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Lensing reconstruction with CMB temperature and polarization
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Weak gravitational lensing by an intervening large-scale structure induces a distinct signature in the cosmic
microwave backgrounfCMB) that can be used to reconstruct the weak-lensing displacement map. Estimators
for individual Fourier modes of this map can be combined to produce an estimator for the lensing-potential
power spectrum. The naive estimator for this quantity will be biased upwards by the uncertainty associated
with reconstructing individual modes; we present an iterative scheme for removing this bias. The variance and
covariance of the lensing-potential power spectrum estimator are calculated and evaluated numerically in a
ACDM universe for Planck and future polarization-sensitive CMB experiments.
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[. INTRODUCTION mode, these convolutions cancel in such a manner that each
Fourier mode of the temperature-squared map acts as an es-
The primordial cosmic microwave backgrouf@MB)  timator for thesameFourier mode of the projected lensing
was generated when photons first decoupled from the barypotential.
onic fluid when the universe was only 400,000 years old. The Lensing reconstruction as outlined above has been consid-
vast majority of these photons travel unperturbed to theered previously5,6]. In these works, two sources of noise
present day, and features of their angular power spectrumwere identified, and a filter of the temperature-squared map
such as acoustic peaks and the dampind 1ajlrecord valu-  in Fourier space was chosen to minimize the variance asso-
able information about cosmological paramef@isBaryons ciated with lensing reconstruction subject to these noise
and dark matter evolve from small inhomogeneities at desources. The first source is intrinsic signal variance; the ob-
coupling into increasingly complicated large-scale structureserved large-scale structure is one arbitrary member of an
which can subtly perturb the observed pattern of CMBensemble of realizations allowed by theory. The second
anisotropies. Assuming that the primordial CMB is Gaussiansource of noise, endemic to this method of lensing recon-
non-Gaussian correlations in the observed map can be ussttuction, is a consequence of the nature of the primordial
to reconstruct the intervening large-scale strucf@leln ad- CMB. Like the large-scale structure itself, the pattern of
dition to the importance of learning about the large-scaleCMB anisotropies at the last-scattering surface is only one of
structure itself, reconstruction of the weak-lensing potentiamany possible realizations allowed by theory. We do not
generated by structure is essential to constraining tensor petnow a priori which of these realizations nature has pro-
turbations. Weak lensing converts a fraction of thenode  vided us, and this uncertainty hinders our ability to decon-
polarization generated by scalar perturbations at the lastolve the effects of lensing from true anisotropies at the last-
scattering surface int8-mode polarization in the observed scattering surface. Even if the true pattern of anisotropies at
map. Only by subtracting thiB-mode polarization can one the last-scattering surface was known, the finite amount of
conclusively detect the primordi@ modes which serve as a power in the CMB at small scales would still constrain lens-
model-independent signal of tensor perturbatigijsUnder-  ing reconstruction. Silk damping at the last-scattering surface
standing lensing reconstruction requires a more detailed disuppresses CMB power at small scales, while the finite reso-
cussion of how weak lensing affects the CMB. lution of any real experiment would limit the detection of
Weak gravitational lensing deflects the paths of CMBany signal that is present at small scales. Lensing reconstruc-
photons as they travel from the last-scattering surface to theon fails below scales at which there is sufficient power, for
observer. This deflection is accomplished by a projectedhe same reason that any remapping is indistinguishable
lensing potential which is a weighted line-of-sight integral of given a uniform background.
the gravitational potential between the observer and the sur- Here, we consider a third source of noise neglected in
face of last scattering. At each point on the sky, lensingprevious studies. The filtered temperature-squared map is an
remaps the temperature and polarization to that of a nearbynbiased estimator for the lensing potential in the approxi-
point at the last-scattering surface, the deflection angle beingation that a correlation between two given temperature
the gradient of the aforementioned projected lensing potermodes is induced only by the single lensing mode whose
tial. Assuming that this deflection angle is small, the tem-wave vector is the sum of that of the two temperature modes.
perature at any point can be expanded in a Taylor series im actuality, any combination of two or more lensing modes
the gradient of the lensing potential. In Fourier space, thisvhose wave vectors sum to this total induce correlations be-
expansion appears as a series of convolutions of individualveen the two temperature modes. There are many such
temperature and projected potential modes. The observembmbinations, but since these correlations add incoherently
temperature-squared map in Fourier space also appears asva do not expect a systematic bias. Nonetheless, for estima-
convolution of individual Fourier modes. Subject to an over-tors of each individual lensing mode we must use our knowl-
all normalization dependent on the scale of the Fourieedge of other lensing modes to subtract off this unwanted
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bias. This is an iterative process, and since our knowledge 6f 4 (1) represents the lensing deflection angle or displace-
the lensing map is imperfect it induces noise in lensing re;nent map. Although a real CMB map will include secondary

construption. We calculate this additional variance for Vari'contributions such as the Sunyaev-Zel'dovie®?) effect
ous estimators constructed from CMB temperature and p "10], we assume that such effects can be distinguished by

