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Lensing reconstruction with CMB temperature and polarization

Michael Kesden, Asantha Cooray, and Marc Kamionkowski
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA
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Weak gravitational lensing by an intervening large-scale structure induces a distinct signature in the cosmic
microwave background~CMB! that can be used to reconstruct the weak-lensing displacement map. Estimators
for individual Fourier modes of this map can be combined to produce an estimator for the lensing-potential
power spectrum. The naive estimator for this quantity will be biased upwards by the uncertainty associated
with reconstructing individual modes; we present an iterative scheme for removing this bias. The variance and
covariance of the lensing-potential power spectrum estimator are calculated and evaluated numerically in a
LCDM universe for Planck and future polarization-sensitive CMB experiments.
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I. INTRODUCTION

The primordial cosmic microwave background~CMB!
was generated when photons first decoupled from the b
onic fluid when the universe was only 400,000 years old. T
vast majority of these photons travel unperturbed to
present day, and features of their angular power spect
such as acoustic peaks and the damping tail@1#, record valu-
able information about cosmological parameters@2#. Baryons
and dark matter evolve from small inhomogeneities at
coupling into increasingly complicated large-scale struct
which can subtly perturb the observed pattern of CM
anisotropies. Assuming that the primordial CMB is Gaussi
non-Gaussian correlations in the observed map can be
to reconstruct the intervening large-scale structure@3#. In ad-
dition to the importance of learning about the large-sc
structure itself, reconstruction of the weak-lensing poten
generated by structure is essential to constraining tensor
turbations. Weak lensing converts a fraction of theE-mode
polarization generated by scalar perturbations at the l
scattering surface intoB-mode polarization in the observe
map. Only by subtracting thisB-mode polarization can on
conclusively detect the primordialB modes which serve as
model-independent signal of tensor perturbations@4#. Under-
standing lensing reconstruction requires a more detailed
cussion of how weak lensing affects the CMB.

Weak gravitational lensing deflects the paths of CM
photons as they travel from the last-scattering surface to
observer. This deflection is accomplished by a projec
lensing potential which is a weighted line-of-sight integral
the gravitational potential between the observer and the
face of last scattering. At each point on the sky, lens
remaps the temperature and polarization to that of a ne
point at the last-scattering surface, the deflection angle b
the gradient of the aforementioned projected lensing po
tial. Assuming that this deflection angle is small, the te
perature at any point can be expanded in a Taylor serie
the gradient of the lensing potential. In Fourier space,
expansion appears as a series of convolutions of individ
temperature and projected potential modes. The obse
temperature-squared map in Fourier space also appears
convolution of individual Fourier modes. Subject to an ov
all normalization dependent on the scale of the Fou
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mode, these convolutions cancel in such a manner that e
Fourier mode of the temperature-squared map acts as a
timator for thesameFourier mode of the projected lensin
potential.

Lensing reconstruction as outlined above has been con
ered previously@5,6#. In these works, two sources of nois
were identified, and a filter of the temperature-squared m
in Fourier space was chosen to minimize the variance a
ciated with lensing reconstruction subject to these no
sources. The first source is intrinsic signal variance; the
served large-scale structure is one arbitrary member o
ensemble of realizations allowed by theory. The seco
source of noise, endemic to this method of lensing rec
struction, is a consequence of the nature of the primor
CMB. Like the large-scale structure itself, the pattern
CMB anisotropies at the last-scattering surface is only one
many possible realizations allowed by theory. We do n
know a priori which of these realizations nature has pr
vided us, and this uncertainty hinders our ability to deco
volve the effects of lensing from true anisotropies at the la
scattering surface. Even if the true pattern of anisotropie
the last-scattering surface was known, the finite amoun
power in the CMB at small scales would still constrain len
ing reconstruction. Silk damping at the last-scattering surf
suppresses CMB power at small scales, while the finite re
lution of any real experiment would limit the detection
any signal that is present at small scales. Lensing recons
tion fails below scales at which there is sufficient power,
the same reason that any remapping is indistinguisha
given a uniform background.

Here, we consider a third source of noise neglected
previous studies. The filtered temperature-squared map i
unbiased estimator for the lensing potential in the appro
mation that a correlation between two given temperat
modes is induced only by the single lensing mode wh
wave vector is the sum of that of the two temperature mod
In actuality, any combination of two or more lensing mod
whose wave vectors sum to this total induce correlations
tween the two temperature modes. There are many s
combinations, but since these correlations add incohere
we do not expect a systematic bias. Nonetheless, for est
tors of each individual lensing mode we must use our kno
edge of other lensing modes to subtract off this unwan
©2003 The American Physical Society07-1
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bias. This is an iterative process, and since our knowledg
the lensing map is imperfect it induces noise in lensing
construction. We calculate this additional variance for va
ous estimators constructed from CMB temperature and
larization maps, and show how it compares to the domin
noise sources for the Planck surveyor and an improved fu
reference experiment. Since the lensing-potential po
spectrum is a measure of the theoretical uncertainty w
which we can predict the value of a given lensing mode, t
noise associated with lensing reconstruction causes a sys
atic overestimation of the lensing-potential power spectru
This systematic bias must be accounted for in order to c
pare observations with theoretical predictions.

This paper is organized as follows. In Sec. II we defi
the formalism we will use to explore the effects of we
lensing on the CMB. The Taylor expansion of the lens
CMB map in gradients of the lensing potential is given
both real and Fourier space, and the power spectra
trispectra of various components of the CMB temperat
map are listed for later use. In Sec. III we show that
Fourier modes of the temperature-squared map when p
erly filtered can serve as estimators for the Fourier mode
the displacement map with the same wave vector. Using
power spectrum and trispectrum given in Sec. II, we cal
late the variance associated with this estimator, includin
new component neglected in previous studies. This varia
is evaluated numerically using the currently favoredLCDM
cosmological model with baryon densityVb50.05, cold
dark matter densityVcdm50.30, cosmological constant den
sity VL50.65, the Hubble parameterh50.65, and the
power-spectrum amplitudes850.9. We then use the dis
placement estimator for individual Fourier modes to co
struct an unbiased estimator for the lensing-potential po
spectrum in Sec. IV, and calculate the variance and cov
ance associated with this estimator. A few concluding
marks about the implications of our work for future studi
are given in Sec. V. The Appendix contains useful formu
related to additional estimators of lensing based on polar
tion and a combination of temperature and polarization.

