln 1010As 3.085 3.090 0.034 0.3σ 0.1σ

H0ð km
s·Mpc

Þ 65.66 65.64 0.87 1.8σ 1.9σ

mν (eV) 0.35 0.34 0.06 4.8σ 4.7σ

b0 1.072 1.070 0.022 3.3σ 3.3σ

(iii) Neglecting lensing: (only autocorrelations) Δχ2 ¼ 230

Parameter Mean Best fit σ shift: Mean Best fit

ωb 0.02185 0.02181 0.00014 2.8σ 3σ

ωcdm 0.1240 0.1240 0.0013 3.4σ 3.3σ

ns 0.9529 0.9536 0.0044 2.7σ 2.5σ

ln 1010As 3.079 3.081 0.033 0.5σ 0.4σ

H0ð km
s·Mpc

Þ 62.72 62.71 1.01 4.5σ 4.5σ

mν (eV) 0.50 0.52 0.05 8.6σ 8.8σ

b0 1.127 1.127 0.022 5.7σ 5.7σ
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Cosmological parameters in this case are clearly better

determined than for the case without priors. While the

spectral index ns shows now a smaller relative shift, the

neutrino masses and galaxy bias actually acquire larger

shifts. The incompatibility of the data and model pulls the

Hubble parameter H0 away from the fiducial value by over

4σ in spite of the Planck prior. Hence, while the details of

the analysis are important in determining the actual size of

error bars and degeneracies in parameter space, a large bias

2σ − 9σ in the neutrino masses is a feature that persists in

all the analyses here performed.

D. Significance of the lensing detection

We can quantify the strength with which we detect the

lensing signal in our setup with the help of Bayesian model

probabilities, comparing the case with lensing to the case

without lensing. To do this, we introduce formally an

FIG. 4. 2D and 1D posteriors for the cosmological parameters inferred using Planck priors. We show the full analysis including

lensing (red dotted), an analysis neglecting lensing (blue dashed), and considering only autocorrelations (gray solid). The 68% and

95% confidence intervals are shown. Intersections between vertical and horizontal lines denote the fiducial cosmology. See Table III for

numerical values of the statistical quantities.
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extended model ML with an additional “lensing ampli-

tude” parameter AL that multiplies the lensing contribution

in the model. For the “with lensing”modelM1, we then set

AL ¼ 1, while the “without lensing” case M0 corresponds

to AL ¼ 0. In this way, the two models are nested within the

extended model, and we can use the Savage-Dickey density

ratio (SDDR) method to derive model probabilities (see,

e.g., Ref. [24] for an explanation of the SDDR and Sec. III

of Ref. [25] for a more detailed description of the same

reasoning as that used here); with the SDDR, the Bayes

factor B between the case with fixed AL and the general

case is given by the posterior for AL (marginalized over all

other parameters) of the general model divided by prior,

both taken at the nested point,

Bx ≡
PðDjMxÞ
PðDjMLÞ

¼ PðAL ¼ xjD;MLÞ
PðAL ¼ xjMLÞ

: ð4Þ

Here, P denotes probabilities, D denotes the data, and x is

either 0 or 1. The Bayes factor between two models with

given fixed values for AL is then simply the ratio of the

Bayes factors relative to the extended model,

Bxy ≡
PðDjMxÞ
PðDjMyÞ

¼ PðDjMxÞ
PðDjMLÞ

PðDjMLÞ
PðDjMyÞ

¼ Bx

By

¼ PðAL ¼ xjD;MLÞ
PðAL ¼ yjD;MLÞ

; ð5Þ

where the last equality holds if PðAL ¼ xjMLÞ ¼
PðAL ¼ yjMLÞ, e.g., for a uniform prior in AL, which is

what we will use. We see that the only information needed

to determine Bxy is the relative value of the posterior at

AL ¼ x and at AL ¼ y, and this is approximately given by

the χ2 difference between these cases. As by construction

AL ¼ 1 (the case where we include lensing consistently)

has Δχ2 ¼ 0, we find simply that lnB01 ≈ −Δχ2no lensing=2.

We find thus that lnB01 ≈ −1000 when using auto- and

cross-correlations and lnB01 ≈ −90 to −115 when only

taking into account autocorrelations. Both Bayes factors

are way out on the often-used Jeffreys scale [26] where

anything larger than 5 is considered as strong. In other

words, lensing is detected in both cases with overwhelming

evidence.