larization maps, and show how it compares to the dominang,qir frequency dependend@l]. They will not be further
noise sources for the Planck surveyor and an improved futurg,sidered in” this paper. A noise component denoted by

reference experiment. Since the lensing-potential powe(9n ~ - . o .
; : . . 0"(n) due to finite experimental sensitivity must be included
spectrum is a measure of the theoretical uncertainty W|thS well. Thus the total observed CMB anisotropy will be

which we can predict the value of a given lensing mode, thi LAy o oA
noise associated with lensing reconstruction causes a systeffl-(n) =0 (n) +©"(n). o

atic overestimation of the lensing-potential power spectrum. Taking the Fourier transform of the lensed nm@pn) un-
This systematic bias must be accounted for in order to comder the flat-sky approximation, we write

pare observations with theoretical predictions.

This paper is organized as follows. In Sec. Il we define
the formalism we will use to explore the effects of weak
lensing on the CMB. The Taylor expansion of the lensed
CMB map in gradients of the lensing potential is given in d2l’ ) ,
both real and Fourier space, and the power spectra and ®(|)_J 77)2®(| JL(LI, @
trispectra of various components of the CMB temperature
map are listed for later use. In Sec. lll we show that theynere
Fourier modes of the temperature-squared map when prop-
erly filtered can serve as estimators for the Fourier modes of L(LIN=g(—1)[(1—1")-1"]
the displacement map with the same wave vector. Using the

@(|)=f dn®(nye~"n

power spectrum and trispectrum given in Sec. Il, we calcu- 1 da”

late the variance associated with this estimator, including a + if o2 oI p(I=1"=1")(1"-1")

new component neglected in previous studies. This variance (2m)

is evaluated numerically using the currently favore@DM X[+ =1 1]+ ... 3

cosmological model with baryon densit,=0.05, cold

dark matter densit§).qy,=0.30, cosmological constant den-  CMB correlations in Fourier space can be described in
sity 2,=0.65, the Hubble parametér=0.65, and the terms of a power spectrum and trispectrum as defined in the
power-spectrum amplitudeg=0.9. We then use the dis- ysual manner,

placement estimator for individual Fourier modes to con-

struct an unbiased estimator for the lensing-potential power <®i(|1)i(|2)>5(277)25D(|1+|2)Ci1

spectrum in Sec. IV, and calculate the variance and covari-

ance associated with this estimator. A few concluding re- <®i(|1) N -®i(|4)>cE(277)25D(|1+|2+|3+|4)
marks about the implications of our work for future studies _

are given in Sec. V. The Appendix contains useful formulas XT(l,15,15,14), (4)

related to additional estimators of lensing based on polariza-
tion and a combination of temperature and polarization.  where the angle brackets denote ensemble averages over pos-
sible realizations of the primordial CMB, large-scale struc-
ture (LSS) between the observer and the surface of last scat-
tering, and instrumental noise. The subscipdenotes the

We consider weak lensing under the flat-sky approximaconnected part of the four-point function and the sEperscript
tion following Refs.[7,8]. As discussed beforg8,9], weak i denotes the temperature map being conside®g(, or
lensing deflects the path of CMB photons resulting in a®"). The lensing-potential power spectrum can be defined
remapping of the observed temperature pattern on the sky,analogously,

Il. WEAK LENSING OF THE CMB

B(N)=O[h+Vh(N)] (p()p(1"))Lss=(2m)28p(1+1")CP? (5)

- Ao 1 - e A where here the angle brackets denote an average over all
~OM)+Vi¢g(MV'O(N)+5V%i¢(NVd(MVVIO(N)  realizations of the large-scale structure. We make the as-
sumption that primordial fluctuations at the last-scattering

+ ... 1) surface are Gaussian. Gaussian statistics are fully described
by a power spectrum; the Gaussian four-point correlator,

where® () is the unlensed primary component of the cMB (@ (1) - - . ©(l4))c is zero. The instrumental noige” is also

. Lol a . assumed to be Gaussian, as is the lensing poteptidihis
in a directionn at the last scattering surface. The Obsefvedsecond assumption is justified because the dominant contri-

gravitationally lensed temperature mék{n) in directionn  putions to the lensing potential come from intermediate red-
is that of the unlensed map in directiort-V ¢»(n), where  shifts 1<z=<3 at which linear theory holds.
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Using these definitions, we can calculate the anticipated ll. LENSING-POTENTIAL ESTIMATORS
power spectrum and trispectrum of the observed CMB map.