II. WEAK LENSING OF THE CMB

We consider weak lensing under the flat-sky approxim
tion following Refs.@7,8#. As discussed before@8,9#, weak
lensing deflects the path of CMB photons resulting in
remapping of the observed temperature pattern on the s

Q̃~ n̂!5Q@ n̂1¹f~ n̂!#

'Q~ n̂!1¹if~ n̂!¹ iQ~ n̂!1
1

2
¹if~ n̂!¹jf~ n̂!¹ i¹ jQ~ n̂!

1 . . . ~1!

whereQ(n̂) is the unlensed primary component of the CM
in a directionn̂ at the last scattering surface. The observ
gravitationally lensed temperature mapQ̃(n̂) in direction n̂
is that of the unlensed map in directionn̂1¹f(n̂), where
12350
of
-
-
o-
nt
re
er
h
is
m-
.
-

d

nd
e
e
p-
of
e
-
a
ce

-
er
ri-
-

s
a-

-

,

,

¹f(n̂) represents the lensing deflection angle or displa
ment map. Although a real CMB map will include seconda
contributions such as the Sunyaev-Zel’dovich~SZ! effect
@10#, we assume that such effects can be distinguished
their frequency dependence@11#. They will not be further
considered in this paper. A noise component denoted
Qn(n̂) due to finite experimental sensitivity must be includ
as well. Thus the total observed CMB anisotropy will b
Q t(n̂)5Q̃(n̂)1Qn(n̂).

Taking the Fourier transform of the lensed mapQ̃(n̂) un-
der the flat-sky approximation, we write

Q̃~ l!5E dn̂Q̃~ n̂!e2 i l•n̂

5Q~ l!2E d2l8

~2p!2
Q~ l8!L~ l,l8!, ~2!

where

L~ l,l8![f~ l2 l8!@~ l2 l8!• l8#

1
1

2E d2l9

~2p!2
f~ l9!f~ l2 l82 l9!~ l9• l8!

3@~ l91 l82 l!• l8#1 . . . . ~3!

CMB correlations in Fourier space can be described
terms of a power spectrum and trispectrum as defined in
usual manner,

^Q i~ l1!Q i~ l2!&[~2p!2dD~ l11 l2!Cl
i ,

^Q i~ l1! . . . Q i~ l4!&c[~2p!2dD~ l11 l21 l31 l4!

3Ti~ l1 ,l2 ,l3 ,l4!, ~4!

where the angle brackets denote ensemble averages ove
sible realizations of the primordial CMB, large-scale stru
ture ~LSS! between the observer and the surface of last s
tering, and instrumental noise. The subscriptc denotes the
connected part of the four-point function and the supersc
i denotes the temperature map being considered (Q t,Q̃, or
Qn). The lensing-potential power spectrum can be defin
analogously,

^f~ l!f~ l8!&LSS5~2p!2dD~ l1 l8!Cl
ff , ~5!

where here the angle brackets denote an average ove
realizations of the large-scale structure. We make the
sumption that primordial fluctuations at the last-scatter
surface are Gaussian. Gaussian statistics are fully descr
by a power spectrum; the Gaussian four-point correla
^Q( l1) . . . Q( l4)&c is zero. The instrumental noiseQn is also
assumed to be Gaussian, as is the lensing potentialf. This
second assumption is justified because the dominant co
butions to the lensing potential come from intermediate r
shifts 1&z&3 at which linear theory holds.
7-2
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Using these definitions, we can calculate the anticipa
power spectrum and trispectrum of the observed CMB m
Because the instrumental noise is uncorrelated with the
nal, the power spectrum of the observed map is the sum
signal and noise power spectra,

Cl
QQt5C̃l

QQ1Cl
QQn . ~6!

The power spectrum of the noise component is given by

Cl
QQn5 f skyw

21el 2sb
2
, ~7!

where f sky is the fraction of the sky surveyed,w21 is the
variance per unit area on the sky, andsb5u/A8 ln 2 is the
effective beam width of the instrument expressed in term
its full width at half-maximum resolutionu. A CMB experi-
ment that spends a timetpix examining each ofNpix pixels
with detectors of sensitivitys will have a variance per uni
area w2154p(s/TCMB)2/(tpixNpix) @12#. The power spec-
trum of the lensed CMB can be determined by inserting
~2! into Eq. ~4! as discussed in@8#:

C̃l
QQ5F12E d2l1

~2p!2
Cl 1

ff~ l1• l!2GCl
QQ

1E d2l1

~2p!2
Cu l2 l1u

QQ Cl 1
ff@~ l2 l1!• l1#2. ~8!

This result is given to linear order in the lensing-potent
power spectrumCl

ff . Lensing neither creates nor destro
power in the CMB, but merely shifts the scales on which
occurs as seen by the fact that

s̃25E d2l

~2p!2
C̃l

QQ5E d2l

~2p!2
Cl

QQ5s2. ~9!

The observed CMB trispectrum can be calculated in a sim
manner; under our assumptions of Gaussian instrume
noise and no secondary anisotropies the trispectrum of
lensed componentQ̃ is the sole contribution to the total ob
served trispectrum,

Tt~ l1 ,l2 ,l3 ,l4!5T̃Q~ l1 ,l2 ,l3 ,l4!

52Cl 3
QQCl 4

QQ@Cu l11 l3u
ff @~ l11 l3!• l3#

3@~ l11 l3!• l4#1Cu l21 l3u
ff @~ l21 l3!• l3#

3@~ l21 l3!• l4##1Perm. ~10!

The term shown above is manifestly symmetric under
interchangel1↔ l2, while the ‘‘1Perm.’’ represents five ad
ditional terms identical in form but with the replacement
( l1 ,l2) and (l3 ,l4) with the other five combinations of pairs
The total trispectrum is symmetric under the interchange
any given pair as one would expect. Having establishe
formalism within which to analyze weak lensing, we no
consider the problem of reconstructing the lensing poten
from an observed CMB temperature map.
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III. LENSING-POTENTIAL ESTIMATORS

In this section we examine lensing reconstruction follo
ing the approach of Ref.@6#, largely adopting their notation
as well. The only important difference in notation is that w
useQ̃ to denote the lensed temperature field andQ for the
unlensed field following Ref.@8# and most recent papers
Reference@6# uses the opposite convention. ForlÞ2 l8 and
to linear order inf,

^Q t~ l!Q t~ l8!&CMB5 f QQ~ l,l8!f~L !, ~11!

where

f QQ~ l,l8![Cl
QQ~L• l!1Cl 8

QQ
~L• l8!, ~12!

andL5 l1 l8. Note that̂ &CMB differs from the unmarked̂ &
that first appeared in Eq.~4! in that it denotes an ensemb
average only over different Gaussian realizations of the
mordial CMB and instrument noise; a fixed realization of t
large-scale structure is assumed. For the purposes of est
ing the large-scale structure actually realized in our obse
able universe, this is the appropriate average to take to
sure that our estimators are truly unbiased for a typi
realization of the primordial CMB. When calculating th
noise associated with lensing-potential estimators and a
for the power spectrum estimation in Sec. IV, we will retu
to the full unmarked ensemble average. Equation~11!, an
immediate consequence of Eq.~2!, suggests that a
temperature-squared map appropriately filtered in Fou
space can serve as an estimator for the deflection fi
d(L )[ iLf(L ). Hu and Okamoto define five different est
mators for the deflection field constructed from various co
binations of the temperature and polarization; we discuss
temperature-squared estimator in this section and relegat
analogous formulas for polarization estimators to the App
dix. The minimum-variance temperature-squared estima
derived in Ref.@6# is

dQQ~L ![
iLAQQ~L !