We can also translate the Δχ2 value into an order-of-

magnitude estimate of “the number of sigmas” with which

we detect the lensing signal in our setup. Assuming a

Gaussian probability distribution function for AL so that

Δχ2 ≈ ðAL − 1Þ2=σ½AL�2, we find that σ½AL� needs to be

0.022 in order to explain the observed Δχ2 values of 2064

and 2082. This implies that the lensing is measured roughly

at the 45σ level. Lensing is clearly a strong signal in the

photo-z type survey that we have considered here. As also

discussed above, most of the lensing signal is contained in

the off-diagonal spectra. The Δχ2 values of 180 and 230

when only looking at the autocorrelations correspond

to about 13σ to 15σ, roughly comparable to the strength

of the lensing detection in the Planck temperature power

spectrum [16].

This also confirms the result of Ref. [14], which found

that the lensing amplitude AL can be determined to an

accuracy of the order of (1–2)% with a Euclid like photo-

metric survey, with the constraints coming especially from

the off-diagonal (interbin) correlations.

IV. CONCLUSIONS

In this paper, we have shown that neglecting lensing

convergence leads to large shifts in the best-fit values of

cosmological parameters for the data sets available from

future surveys. As in the CMB, where the lensing of the

power spectra is detected at over 10σ [16], it will become

mandatory to include lensing also in the analysis of galaxy

surveys.

In the case studied here, we have seen mainly an increase

in the neutrino massmν and a decrease in the spectral index

ns when neglecting lensing. Also, the product Asb
2
0
which

determines the amplitude of fluctuations increases. This

comes from the fact that the magnification bias for the

Euclid specifications is relatively large [14] (see also

Appendix A), so that the density-lensing correlation in

bins with z > 1 contributes with a positive sign. At smaller

redshifts, which mainly measure correlations on smaller

scales, this has to be corrected since there the total lensing

term ∝ ð5s − 2Þκ contributes negatively. This can be

achieved by lowering ns and increasing the neutrino mass.

We note that the specific shifts which we have obtained

in our analysis depend on the details of the survey. The

main, generic result is that, in order to estimate cosmo-

logical parameters reliably with future galaxy surveys, we

have to correctly include lensing with the measured

magnification bias function, sðzÞ, defined by

sðzÞ≡ ∂log10Nðz;m < m�Þ
∂m�

;

where m� is the limiting magnitude of the survey and

Nðz;mÞ is the galaxy luminosity function of the survey at

redshift z.
The fact that deep galaxy surveys are so sensitive to

lensing, however, is not only a curse but also a blessing. It

means that these surveys will allow us to determine a map

of the lensing potential at different redshifts, i.e., perform

“lensing tomography” with galaxy clustering. This will

be a very interesting alternative to lensing tomography

with shear measurements proposed, e.g., in Ref. [27].

Both techniques are challenging, but they have different

systematic errors and allow valuable cross-checks. So,

clearly both paths should be pursued.
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APPENDIX A: THE EUCLID

PHOTOMETRIC SURVEY

Angular power spectra, depending on two redshifts zi
and zj, can be written as integrals of transfer functions

Δ
i
l
ðkÞ over wave numbers k:

Cij
l
¼ 4π

Z

d ln kPRðkÞΔi
l
ðkÞΔi

l
ðkÞ: ðA1Þ

Here, PRðkÞ ¼ Ask
ns−1 is the primordial power spectrum

of curvature perturbations. The transfer functions Δ
i
l
ðkÞ

include an integral over a window function WiðzÞ describ-
ing the binning in redshift, multiplied by the number of

galaxies per redshift interval dN=dz:

Δ
i
l
ðkÞ ¼

Z

dz
dN

dz
WiðzÞΔlðz; kÞ: ðA2Þ

The main contributions to the transfer functions Δlðz; kÞ
appearing in the integral of Eq. (A2) are given by the

intrinsic galaxy density perturbation, redshift space dis-

tortions, and lensing effects:

Δlðz; kÞ ¼ bGðzÞδðz; kÞjlðkrðzÞÞ þ
k

H
Vðz; kÞ d

2jlðkrðzÞÞ
dðkrðzÞÞ2

þ
�

2 − 5s

2

�

lðlþ 1Þ

×

Z

rðzÞ

0

d~r
rðzÞ − ~r

rðzÞ~r ½Φð~z; kÞ þΨð~z; kÞ�jlðk~rÞ:

ðA3Þ

We introduced the Fourier transforms of the density

perturbations (in comoving gauge), of the metric perturba-

tions Φ, Ψ and of the velocity potential, vi ≡ −∂iV, in the

Newtonian gauge.
2
The functions jlðkrðzÞÞ denote the

spherical Bessel functions. The integral along the line of

sight describes the effects of lensing convergence which

affects number counts by magnifying the sources, hence

affecting their number density per steradian. The factor sðzÞ

is called the magnification bias, and it depends on the

luminosity function of the given galaxy population. Note

that for the special value s ¼ 2=5 lensing has no effect on

number counts, while it has opposite sign for larger or

smaller values, respectively.