- S : - " In this section we examine lensing reconstruction follow-
Because the instrumental noise is uncorrelated with the S|q 9

il e pover specum o he obsenve map i the sum o[98 %010 o SeE) el adoping et ot
signal and noise power spectra, ' y1mp

use® to denote the lensed temperature field &nhdor the
CPO=CPO+cpon. (6)  unlensed field following Ref[8] and most recent papers.
Referencd 6] uses the opposite convention. Her—1’ and
The power spectrum of the noise component is given by to linear order in¢,

w-le!7h @ (OO cms=foo(l,IN (L), (11

06n_
CI - fsky

where f g, is the fraction of the sky surveyedy ! is the where
variance per unit area on the sky, ang=6/\/8In2 is the

effective beam width of the instrument expressed in terms of

its full width at half-maximum resolutiod. A CMB experi-
ment that spends a timig;, examining each oN;, pixels
with detectors of sensitivitg will have a variance per unit
areaw '=4m(s/Tewe)?/ (tpixNpi) [12]. The power spec-
trum of the lensed CMB can be determined by inserting Eq
(2) into Eq. (4) as discussed if8]:

foo(lIN=CPOL-)+CHo(L-1"), (12)

andL =I+1". Note that )cyg differs from the unmarked )
that first appeared in Ed4) in that it denotes an ensemble
average only over different Gaussian realizations of the pri-
mordial CMB and instrument noise; a fixed realization of the
large-scale structure is assumed. For the purposes of estimat-
ing the large-scale structure actually realized in our observ-
able universe, this is the appropriate average to take to en-
CI(%) sure that our estimators are truly unbiased for a typical
realization of the primordial CMB. When calculating the
noise associated with lensing-potential estimators and again
i e ~gs 5 for the power spectrum estimation in Sec. IV, we will return
J (277)2C||_II|C|1 [(=10)- 11" ® {0 the full unmarked ensemble average. Equafibh, an
immediate consequence of Eq2), suggests that a
This result is given to linear order in the lensing-potentialtemperature-squared map appfopfiatew filtered in. FOUfiET
power spectrunC{?. Lensing neither creates nor destroysSPace can serve as an estimator for the deflection field
power in the CMB, but merely shifts the scales on which itd(L)=iL#(L). Hu and Okamoto define five different esti-

~ 06 d?l, )
CYo= 1—f CPe(14-1)
(271_)2 1

occurs as seen by the fact that mators for the deflection field constructed from various com-
binations of the temperature and polarization; we discuss the
3 d2 d2l temperature-squared estimator in this section and relegate the

azzj —ZCF’@’:f SCP0=0o2. (9  analogous formulas for polarization estimators to the Appen-

(2m) (2m) dix. The minimum-variance temperature-squared estimator

The observed CMB trispectrum can be calculated in a similager'ved in Ref[6] s

manner; under our assumptions of Gaussian instrumental iLAge(L) 42
noise and no secondary anisotropies the trispectrum of the g (| )= 00 j 1 0'(1)O(1,)Feo(lL,l),
L2 ( 2

lensed componer® is the sole contribution to the total ob- 21)
served trispectrum, (13
Ty la.ds, 1) =01 L.l 1) where
=—CPocPorCcs, | [(1,+13)1 foo(l1.l2)
I, Cr, [CfylUt13)-15] F®®(|1.|2)EW. (14
X[(11H13)- 141+ Cte  [(12+15) - 13] I
-1
X[(l,+15)-1,]]+ Perm. (10) d?l,
2 Aoo(L)=L? | ——feo(lnlFee(lla) |
The term shown above is manifestly symmetric under the (2m) (15

interchangd;«1,, while the “+Perm.” represents five ad-
ditional terms identical in form but with the replacement of 5|, = | —|,. Substitution of Eqs(11), (12), (14), and(15)

(I1,12) and (5,14) with the other five combinations of pairs. into Eq. (13) shows the desired result,
The total trispectrum is symmetric under the interchange of

any given pair as one would expect. Having established a (dee(L))eme=d(L), (16)
formalism within which to analyze weak lensing, we now

consider the problem of reconstructing the lensing potentiahamely thatdge(L) is indeed an unbiased estimator for the
from an observed CMB temperature map. deflection field in Fourier space. We now proceed to calcu-
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late the variance of this estimator. At first, we assume complete knowledge of all lensing modes not examined by this
estimator. In that case, we find

(dge(L)-dee(L"))eme—(dee(L))come (doa(L"))ems

Ape(L) Age(L’) dzllJ d?l;
L? L'? (2m)?) (2m)

—d*(L)-d(L"), 17

=(L-L")

5(0(=1)0(=12)0'(1,)0'(1y"))cvsFoe(l1.l2)Fes(li'l2")

wherel,”=L'—1;". Evaluating the four-point function in the integrand of Efj7) to second order in the lensing field, we
obtain

(O'(=11)0'(—12)0'(1;)0'(I;")eme=| (CI°+C" (2m)?5p(L) + B(— L) fee(l1,l2)

d2|, 006 ’ ’ ’ ’ ’ ’
—f WCV A(—li=1)d(= 1+ 1)1 (g + 1)1 (1= 17)]