L2 E d2l1

~2p!2
Q t~ l1!Q t~ l2!FQQ~ l1 ,l2!,

~13!

where

FQQ~ l1 ,l2![
f QQ~ l1 ,l2!

2Cl 1
QQtCl 2

QQt
, ~14!

AQQ~L ![L2F E d2l1

~2p!2
f QQ~ l1 ,l2!FQQ~ l1 ,l2!G21

,

~15!

and l25L2 l1. Substitution of Eqs.~11!, ~12!, ~14!, and~15!
into Eq. ~13! shows the desired result,

^dQQ~L !&CMB5d~L !, ~16!

namely thatdQQ(L ) is indeed an unbiased estimator for th
deflection field in Fourier space. We now proceed to cal
7-3
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late the variance of this estimator. At first, we assume complete knowledge of all lensing modes not examined
estimator. In that case, we find

^dQQ* ~L !•dQQ~L 8!&CMB2^dQQ* ~L !&CMB•^dQQ~L 8!&CMB

5~L•L 8!
AQQ~L !

L2

AQQ~L8!

L82 E d2l1

~2p!2E d2l18

~2p!2
^Q t~2 l1!Q t~2 l2!Q t~ l18!Q t~ l28!&CMBFQQ~ l1 ,l2!FQQ~ l18,l28!

2d* ~L !•d~L 8!, ~17!

where l285L 82 l18. Evaluating the four-point function in the integrand of Eq.~17! to second order in the lensing field, w
obtain

^Q t~2 l1!Q t~2 l2!Q t~ l18!Q t~ l28!&CMB5F ~Cl 1
QQ1Cl 1

QQn!~2p!2dD~L !1f~2L ! f QQ~ l1 ,l2!

2E d2l8

~2p!2
Cl 8

QQf~2 l12 l8!f~2 l21 l8!@ l8•~ l11 l8!#@ l8•~ l22 l8!#

2
1

2E d2l8

~2p!2
f~ l8!f~2L2 l8!$Cl 1

QQ~ l1• l8!@ l1•~L1 l8!#1Cl 2
QQ~ l2• l8!@ l2•~L1 l8!#%G

3F ~Cl
18

QQ
1Cl

18
QQn

!~2p!2dD~L 8!1f~L 8! f QQ~ l18,l28!

2E d2l8

~2p!2
Cl 8

QQf~ l182 l8!f~ l281 l8!@ l8•~ l182 l8!#@ l8•~ l281 l8!#

1
1

2E d2l8

~2p!2
f~ l8!f~L 82 l8!$Cl

18
QQ

~ l18• l8!@ l18•~ l82L 8!#

1Cl
28

QQ
~ l28• l8!@ l28•~ l82L 8!#%G1Perm. ~18!
-
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The terms given explicitly in Eq.~18! correspond to the cor
relations betweenQ t(2 l1) andQ t(2 l2) and those between
Q t( l18) and Q t( l28). The ‘‘1Perm.’’ stands for two addi-
tional terms, identical in form, arising from the pairing
^Q t(2 l1)Q t( l18)&CMB^Q t(2 l2)Q t( l28)&CMB and ^Q t

(2 l1)Q t( l28)&CMB^Q t(2 l2)Q t( l18)&CMB . This expression in-
dicates how uncertainty in the CMB at the last-scatter
surface propagates into uncertainty in lensing reconstruc
for a particular realizationf(L ) of the large-scale structure
To linear order in Eq.~18!, correlations between the mode
Q t(2 l1),Q t(2 l2),Q t( l18), andQ t( l28) are induced by those
lensing modes whose wave vectors are the sums of any
of wave vectors of these four modes. These lensing mo
are precisely those forming the diagonals of the quadrila
als depicted in Fig. 1. In practice, we do not know the larg
scale structure between us and the last-scattering surfac
we assume a variance given by Eq.~5! with a model-
12350
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FIG. 1. The two quadrilaterals consistent with the constrainL
2L 85 l11 l22 l182 l2850 for the variance of the estimato
dQQ(L ). The lensing modesf(L ), f( l12 l18), andf( l12 l28), de-
picted as diagonals in the above quadrilaterals, induce n
Gaussian couplings between the modes of the observed temper
map represented as sides of these quadrilaterals. They lead t
three groups of linear terms appearing in Eq.~18!.
7-4
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dependent power spectrumCL
ff . We must average Eq.~17! over different realizations of the large-scale structure~denoted by

^ &LSS) to obtain the total expected variance of our estimator,

Š ^dQQ* ~L !•dQQ~L 8!&CMB2^dQQ* ~L !&CMB•^dQQ~L 8!&CMB‹LSS

5~L•L 8!
AQQ~L !

L2

AQQ~L8!

L82 E d2l1

~2p!2E d2l18

~2p!2
^Q t~2 l1!Q t~2 l2!Q t~ l18!Q t~ l28!&FQQ~ l1 ,l2!FQQ~ l18,l28!

2~2p!2dD~L2L 8!CL
dd , ~19!
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where

^d* ~L !•d~L 8!&5~2p!2dD~L2L 8!CL
dd

5~2p!2dD~L2L 8!L2CL
ff . ~20!