Following Refs. [5,15], we consider Euclid photometric

specifications and approximate the number of galaxies per

redshift and per steradian, the galaxy density, the covered

sky fraction, the galaxy bias, and magnification bias as

dN

dzdΩ
¼ 3.5 × 108z2 exp

�

−

�

z

z0

�

3=2
�

for 0 < z < 2.0;

ðA4Þ

d ¼ 30 arcmin−2; ðA5Þ

fsky ¼ 0.364; ðA6Þ

bGðzÞ ¼ b0
ffiffiffiffiffiffiffiffiffiffiffi

1þ z
p

; ðA7Þ

sðzÞ ¼ s0 þ s1zþ s2z
2 þ s3z

3; ðA8Þ

where z0 ¼ zmean=1.412 and the median redshift is

zmean ¼ 0.9. We set b0 ¼ 1 in our fiducial model and

then vary it in the MCMC chains. The magnification

bias is computed in Ref. [14], and the coefficients are

s0 ¼ 0.1194, s1¼ 0.2122, s2 ¼ −0.0671, and s3 ¼ 0.1031.

Figure 5 shows the division into five Gaussian bins

containing the same number of galaxies. For numerical

convenience, we set the lower redshift bound to z ¼ 0.1;

this affects our results by a negligible amount. Figure 6

shows the redshift dependence of galaxy and magnification

bias. We assume constant galaxy bias and magnification

FIG. 5. Euclid photometric galaxy density distribution (black

line) with a division into five bins containing the same number of

galaxies.

1
https://github.com/cmbant/getdist.

2
With initial conditions such that Rðzin; kÞ ¼ 1.
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bias within each bin, the values being determined by the

mean redshift of the bin.

APPENDIX B: BASIC EXPRESSIONS

FOR THE FISHER ANALYSIS

The Fisher approach used in the literature [19–22] and

applied in Sec. III B for comparison with the results from

our MCMC forecasts is based on the Fisher information

matrix given by

Fαβ ¼
X

l

X

ðijÞðpqÞ

∂Cij
l

∂θα

∂Cpq
l

∂θβ
Cov−1Cl½ðijÞ;ðpqÞ�

; ðB1Þ

where θa denotes a given cosmological parameter. We

compute the derivatives with a five-point stencil [14], and

the derivative step for each parameter is set with an iterative

procedure to be of the same size as the 1-σ levels obtained

when fixing the other parameters σθα ¼ 1=
ffiffiffiffiffiffiffiffi

Fαα

p
. We

verified that the final results do not depend significantly

on the particular step values. We sum up to l ¼ 400, while

the second sum is over the matrix indices ðijÞ with i ≤ j
and ðpqÞ with p ≤ q which run from 1 to the total number

of bins when all bin auto- and cross-correlations are taken

into account. Using the same notation as in Eq. (1), the

covariance matrix is

CovCl½ðijÞ;ðpqÞ� ¼
C
A;ðipÞ
l

C
A;ðjqÞ
l

þ C
A;ðiqÞ
l

C
A;ðjpÞ
l

ð2lþ 1Þfsky
: ðB2Þ

If only autocorrelations are taken into account, the covari-

ance must be first reduced to the relevant components and

subsequently inverted. We estimate the shift in the best-fit

values due to the wrong model assumption ~Cl by defining

the systematic error as ΔCl ¼ Cl −
~Cl [21,23,28,29],

Δθα
¼

X

β

½ð ~FÞ−1�αβBβ; ðB3Þ

where we defined

Bβ ¼
X

ðijÞðpqÞ

X

l

ΔCij
l

∂ ~Cpq
l

∂θβ
Cov−1

~Cl½ðijÞ;ðpqÞ�
: ðB4Þ

A tilde always denotes the quantity computed according to

the wrong model ~Cl. This expression assumes that the

systematic error does not affect the covariance, and it is

only valid if the shifts are small compared to the variances

Δ
2

θα
=σ2θα < 1. As mentioned in the text, neither of these

hypothesis is satisfied in our case. Furthermore, note that

Eq. (B1) can only be used to estimate error contours by

assuming that the underlying universe is described either by

Cl or by ~Cl and does not give information about error

contours obtained when fitting the wrong model ~Cl to data

consistent with the full Cl spectra.
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