1 d?l’
-2l Gy A1 BLIHCE 0 T (L )T CEP 1T (L1

®06n

x| (€204 CEOM (27 200(L)+ BL Vel 12')

d2|’ 00 ’ ’ ’ NI ’ , , , ,
-] U USSR LCEURUSSID LR TR

1 d2|’ , ’ ’ 006 A , , ,
+5f 2z PN AL =IIC I (=L )

+C 0, 1N -(1"=L")]} |+ Perm. (18)

The terms given explicitly in Eq18) correspond to the cor-

relations betwee®'(—1,) and®'(—1,) and those between (1)
O%(l,") and ®'(l,’). The “+Perm.” stands for two addi-
tional terms, identical in form, arising from the pairings
(0(=19)0'(11")cme(®'(—12)0'(12") ) oms and (O
(=10)0%,"))eme(O(—1,)01;"))cms - This expression in- #(1,-1)
dicates how uncertainty in the CMB at the last-scattering 8(1,)
surface propagates into uncertainty in lensing reconstructior

for a particular realizatiorp(L) of the large-scale structure.

To linear order in Eq(18), correlations between the modes
0'(—11),0'(~13),0(,"), and®(l,") are induced by those  FG, 1. The two quadrilaterals consistent with the constrhint
lensing modes whose wave vectors are the sums of any pair| '—| +|,—1,'—1,’=0 for the variance of the estimator

of wave vectors of these four modes. These lensing modeg,,(L). The lensing modeg(L), ¢(l;—1,'), andg(l;—1,'), de-

are precisely those forming the diagonals of the quadrilaterpicted as diagonals in the above quadrilaterals, induce non-
als depicted in Fig. 1. In practice, we do not know the large-Gaussian couplings between the modes of the observed temperature
scale structure between us and the last-scattering surface, sap represented as sides of these quadrilaterals. They lead to the
we assume a variance given by E@) with a model- three groups of linear terms appearing in Etf).

oY(I) ov(1)

64(1,)
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dependent power spectrL@f"”. We must average EqL7) over different realizations of the large-scale structaenoted by
( )Lso) to obtain the total expected variance of our estimator,

((de(L)-dee(L"))cme—(d6e(L))cme-(doo(L ")) cmBdLss

Age(L) Age(L’ d? d?l;
=(L-L) ®fz( : Of,(z : (27;2[ oy (@10 (12011102 ))Foo(ly 2 Fooly 12"
—(2m)?5p(L—L")C{Y, (19
[
where (0'(~1)O(~1)0(1,)0(1,")
(d*(L)-d(L"))=(2m)?dp(L—L")C? =(2m)"[CC6p(L) 5o(L ) + T

— 2 " 2
=@naLoLhLict?. @ X {81y~ 1) 8oy’ ~12) + 8oy’ ~11) 651y 1)}
The assumption that the lensing potential is Gaussian im- +(2m) 2T =1y, — 1y, 11" 1, ) (L —L )], (21)
poses the constraint —L'=I;+l,—1;"—1,"=0 which
closes the quadrilaterals of Fig. 1. The average of the four-
point correlation function in Eq(19) can be calculated by
further averaging Eq(18) over the large-scale structure.

where the trispectrum can written in termsfefg(l1,l,) as

Terms linear in the lensing field vanish when averaged over LECHPHERNES CM tfeellnl2)feells la)
different realizations of the large-scale structure. Quadratic

terms in the lensing field arise as products either of two +C\I1+I3If®®(ll'|3)f®®(|2'|4)

linear terms or of a zeroth- and second-order term. Averages £C foo(ilfoallsls). (22
over the product of two linear terms produce the connected lly+1,]" ©6%11, 471001 12:13/

part of the four-point correlation function, the trispectrum

defined in Eq(4). Averages over the product of a zeroth- and This form of the trispectrum is consistent with that of Eq.
second-order term have no connected portion, but instead0) given directly in terms of power spectra. Since:0,
furnish an implicit dependence dh,‘f“’ in the total observed &p(L)=0 and the first term of Eq(21) vanishes. The re-
power spectrum of Eq6). The final result of averaging over maining two terms containing pairs of delta functions, in-
the large-scale structure can be expressed in terms of treerted into Eq(19), yield the dominant contribution to the
observed power spectrum and trispectrum, variance,

((de(L)-dea(L))ems—(d56(L))cms (doe (L)) emp)ss= (27)285(L =L )INGD go(L)+ .. .1, (23

whereN§) oe(L)= AOO(L) Notice thatN(§), ¢e(L) is zeroth order in the lensing potenti@t it depends on the lensing
potential power spectrurﬁ, only implicitly though the total observed power spectr(D%@)t The ellipsis represents terms
of higher order mC"sqS that we now proceed to calculate. These terms arise from the trispectrum term @I1Ea@fter
((d’@)@(L»CME<d®®(L’))CMB)Lssz(Zw)ZéD(L— L")C%is removed. Substituting these results into B), we find that to
first order inC{?,