The assumption that the lensing potential is Gaussian
poses the constraintL2L 85 l11 l22 l182 l2850 which
closes the quadrilaterals of Fig. 1. The average of the fo
point correlation function in Eq.~19! can be calculated by
further averaging Eq.~18! over the large-scale structure
Terms linear in the lensing field vanish when averaged o
different realizations of the large-scale structure. Quadr
terms in the lensing field arise as products either of t
linear terms or of a zeroth- and second-order term. Avera
over the product of two linear terms produce the connec
part of the four-point correlation function, the trispectru
defined in Eq.~4!. Averages over the product of a zeroth- a
second-order term have no connected portion, but ins
furnish an implicit dependence onCL

ff in the total observed
power spectrum of Eq.~6!. The final result of averaging ove
the large-scale structure can be expressed in terms of
observed power spectrum and trispectrum,
12350
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^Q t~2 l1!Q t~2 l2!Q t~ l18!Q t~ l28!&

5~2p!4@Cl 1
QQtCl

18
QQtdD~L !dD~L 8!1Cl 1

QQtCl 2
QQt

3$dD~ l182 l1!dD~ l282 l2!1dD~ l282 l1!dD~ l182 l2!%

1~2p!22Tt~2 l1 ,2 l2 ,l18,l28!dD~L2L 8!#, ~21!

where the trispectrum can written in terms off QQ( l1 ,l2) as

Tt~ l1 ,l2 ,l3 ,l4!5Cu l11 l2u
ff f QQ~ l1 ,l2! f QQ~ l3 ,l4!

1Cu l11 l3u
ff f QQ~ l1 ,l3! f QQ~ l2 ,l4!

1Cu l11 l4u
ff f QQ~ l1 ,l4! f QQ~ l2 ,l3!. ~22!

This form of the trispectrum is consistent with that of E
~10! given directly in terms of power spectra. SinceLÞ0,
dD(L )50 and the first term of Eq.~21! vanishes. The re-
maining two terms containing pairs of delta functions, i
serted into Eq.~19!, yield the dominant contribution to the
variance,
s

^ ^dQQ* ~L !•dQQ~L 8!&CMB2^dQQ* ~L !&CMB•^dQQ~L 8!&CMB&LSS5~2p!2dD~L2L 8!@NQQ,QQ
(0) ~L !1 . . . #, ~23!

whereNQQ,QQ
(0) (L)5AQQ(L). Notice thatNQQ,QQ

(0) (L) is zeroth order in the lensing potentialf; it depends on the lensing
potential power spectrumCl

ff only implicitly though the total observed power spectrumCl
QQt . The ellipsis represents term

of higher order inCl
ff that we now proceed to calculate. These terms arise from the trispectrum term of Eq.~21! after

Š ^dQQ* (L )&CMB•^dQQ(L 8)&CMB‹LSS5(2p)2dD(L2L 8)CL
dd is removed. Substituting these results into Eq.~19!, we find that to

first order inCl
ff ,

^ ^dQQ* ~L !•dQQ~L 8!&CMB2^dQQ* ~L !&CMB•^dQQ~L 8!&CMB&LSS5~2p!2dD~L2L 8!@NQQ,QQ
(0) ~L !1NQQ,QQ

(1) ~L !#, ~24!

whereNQQ,QQ
(1) (L) is given by,

NQQ,QQ
(1) ~L !5

AQQ
2 ~L !

L2 E d2l1

~2p!2E d2l18

~2p!2
FQQ~ l1 ,l2!FQQ~ l18,l28!$Cu l12 l18u

ff f QQ~2 l1 ,l18! f QQ~2 l2 ,l28!

1Cu l12 l28u
ff f QQ~2 l1 ,l28! f QQ~2 l2 ,l18!%. ~25!
7-5
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The first-order contribution to the noiseNQQ,QQ
(1) (L) involves

integrals over the lensing-potential power spectrum, and t
probes lensing modes with wave vectors different from t
of the estimatordQQ(L ). It can be interpreted physically a
interference from these other modes in the determinatio
the moded(L ) being estimated. The filterFQQ( l1 ,l2) was
chosen to optimize the signal-to-noise ratio in the absenc
the first-order contributionNQQ,QQ

(1) (L); it is no longer an
optimal filter once this additional noise is taken into accou
As long asNQQ,QQ

(1) (L)!NQQ,QQ
(0) (L), the noise reduction

that can be attained by re-optimizing our filter will not b
significant. Formulas analagous to those presented here
evant to the construction of estimators using polarizat
data are given in the Appendix.

The significance ofNQQ,QQ
(1) (L) for two different experi-

ments is shown in Fig. 2 using the currently favoredLCDM
cosmological model with baryon densityVb50.05, cold
dark matter densityVcdm50.30, cosmological constant den
sity VL50.65, the Hubble parameterh50.65, and the
power-spectrum amplitudes850.9. The Planck experimen
is equivalent to a one-year, full-sky survey with temperat
and polarization sensitivities of 12.42 and 26.02mKAsec,
respectively, and resolutionu57.0 arcmin as described i
Sec. II. The reference experiment has the same resolution
superior sensitivities of 0.46 and 0.65mKAsec for tempera-
ture and polarization. These estimates of experimental
rameters are identical to those given for the Planck and
erence experiments of Ref.@6#. The QE and EE estimators
have noise power spectra intermediate to those of theQQ
andEB estimators, while theQB estimator has substantiall

FIG. 2. Variances with which individual modesd(L ) of the
deflection field can be reconstructed by the Planck and refere
experiments described in the text. The solid curves are the po
spectraCL

dd anticipated for ourLCDM cosmological model. The
upper and lower dashed curves are the zeroth- and first-order n
power spectraNQQ,QQ

(0) (L) and NQQ,QQ
(1) (L), respectively, for the

temperature-based estimatordQQ(L ), while the dotted curves are
the corresponding noise variances fordEB(L ). A moded(L ) cannot
be reconstructed with signal-to-noise greater than unity whenCL

dd

<NQQ,QQ
(0) (L)1NQQ,QQ

(1) (L).
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higher noise because the primordial CMB lacks trueB modes
in the absence of inflationary gravitational waves. We s
that for Planck, with its comparatively inferior polarizatio
sensitivity, theQQ estimator will be best although it will be
unable to detect individual Fourier modes of the deflect
field at the 1s level. The reference experiment, and furth
experiments with similar sensitivity and even higher reso
tion, should be able to push 1s detection of individuald(L )
modes toL.1000 by primarily relying on theEB estimator.
In these cases the secondary noiseNEB,EB

(1) (L) is only smaller
than the dominant noiseNEB,EB

(0) (L) by a factor of a few,
whereas for higher sensitivity~noisier! experiments like
Planck it is smaller by at least an order of magnitude. T
illustrates an interesting point, apparent from Fig. 2, that
zeroth-order noiseNQQ,QQ

(0) (L) declines dramatically with
decreasing sensitivity until it becomes dominated by cos
variance while theNQQ,QQ

(1) (L) is largely unaffected by in-
strument sensitivity. The reasons for this trend are that ins
ment noise appears inNQQ,QQ

(0) (L)5AQQ(L) through its
contribution to the denominator ofFQQ( l1 ,l2) as shown by
Eqs. ~14! and ~15!. Decreasing instrument noise raises t
value ofFQQ( l1 ,l2) thereby loweringNQQ,QQ

(0) (L). By con-
trast instrument noise is reflected inNQQ,QQ

(1) (L) through its
effects on bothAQQ(L) and FQQ( l1 ,l2) as shown in Eq.
~25!. Smaller instrument noise raisesFQQ( l1 ,l2) as before,
driving NQQ,QQ

(1) (L) up in this case, but this is compensat
for by a decrease inAQQ(L) which appears as a prefacto
outside the integrals. These two effects largely cancel e
other out, renderingNQQ,QQ

(1) (L) remarkably insensitive to
instrument noise.

IV. POWER SPECTRUM ESTIMATION

Although complete reconstruction of the deflection fie
d(L ) can be an enormously powerful tool, such as
B-mode subtraction@4#, for some purposes estimates of th
lensing-potential power spectrumCL

ff are sufficient. This
power spectrum is a model-dependent prediction of theo
of large-scale structure formation, and therefore estimate
the power spectrum from real data could be used to test th
theories as well as the consistency of other determination
cosmological parameters. Furthermore, since estimates o
the modesd(L ) with uL u5L can be combined to estimat
CL

ff , 1s detection of the power spectrum can be pushed
much higher L than can that of individual modes. Th
deflection-field estimatordQQ(L ) derived in the preceding
section can be used to construct an estimator forCL

ff . Our
first guess for an appropriate lensing-potential power sp
trum estimator is

DL[
~2p!2

AL2

1

2pLDLEaL

d2l

~2p!2
dQQ~ l!•dQQ~2 l!,

~26!

whereA is the area of the sky surveyed andaL is an annulus
of radius L and width DL. We ensemble average ou

ce
er

ise
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estimator over different realizations of the CMB an
large-scale structure using Eq.~24! by bringing
Š ^dQQ* (L )&CMB•^dQQ(L 8)&CMB‹LSS from the left- to the
right-hand side. This yields

^DL&5
~2p!2

AL2

1

2pLDL
dD~0!E

aL

d2l@ l 2Cl
ff1NQQ,QQ

(0) ~ l !

1NQQ,QQ
(1) ~ l !#. ~27!

The definition of the Dirac delta function,

~2p!2dD~ l![E
A
dn̂ei l•n̂, ~28!

implies thatdD(0)5A/(2p)2. Furthermore, in the limit tha
DL is small compared to the scales on whichl 2Cl

ff

1NQQ,QQ
(0) ( l )1NQQ,QQ

(1) ( l ) is varying, we can evaluate th
integrand of Eq.~27! at its central valuel 5L and extract it
from the integral. The integral over the annulusaL cancels
the factor 2pLDL in the denominator, reducing Eq.~27! to

^DL&5CL
ff1L22@NQQ,QQ

(0) ~L !1NQQ,QQ
(1) ~L !#. ~29!

DL is indeed an estimator for the lensing-potential pow
spectrumCL

ff , albeit a biased one. Note that thebias in the
power-spectrum estimatorDL is precisely the same as th
variance shown in Eq.~24! with which we were able to
determine each individual lensing mode. This is no coin
dence; it reflects the fact that there are no groundsa priori on
al
he
in
tio
n
n
o

th
um

,
ac
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which to differentiate the variance with which we can reco
struct individual modesd(L ) from the intrinsic varianceCL

dd

of the underlying distribution from which they are drawn. T
obtain an unbiased estimator to compare with theoretical
dictions, we subtract off this unwanted reconstruction va
ance,

ĈL
ff[DL2L22@NQQ,QQ

(0) ~L !1NQQ,QQ
(1) ~L !#. ~30!

SinceNQQ,QQ
(1) (L) as defined in Eq.~25! itself depends on

CL
ff , this subtraction and evaluation must be performed

eratively until a self-consistent solution is obtained. The va
ance of our estimatorĈL

ff can be calculated in the usua
manner,

s Ĉ
L
ff

2
[^~ĈL

ff!2&2^ĈL
ff&25^~DL!2&2^DL&2. ~31!

Evaluating this expression requires us to calculate

^~DL!2&5
~2p!4

A2L4

1

~2pLDL !2EaL

d2l18

~2p!2EaL

d2l28

~2p!2

3^@dQQ~ l18!•dQQ~2 l18!#

3@dQQ~ l28!•dQQ~2 l28!#&. ~32!

Since dQQ(L ) is a quadratic estimator in the temperatu
map, Eq.~32! includes the following integral over the eigh
point correlation function in Fourier space:
^@dQQ~ l18!•dQQ~2 l18!#@dQQ~ l28!•dQQ~2 l28!#&

5
AQQ

2 ~ l 18!AQQ
2 ~ l 28!

~ l 18!2~ l 28!2 E d2k1

~2p!2E d2k3

~2p!2E d2k5

~2p!2E d2k7

~2p!2
$FQQ~k1 ,k2!FQQ~k3 ,k4!FQQ~k5 ,k6!FQQ~k7 ,k8!

3^Q t~k1!Q t~k2!Q t~k3!Q t~k4!Q t~k5!Q t~k6!Q t~k7!Q t~k8!&%, ~33!
e
al-

e
oint
l

ent.
oth
ch
g-

ver
a
ion

Eq.
where k25 l182k1 , k452 l182k3 , k65 l282k5, and k8

52 l282k7. A fully general eight-point correlation function
consists of a connected part, as well as terms proportion
the product of lower-order correlation functions. Under t
assumption that both the primordial CMB and the lens
potential are governed by Gaussian statistics, all correla
functions higher than the four-point have vanishing co
nected parts@13#. The temperature eight-point correlatio
function will therefore be composed of three groups
terms; membership in a group being determined by whe
the term contains zero, one, or two factors of the trispectr
Since the trispectrum given in Eq.~10! is first order in the
lensing-potential power spectrumCL

ff , terms of these three
groups are zeroth, first, and second order, respectively
CL

ff . Combinatorics determines the number of terms in e
group. There are (1/4!)(2

8)(2
6)(2

4)(2
2)5105 different ways of
to

g
n
-

f
er
.

in
h

dividing (k1 , . . . ,k8) into four pairs, and hence there will b
105 terms in the group containing no trispectra. Similar c
culations reveal that there are (1/2!)(4

8)(2
4)(2

2)5210 terms in
the second group and (1/2!)(4

8)(4
4)535 terms in the third

group. Many terms in all three groups will vanish for th
same reason that the first term vanished in the four-p
correlation function of Eq.~21!; these terms are proportiona
to a Dirac delta function evaluated at a nonzero argum
Consider now the first group of terms, those that are zer
order inCL

ff . The 60 nonvanishing terms in this group ea
contain four Dirac delta functions; they can be further se
regated into the 12 terms that allow two of the integrals o
k i appearing in Eq.~33! to be immediately evaluated vi
Dirac delta functions, and the 48 terms that allow evaluat
of threek i integrals. The first 12 terms, inserted into Eq.~33!
and appropriately evaluated using the normalization of
~15!, yield
7-7
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^~DL!2&5S NQQ,QQ
(0) ~L !