((d5e(L)-dee(L))ems—{(dhe(L))cms (doo(L'))emp)iss= (2m)2p(L —L )N 06(L) NG oo(L)], (24

whereNG) oo(L) is given by,

NG 0('—) d?l, d2I; e , ,
Hoo.eoll)= (2m)2 (277)2F‘")®(I1'|2)F®®('1 J2NC T fee(— 1l ) fee(—l2.12")
+Cﬁfflz’lf®®(_|1v|2')f®®(—|2,|1')}- (25)
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104 ermmiianck Reference higher noise because the primordial CMB lacks tBumodes
E / 3 in the absence of inflationary gravitational waves. We see
- . that for Planck, with its comparatively inferior polarization
R 3 sensitivity, the® ® estimator will be best although it will be
u ] unable to detect individual Fourier modes of the deflection
§107° 08 _- 3 field at the 1r level. The reference experiment, and further
= E o 5 experiments with similar sensitivity and even higher resolu-
8\ 107 ) tion, should be able to pushsldetection of individuad(L)
* E N\ T ‘ modes toL=1000 by primarily relying on th&B estimator.
I 108 = e In these cases the secondary ndNéPBVEB(L) is only smaller
EoTTTT e N i\ than the dominant noistl c5(L) by a factor of a few,
10-8 Lx-=--- ) ] whereas for higher sensitivitynoisiep experiments like
Planck it is smaller by at least an order of magnitude. This
10-10 Lol v rosnd v vl Tovind vl 4o illustrates an interesting point, apparent from Fig. 2, that the
10 100 1000 10 100 1000 zeroth-order noiseN$}, (L) declines dramatically with
L L decreasing sensitivity until it becomes dominated by cosmic

FIG. 2. Variances with which individual mode(L) of the  variance while theNG) o6 (L) is largely unaffected by in-
deflection field can be reconstructed by the Planck and referencelfument sensitivity. The reasons for this trend are that instru-
experiments described in the text. The solid curves are the powdh€nt noise appears iNg@),@@('—):A@(ﬁ)(L) through its
spectraC? anticipated for ourACDM cosmological model. The contribution to the denominator &fge(l1,l2) as shown by
upper and lower dashed curves are the zeroth- and first-order noidegs. (14) and (15). Decreasing instrument noise raises the
power spectraN§), o6(L) and NG) o6(L), respectively, for the value ofFge(ly,l,) thereby loweringN(y oo(L). By con-
temperature-based estimaihge (L), while the dotted curves are trast instrument noise is reflected M) (L) through its
the corresponding n_oise_variances_dgg(L). Amoded(L_) cannot  offects on bothAge(L) and F®®(|1:|z)’ as shown in Eq.
be r((g)constructed(l\;wth signal-to-noise greater than unity \/\lh%‘h (25). Smaller instrument noise rais€o(l1,l,) as before,
<Noo.00(L)TNeo eo(L)- driving N§J, ee(L) up in this case, but this is compensated
The first-order contribution to the noidéX, oo (L) involves ~ for by a decrease ilge(L) which appears as a prefactor
integrals over the lensing-potential power spectrum, and thu@uside the integrals. (;I’)hese two effects largely cancel each
probes lensing modes with wave vectors different from thaPther out, renderindNgg oo (L) remarkably insensitive to
of the estimatodge(L). It can be interpreted physically as [Nstrument noise.
interference from these other modes in the determination of
the moded(L) being estimated. The filteFge(l1,l2) was IV. POWER SPECTRUM ESTIMATION
chosen to optimize the signal-to-noise ratio in the absence of
the first-order contributioN§}, ¢6(L); it is no longer an
optimal filter once this additional noise is taken into account
As long asN{) ¢6(L)<NE) ¢e(L), the noise reduction
that can be attained by re-optimizing our filter will not be
significant. Formulas analagous to those presented here r
evant to the construction of estimators using polarizatio
data are given in the Appendix.

The significance oNG), o6 (L) for two different experi-
ments is shown in Fig. 2 using the currently favore@DM
cosmological model with baryon densit,=0.05, cold
dark matter densit§).q4,,= 0.30, cosmological constant den-

sity 2,=0.65, the Hubble parametd1=0.65, and the deflection-field estimatodge(L) derived in the preceding

power-spectrum amplitudeg=0.9. The Planck experiment . .
is equivalent to a one-year, full-sky survey with temperatureSectlon can be used to construct an estimatoCip . Our

and polarization sensitivities of 12.42 and 260K \/sec, first guess for an appropriate lensing-potential power spec-

respectively, and resolutioA=7.0 arcmin as described in trum estimator is
Sec. Il. The reference experiment has the same resolution but

Although complete reconstruction of the deflection field
d(L) can be an enormously powerful tool, such as for
‘B-mode subtractiof4], for some purposes estimates of the
lensing-potential power spectrumf_ﬁ"} are sufficient. This
JHower spectrum is a model-dependent prediction of theories
of large-scale structure formation, and therefore estimates of
The power spectrum from real data could be used to test these
theories as well as the consistency of other determinations of
cosmological parameters. Furthermore, since estimates of all
the modesd(L) with |[L|=L can be combined to estimate
Cf‘f’, 1o detection of the power spectrum can be pushed to
much higherL than can that of individual modes. The