L2 D 2F112
~2p!2

A

1

2pLDLG1 . . . , ~34!

while the remaining 48 terms give the final result to zeroth order inCL
ff ,

^~DL!2&5S NQQ,QQ
(0) ~L !

L2 D 2F112
~2p!2

A

1

2pLDLG1
~2p!2

AL4

2

~2pLDL !2EaL

d2l18

~2p!2EaL

d2l28

~2p!2

AQQ
2 ~ l 18!AQQ

2 ~ l 28!

~ l 18!2~ l 28!2

3E d2k1

~2p!2
f QQ~k1 ,k2!P~k1 ,k2 ,l18,l28!, ~35!

where

P~k1 ,k2 ,l18,l28!5 f QQ~2 l282k1 ,l282k2!FQQ~2k1 ,l281k1!FQQ~2k2 ,2 l281k2!

1 f QQ~ l282k1 ,2 l282k2!FQQ~2k1 ,2 l281k1!FQQ~2k2 ,l281k2!

1 f QQ~2 l282k1 ,l182k2!FQQ~2k1 ,l281k1!FQQ~2k2 ,2 l181k2!

1 f QQ~ l182k1 ,2 l282k2!FQQ~2k1 ,2 l181k1!FQQ~2k2 ,l281k2!

1 f QQ~ l182k1 ,l282k2!FQQ~2k1 ,2 l181k1!FQQ~2k2 ,2 l281k2!

1 f QQ~ l282k1 ,l182k2!FQQ~2k1 ,2 l281k1!FQQ~2k2 ,2 l181k2!. ~36!
e
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When^DL&2 is subtracted from̂(DL)2& in Eq. ~31!, the first
term in the square brackets of Eq.~35! will be eliminated.
Minimizing the variance associated with this estimator th
consists of making an optimal choice ofDL(L). The first
noise term is proportional to@(2p)2/A#/2pLDL. For a sur-
vey of areaA, (2p)2/A is the specific area of an individua
mode inL space and 2pLDL is the area inL space over
which the power-spectrum estimator takes an average.
ratio is, therefore, the inverse of the number of individu
dQQ(L ) modes whose inverse variances are added to de
mine the inverse variance ofĈL

ff . It is obviously minimized
by choosing (2p)2/A!2pLDL(L). The second term, tha
involving P(k1 ,k2 ,l18,l28), differs from the first noise term
in that a Dirac delta function has been used to evaluate
additionalk i integral rather than an annulus integral. Sin
the integrands are of the same order, we expect the se
noise term to be suppressed relative to the first by a fa
2pLDL(L)/p l max

2 where l max.p/u is set by the resolution
u of the survey. Under the conservative assumpt
LDL(L)!1/u2, namely that we are probing scales we
above our resolution, this term is assured to be small.
neglect such terms for the remainder of this paper. If
insert the portions of the eight-point correlation function th
are first and second order inCL

ff into Eq. ~33! and evaluate
using Eq.~25!, we find

^~DL!2&5L24@CL
dd1NQQ,QQ

(0) ~L !1NQQ,QQ
(1) ~L !#2

3F112
~2p!2

A

1

2pLDLG ~37!

and
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s Ĉ
L
ff

2
52

~2p!2

A

1

2pLDL
L24@CL

dd1NQQ,QQ
(0) ~L !

1NQQ,QQ
(1) ~L !#2. ~38!

This result agrees with that given in Ref.@6# after subtracting
our newly derived termNQQ,QQ

(1) (L).
The term NQQ,QQ

(1) (L) and corresponding terms fo
polarization-based estimators have two principal effects
the power spectrum estimation. As shown in Eq.~38!, they
provide a fractional contribution to the variance of rough
2NQQ,QQ

(1) (L)/CL
dd when CL

dd dominates the variance as i
the reference experiment in the right-hand panel of Fig.
For the LCDM cosmological model considered here th
represents an increase of 5–15 % in the variance of theEB
estimator forL&1000. More importantly,NQQ,QQ

(1) (L) acts
as a bias for the naive estimatorDL as shown by Eq.~29!. If
this bias is not calculated and subtracted iteratively to fo
the unbiased estimatorĈL

ff as in Eq.~30!, CL
dd will be sys-

tematically overestimated by 5–10 % at lowL and by in-
creasingly larger amounts atL*100 as the signalL(L
11)CL

dd/2p begins to plummet whileNQQ,QQ
(1) (L) remains

comparatively flat.
Having evaluated the variance of our estimatorĈL

ff , we
consider whether this estimator has a substantial covaria

s Ĉ
L
ffĈ

L8
ff[^~ĈL

ff2CL
ff!~ĈL8

ff
2CL8

ff
!&

5^DLDL8&2^DL&^DL8&. ~39!
7-8
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The estimatorDL as defined in Eq.~26! implies that

^DLDL8&5S 2p

ALL8
D 2

1

LDLL8DL8
E

aL

d2l18

~2p!2

3E
aL8

d2l28

~2p!2
^@dQQ~ l18!•dQQ~2 l18!#

3@dQQ~ l28!•dQQ~2 l28!#&, ~40!

which can be evaluated using the same integral over
eight-point correlation function described in Eq.~33!.
Whereas 60 of the 105 zeroth-order terms inCL

ff coming
from this equation were nonvanishing for the variance,
the covariance only 52 terms are nonzero provided that
widthsDL andDL8 are chosen so that the annuliaL andaL8
do not overlap. This leads to a result analogous to Eq.~35!,

^DLDL8&5
NQQ,QQ

(0) ~L !

L2

NQQ,QQ
(0) ~L8!

L82
1

2

AL3DLL83DL8

3E
aL

d2l18

~2p!2EaL8

d2l28

~2p!2

AQQ
2 ~ l 18!AQQ

2 ~ l 28!

~ l 18!2~ l 28!2

3E d2k1

~2p!2
f QQ~k1 ,k2!P~k1 ,k2 ,l18,l28!.

~41!