) o (2m? 1 d?l
superior sensitivities of 0.46 and 0.6& y'sec for tempera- D, = f deo(l)-dee(—1)
ture and polarization. These estimates of experimental pa- AL2 27LAL Ja (247)2 . '
rameters are identical to those given for the Planck and ref- (26)

erence experiments of Rg6]. The ®E and EE estimators
have noise power spectra intermediate to those of@le  whereA is the area of the sky surveyed aadis an annulus
andEB estimators, while th® B estimator has substantially of radius L and width AL. We ensemble average our
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estimator over different realizations of the CMB and which to differentiate the variance with which we can recon-
large-scale structure using Eq(24) by bringing struct individual modesd(L) from the intrinsic varianc@:fd
({de(L))eme (dee(L"))empdLss from the left- to the  of the underlying distribution from which they are drawn. To
right-hand side. This yields obtain an unbiased estimator to compare with theoretical pre-
dictions, we subtract off this unwanted reconstruction vari-

2m? 1 ance
(D)= AL mfso(o)fa d2[12CP?+NED ol ’
L ~
NG (1] 7 CL=DL—L7INGd,00(L) NG 0o(L)]. (30
00,00 .

Since NG} oo (L) as defined in Eq(25) itself depends on
C{?, this subtraction and evaluation must be performed it-
eratively until a self-consistent solution is obtained. The vari-

The definition of the Dirac delta function,

(277)25D(|)EfAdﬁe“'“- (28)  ance of our estimato€?* can be calculated in the usual
manner,
implies thatsp(0)=A/(27)?. Furthermore, in the limit that 5 . .
AL is small compared to the scales on whi¢kC/? Uéﬁwz«cﬁ’d’)Z)—<Cf¢>2=<(DL)Z>_<DL>2- 31

+NO 00 () NG go(l) is varying, we can evaluate the

integrand of Eq(27) at its central valué=L and extract it Evaluating this expression requires us to calculate
from the integral. The integral over the annulus cancels

the factor 2rLAL in the denominator, reducing E(R7) to (2m)* 1 f d2ly’ f d2l,’

D)3 =

(DU=CL?+L2NG 06(L)+ NG 0o(L)]. (29 o ALY (2mLAL)? o (2m)? ey (2m)?
D, is indeed an estimator for the lensing-potential power X(ldoo(l)-dee(—1")]
spectrumC?, albeit a biased one. Note that thiasin the X[deo(la')-dge(—12")1). (32)
power-spectrum estimatdd, is precisely the same as the
variance shown in Eg.(24) with which we were able to Sincedge(L) is a quadratic estimator in the temperature
determine each individual lensing mode. This is no coinci-map, Eq.(32) includes the following integral over the eight-
dence; it reflects the fact that there are no groumgsori on  point correlation function in Fourier space:

(ldeo(l1")-dee(—11")][dee(l2") - dee(—12")1)

_Abe(1DAGe(5) [ dk, f d%ksq J d?ks f %k,
(

{Foo(ki.k2)Foe(ks Ke)Fee(ks.Ke)Foo(Kz.Ks)

(17)2(15)? (2m?) (2m?) (2m?) (2m)?
X(0'(k1)O'(k2)O'(k3)O'(ks)O'(ks)O'(kg) O'(k7)O'(kg))}, (33
|
where k,=1,"—ky, ky=—1I;"—ks, ks=I,"—ks, and kg dividing (ky, . .. kg) into four pairs, and hence there will be

=—I,"—k5. A fully general eight-point correlation function 105 terms in the group containing no trispectra. Similar cal-
consists of a connected part, as well as terms proportional toulations reveal that there are (1/2%)(5)(3) =210 terms in

the product of lower-order correlation functions. Under thethe second group and (1/2!5)((j)=35 terms in the third
assumption that both the primordial CMB and the lensinggroup. Many terms in all three groups will vanish for the
potential are governed by Gaussian statistics, all correlatiogame reason that the first term vanished in the four-point
functions higher than the four-point have vanishing con-correlation function of Eq(21); these terms are proportional
nected part13]. The temperature eight-point correlation to a Dirac delta fur]ct|on evaluated at a nonzero argument.
function will therefore be composed of three groups OfConS|der now the first group of terms, those that are zeroth

) Lo : - rder ian¢. The 60 nonvanishing terms in this group each
terms, membe.rshlp In a group being determined by Whethe@ontain four Dirac delta functions; they can be further seg-