Note that the eight terms missing from the covariance w
compared to the variance have altered the first term of
~41!, and that it was precisely these terms that provided
dominant contribution to the variance of Eq.~38! when
DL(L) was chosen appropriately. We therefore find that
zeroth order inCL

ff , the covariance is given by

s Ĉ
L
ffĈ

L8
ff5

2

ALDLL8DL8
S NQQ,QQ

(0) ~L !

L2

NQQ,QQ
(0) ~L8!

L82 D 2

3E
aL

d2l18

~2p!2EaL8

d2l28

~2p!2E d2k1

~2p!2

3 f QQ~k1 ,k2!P~k1 ,k2 ,l18,l28!, ~42!

where we have extracted theAQQ( l i8) from the annular inte-
grals since they are slowly varying over the widthsDL and
DL8. For the same reasons that terms of this form wer
subdominant contribution to the variance as discussed pr
ously, we expect the covariance to be suppressed as we
we define the ratio

RLL8[

s Ĉ
L
ffĈ

L8
ff

As Ĉ
L
ff

2
s

Ĉ
L8
ff

2
, ~43!

we can quantify this suppression. The triple integral of E
~42!, appearing in the numerator ofRLL8 , involves integra-
12350
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tion over annuli with radiiL andL8 and one integration ove
all Fourier space. The triple integrals in the variancess Ĉ

L
ff

2

ands
Ĉ

L8
ff

2
appearing in the denominator ofRLL8 each consist

of a single integration over an annulus of radiusL and L8,
respectively, and two integrations over all Fourier space
we make the crude assumption that the integrand is cons
the ratioRLL8 will simply be the ratio of these areas,

RLL8.A~2pLDL !~2pL8DL8!/p l max
2 . ~44!

The ratioRLL8 is evaluated numerically for Planck in Fig
3 as a function ofL for various fixed values ofL8. The
estimatorsĈL

ff and ĈL8
ff were chosen such thatDL5DL8

51, while integrals over Fourier space were cut off atl max
55000. Substituting these values into Eq.~44!, we expect
RLL8.8.031028ALL8. This crude estimate is surprisingl
close to the numerically obtained results of Fig. 3; in partic
lar, the slope of the curves is approximately 1/2 on this lo
log plot. Even atL.1000,RLL8&4.031024 suggesting that
covariance in power-spectrum estimation can safely be
glected for Planck. The estimate of Eq.~44! implicitly de-
pends on the experimental resolutionu because the integran
appearing in expressions for the variance and covariance
creases rapidly forL* l max.p/u. For future experiments
with better resolution than Planck,l max will be higher, im-
plying by Eq.~44! that covariance will be even more negl
gible.

V. DISCUSSION

Weak gravitational lensing induces non-Gaussian corr
tions between modes of the observed CMB temperature
as shown in Eq.~11!. These correlations, and assumptio
about the Gaussian nature of the primordial CMB, can

FIG. 3. The ratioRLL8 for Planck as a function ofL for fixed
values ofL8. The solid curves correspond toL853,30,300, ascend-
ing from bottom to top, while the long-dashed and short-das
curves correspond toL857,70,700 andL8510,100,1000, respec
tively, again with curves in each sequence appearing from bottom
top in the figure.
7-9
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used to construct several temperature and polarization-b
estimators of the Fourier modesd(L ) of the deflection field.
This procedure was outlined in Ref.@6#; however, in calcu-
lating the noise associated with this reconstruction, an
sumption was made that the observed temperature map
Gaussian. In the presence of lensing this assumption is
valid; when calculating the variance of quadratic estimat
all permutations of the observed trispectrum must be ta
into account. One such permutation reflects the desired
relation, making our estimator sensitive tod(L ), but the re-
maining two permutations induce additional variance prop
tional to the lensing-potential power spectrumCL

ff . While
subdominant, this variance will become increasingly sign
cant for future experiments as shown in the right-hand pa
of Fig. 2. Since the power spectrumCL

ff is itself a measure
of uncertainty in the deflection field, this additional varian
in lensing reconstruction acts as a bias during the pow
spectrum estimation because there is noa priori way to dis-
tinguish it from the intrinsic variance of the underlying di
tribution. Our calculation of the dependence of this varian
on CL

ff allows it in principle to be subtracted iterativel
which will prevent a systematic 5–10 % overestimate ofCL

ff

at low L.
We close by considering several possible observatio

obstacles to the scheme for lensing reconstruction
power-spectrum estimation presented above. One hindr
is secondary contributions to the CMB such as the SZ
ISW effects. These effects increase the total tempera
power spectrum appearing in the denominator of the o
mum filterFQQ( l1 ,l2) of Eq. ~14! as would additional instru-
mental noise. They also correlate with the large-scale st
ture at low redshifts inducing further non-Gaussian couplin
and additional variance to lensing reconstruction. Fortuna
for our purposes the frequency dependence of the therma
effect differs from that of a blackbody. It can therefore
separated in principle from the lensed primordial CMB by
experiment with several frequency channels@11#. The ISW
effect cannot be removed in this manner, but is too smal
significantly inhibit lensing reconstruction. Polarizatio
dependent secondary effects are expected to appear at h
orders in the density contrast@14#, and we therefore antici
pate that they will not make a contribution at the levels co
sidered here. A potentially more serious problem is that
galactic foregrounds, which though uncorrelated with
lensing signal may be substantial at certain frequencies.
nificant polarization has also been observed in some of th
sources@15#. We hope to understand and minimize the
fects of galactic foregrounds in future work, and to purs
further refinements of lensing reconstruction.
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APPENDIX: POLARIZATION-BASED ESTIMATORS

Here we provide the appropriate formulas for deriving t
variance associated with polarization-based estimators o
deflection fieldd(L ). The CMB polarization can be decom
posed intoE andB modes@16#. These modes are mixed b
weak lensing such that to linear order inf(L ),

Ẽ~ l!5E~ l!2E d2l1

~2p!2
@E~ l1!cos 2~w l1

2w l!2B~ l1!

3sin 2~w l1
2w l!#f~ l2 l1!@~ l2 l1!• l1#,

B̃~ l!5B~ l!2E d2l1

~2p!2
@E~ l1!sin 2~w l1

2w l!1B~ l1!

3cos 2~w l1
2w l!#f~ l2 l1!@~ l2 l1!• l1#. ~A1!

We can exploit the sensitivity of the polarization modes
the lensing potential to construct lensing estimators fr
quadratic combinations of polarization modes. We genera
Eq. ~11! to arbitrary combinations$X,X8% of Q, E, and B
modes as first derived in Ref.@6#,

^Xt~ l!X8t~ l8!&CMB5 f XX8~ l,l8!f~L !, ~A2!

where

f QE~ l,l8!5Cl
QEcos 2~w l2w l8!~L• l!1Cl 8

QE
~L• l8!