. . . . o . m|‘egated into the 12 terms that allow two of the integrals over
Since the trispectrum given in ELO) is first order in the k, appearing in Eq(33) to be immediately evaluated via
lensing-potential power spectru@{’’, terms of these three pjrac delta functions, and the 48 terms that allow evaluation
groups are zeroth, first, and second order, respectively, iBf threek; integrals. The first 12 terms, inserted into E8)
C{¢. Combinatorics determines the number of terms in eactand appropriately evaluated using the normalization of Eq.
group. There are (1/4!§)(5)(5)(5) =105 different ways of  (15), yield
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NO oo\ (2m? 1
2y_| 99,0017/ Nl R
((D)?) ( e 1427 277LAL}+ (34)
while the remaining 48 terms give the final result to zeroth ordeg{ft,
2 ’ ’
2 [ NEb06(L) (2m? 1 ] (2m? 2 a0 Al AGe(1DAGe (1)
(D)= - 2 1+2 A 27LAL 4 2 2 2 N20171\2
L 7 ALY (2mLAL)2)a, (2m2)a, (2m2 (DAY
xf d2k1f (Kq ko) P(Ky Ky, ly' 1) (35)
(277)2 OO\NR2 182511 512 /s
where
P(ky, Kz, 11" 12" ) =fee(—12"—ki,I" —kK2)Fee( —Ki,l2" +ki)Fee( =Kz, = 12" +ky)
+foe(l’ =Kk, =1 —Ka)Fee(—Ki,— 1" + K1) Fee( —Ka,lo" +Ky)
+foo( =12 —Ki,li" —ka)Fee( =K1l +ki)Fee(—Kz, = 11"+ k)
+foo(li' —ki, =1 —k)Fee(—Kki,— 11" +ki)Fee(—ka,l" +ky)
+foe(li' =K1l —k)Fee(—Kki, =11  +Kk)Fee(—Kkz, — 1" +ky)
+foe(ly’ —Ki,li" —K)Fee(—Kki, =1  +K))Fee(—Kz, — 11" +Ky). (36)
|
When(D, )? is subtracted frond(D,)?) in Eq. (31), the first ) 2m? 1 hdd (O
term in the square brackets of E@5) will be eliminated. 0(;<L»¢=2T SLAL- LCL +NGY oe(L)
Minimizing the variance associated with this estimator then
consists of making an optimal choice afL(L). The first +N8(Z),@@(L)]2- (38)

noise term is proportional t(2)?/A]/2wLAL. For a sur-
vey of area, (2)?/A is the specific area of an individual
mode inL space and ZLAL is the area inL space over Thjs result agrees with that given in RE8] after subtracting
which the power-spectrum estimator takes an average. Thig,, newly derived temN%(Z) vo(L).

ratio is, therefore, the inverse of the number of individual 14 term Ng)l()) 0o(L) and corresponding terms for
dee(L) modes whose inverse variances are added to detef)'olarization-based' estimators have two principal effects on

mine the inverse variance ﬁf,‘f’¢. It is obviously minimized  the power spectrum estimation. As shown in E2g), they

by choosing (2r)?/A<2mLAL(L). The second term, that provide a fractional contribution to the variance of roughly
involving P(ky,kz,l1",15"), differs from the first noise term  2N() oo (L)/Cd? when C?® dominates the variance as in
in that a Dirac delta function has been used to evaluate athe reference experiment in the right-hand panel of Fig. 2.
additionalk; integral rather than an annulus integral. Sinceggr the ACDM cosmological model considered here this
the integrands are of the same order, we expect the secopgpresents an increase of 5—15% in the variance oEe
noise term to be suppressed relative to the first by a factogstimator forL <1000. More importantyN, (L) acts
2L AL(L)/ mlF, Wherel g, =/ 6 is set by the resolution  as 4 bias for the naive estimay as shown by Eq(29). If

¢ of the survey. Under the conservative assumptionhjs bias is not calculated and subtracted iteratively to form

< 2 i . . ~ . .
LAL(L)<1/6°, namely that we are probing scales well the unbiased estlmat@f"/’ as in Eq.(30), CEd will be sys-

above our resolution, this term is assured tp be small. W?ematicallyoverestimated by 5-10% at low and by in-
neglect such terms for the remainder of this paper. If we

X - ,
insert the portions of the eight-point correlation function thatfi?ggggwlzgeigsag oﬂﬂ:{:mﬁt var?i?exl?ls) the( L?%gi;(irﬁs
are first and second order @¢ into Eq.(33) and evaluate L g P 00,00

using Eq.(25), we find compa_ratlvely flat. ) oA
Having evaluated the variance of our estimaigt’, we

<(DL)2>: |_—4[ng+ N%?(Z)‘(H)@(L)ﬁLN(@)l(Z)’@@(L)]Z consider whether this estimator has a substantial covariance
X 1+2(27-r)2 ! 3
A 2mLAL =7 ogpecee=((CPP—cP)(ClI-cl))
and =(D D) =(D){Dr). (39
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The estimatoD, as defined in Eq(26) implies that tion over annuli with radiL andL’ and one integration over
) ) L L all Fourier space. The triple integrals in the variano%%q;
(D D)= ALZ’ LALL’AL’JaL (2771)2 andaéi/),d, appearing in the denominator Bf | - each consist
of a single integration over an annulus of radlusndL’,
d2l,’ ) , respectively, and two integrations over all Fourier space. If
X L , qu@@('l )-dee(—11")] we make the crude assumption that the integrand is constant,
- the ratioR, | » will simply be the ratio of these areas,
X[dee(l2")-dee(—12")]), (40)
R/ =V(27LAL)(27L AL")/ 72, (44)
which can be evaluated using the same integral over the
eight-point correlation function described in E@33). The ratioR, |  is evaluated numerically for Planck in Fig.