5 f EQ~ l8,l!,

f QB~ l,l8!5Cl
QEsin 2~w l2w l8!~L• l!5 f BQ~ l8,l!,

f EE~ l,l8!5@Cl
EE~L• l!1Cl 8

EE
~L• l8!#cos 2~w l2w l8!,

f EB~ l,l8!5@Cl
EE~L• l!1Cl 8

BB
~L• l8!#sin 2~w l2w l8!

5 f BE~ l8,l!,

f BB~ l,l8!5@Cl
BB~L• l!1Cl 8

BB
~L• l8!#cos 2~w l2w l8!.

~A3!

In deriving these results we used parity considerations
demandCl

QB5Cl
EB50. Using these relations, we follow th

approach of Ref.@6# to derive symmetric lensing estimator

dXX~L ![
iLAXX~L !

L2 E d2l1

~2p!2
Xt~ l1!Xt~ l2!FXX~ l1 ,l2!,

~A4!

and

dXX8~L ![
iLAXX8~L !

L2 E d2l1

~2p!2

1

2
@Xt~ l1!X8t~ l2!

1X8t~ l1!Xt~ l2!#FXX8~ l1 ,l2!. ~A5!
7-10
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We have explicitly symmetrized our estimators forXÞX8 to
simplify the form of the optimal filter. The normalizatio
bias of the estimators is removed by choosing

AXX~L ![L2F E d2l1

~2p!2
f XX~ l1 ,l2!FXX~ l1 ,l2!G21

,

~A6!

and

AXX8~L ![L2F E d2l1

~2p!2

1

2
@ f XX8~ l1 ,l2!

1 f XX8~ l2 ,l1!#FXX8~ l1 ,l2!G21

. ~A7!

The minimum-variance filtersFXX8( l1 ,l2) for the various
cases$X,X8% are given by

FQE~ l1 ,l2!5
f QE~ l1 ,l2!1 f QE~ l2 ,l1!

Cl 1
QQtCl 2

EEt12Cl 1
QEtCl 2

QEt1Cl 1
EEtCl 2

QQt
,
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FQB~ l1 ,l2!5
f QB~ l1 ,l2!1 f QB~ l2 ,l1!

Cl 1
QQtCl 2

EEt1Cl 1
EEtCl 2

QQt
,

FEE~ l1 ,l2!5
f EE~ l1 ,l2!

2Cl 1
EEtCl 2

EEt
,

FEB~ l1 ,l2!5
f EB~ l1 ,l2!1 f EB~ l2 ,l1!

Cl 1
EEtCl 2

BBt1Cl 1
BBtCl 2

EEt
,

FBB~ l1 ,l2!5
f BB~ l1 ,l2!

2Cl 1
BBtCl 2

BBt
. ~A8!

Using these optimal filters for the estimators defined in E
~A4! and~A5!, we can calculate the variances for these e
mators in a fashion entirely analogous to Eq.~19!,
^ ^dXX* ~L !•dXX~L 8!&CMB2^dXX* ~L !&CMB•^dXX~L 8!&CMB&LSS

5
AXX~L !

L

AXX~L8!

L8
E d2l1

~2p!2E d2l18

~2p!2
^Xt~2 l1!Xt~2 l2!Xt~ l18!Xt~ l28!&FXX~ l1 ,l2!FXX~ l18,l28!

2~2p!2dD~L2L 8!CL
dd , ~A9!

^ ^dXX8
* ~L !•dXX8~L 8!&CMB2^dXX8

* ~L !&CMB•^dXX8~L 8!&CMB&LSS

5
AXX8~L !

L

AXX8~L8!

L8
E d2l1

~2p!2E d2l18

~2p!2

1

4
^@Xt~2 l1!X8t~2 l2!1X8t~2 l1!Xt~2 l2!#

3@Xt~ l18!X8t~ l28!1X8t~ l18!Xt~ l28!#&FXX8~ l1 ,l2!FXX8~ l18,l28!2~2p!2dD~L2L 8!CL
dd . ~A10!

As for that of the temperature estimator, these variances will consist of zeroth-order terms inCL
ff , NXX,XX

(0) (L)5AXX(L) and
NXX8,XX8

(0) (L)5AXX8(L), and first-order terms,

NXX,XX
(1) ~L !5

AXX
2 ~L !

L2 E d2l1

~2p!2E d2l18

~2p!2
FXX~ l1 ,l2!FXX~ l18,l28!$Cu l12 l18u

ff f XX~2 l1 ,l18! f XX~2 l2 ,l28!

1Cu l12 l28u
ff f XX~2 l1 ,l28! f XX~2 l2 ,l18!%, ~A11!

NXX8,XX8
(1)

~L !5
AXX8

2
~L !

L2 E d2l1

~2p!2E d2l18

~2p!2
FXX8~ l1 ,l2!FXX8~ l18,l28!

1

4
$Cu l12 l18u

ff
@ f XX~2 l1 ,l18! f X8X8~2 l2 ,l28!

1 f XX8~2 l1 ,l18! f X8X~2 l2 ,l28!1 f X8X~2 l1 ,l18! f XX8~2 l2 ,l28!1 f X8X8~2 l1 ,l18! f XX~2 l2 ,l28!#

1Cu l12 l28u
ff

@ f XX8~2 l1 ,l28! f X8X~2 l2 ,l18!1 f XX~2 l1 ,l28! f X8X8~2 l2 ,l18!1 f X8X8~2 l1 ,l28! f XX~2 l2 ,l18!

1 f X8X~2 l1 ,l28! f XX8~2 l2 ,l18!#%, ~A12!
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The filters given in Eq.~A8! are no longer optimal in the
presence of this additional noise, but the difference betw
these filters and the optimal filters should be negligible p
vided that NXX,XX

(1) (L)!NXX,XX
(0) (L), NXX8,XX8

(1) (L)
!NXX8,XX8

(0) (L). For the purposes of power-spectrum estim
tion, the termsNXX,XX

(1) (L) andNXX8,XX8
(1) (L) are not only an

additional contribution to the variance, but are also a syst
atic bias if not subtracted iteratively following Eq.~29!.

A final point to consider is that the six different estimato
c.
s.

v.

12350
n
-

-

-

dXX8(L ) defined in this paper are not independent, as th
are constructed from only three distinct maps. The cov
ance matrix for the six estimators will therefore not be dia
onal, and this needs to be taken into account if the estima
are to be linearly combined to produce a single minimu
variance estimator. The off-diagonal elements of the cov
ance matrix can be evaluated in a straightforward man
involving pairs of double integrals similar to those of Eq
~A9! and ~A10!.
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