Whereas 60 of the 105 zeroth-order termsOfi” coming 3 as a function ofL for various fixed values ot.’. The
from this equation were nonvanishing for the variance, forestimatorsC¢? and éf;ﬁ were chosen such thatL=AL’

the covariance only 52 terms are nonzero provided that the. 1, while integrals over Fourier space were cut off at,
widthsAL andAL’ are chosen so that the annali anda, s =5000. Substituting these values into Edd), we expect

do not overlap. This leads to a result analogous to(B§), R, =8.0X 10"8JLL’. This crude estimate is surprisingly
close to the numerically obtained results of Fig. 3; in particu-

(DD} NG® 06(L) NS oo(L") N 2 lar, the slope of the curves is approximately 1/2 on this log-
L= L2 L2 AL3ALL'3AL’ log plot. Even al.=1000,R, , <4.0x 10”4 suggesting that
covariance in power-spectrum estimation can safely be ne-
d?ly’ d2, Ade(11)AZ4(15) glected for Planck. The estimate of E@4) implicitly de-
f zf 5 2112 pends on the experimental resoluti@ecause the integrand
a (2m)"Jayr (2m) (1)%(2) appearing in expressions for the variance and covariance de-
2 creases rapidly fot=I,,,=m/6. For future experiments
f —lf(—)@(kl,kz)P(kl,kz,|l',|2’), with better resolution than Planck,,, will be higher, im-
(2m)? plying by Eq.(44) that covariance will be even more negli-
Note that the eight terms missing from the covariance when V. DISCUSSION

compared to the variance have altered the first term of Eq. o o )
(41), and that it was precisely these terms that provided the Weak gravitational lensing induces non-Gaussian correla-
dominant contribution to the variance of E8) when tions between modes of the observed CMB temperature map

AL(L) was chosen appropriately. We therefore find that to®S Shown in Eq(11). These correlations, and assumptions
zeroth order irC‘LM’, the covariance is given by about the Gaussian nature of the primordial CMB, can be

2 10_4_||||||| T T T TTTIT T T T TTTTT =
2 N((;)(Z),(o@(L) Ng()a),@@(L/) u I,E
Tebbpdb= 5 5 : e
L v ALALL'AL’ L L’ C i
[ d%, [ dk |
[, e
a, (2m)2Jay (2m)2) (2m)?
|
—
Xfoo(Ki,K)P(Ky,Ka, 11" 15"), (42 2]
where we have extracted thgyq(l;) from the annular inte- 108 T~ 2T =
grals since they are slowly varying over the widths and -3 30, 300 ]
AL'. For the same reasons that terms of this form were a —L-w7 0 ]
subdominant contribution to the variance as discussed previ- ---L = 10, 100, 1000 -
ously, we expect the covariance to be suppressed as well. If 10-7 Lovvend vl il
we define the ratio 10 100 1000
L
TEpsetd
R, = L L (43) FIG. 3. The ratioR . for Planck as a function of for fixed
L /G% MU% o ' values ofL’. The solid curves correspond ité = 3,30,300, ascend-
crrrel ing from bottom to top, while the long-dashed and short-dashed

_ _ _ _ _ curves correspond tbh’'=7,70,700 and.'=10,100,1000, respec-
we can quantify this suppression. The triple integral of Eqtively, again with curves in each sequence appearing from bottom to
(42), appearing in the numerator &, ,, involves integra- top in the figure.
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used to construct several temperature and polarization-based APPENDIX: POLARIZATION-BASED ESTIMATORS

est_imators of the Fourier. mOd.d$L) of the deflectﬁon field. Here we provide the appropriate formulas for deriving the
Th.'s procedu_re was ogtlmed n R@]’ however, n calcu- variance associated with polarization-based estimators of the
lating the noise associated with this reconstruction, an a3eflection fieldd(L). The CMB polarization can be decom-
sumption was made that the observed temperature map W88sed intoE and B modes[16]. These modes are mixed by

Gaussian. In the presence of lensing this assumption is iyegk lensing such that to linear orderdr{L)
valid; when calculating the variance of quadratic estimators

all permutations of the observed trispectrum must be taken ~ d2l,
into account. One such permutation reflects the desired cor- E(l)= E(I)—J ——[E(ly)cosA ¢, — @) —B(ly)
relation, making our estimator sensitived¢L), but the re- (2m)? '

maining two permuta’uons |nduce additional variance propor- xsin 2o — o) ]d(1—1)[(1=11)-14],

tional to the lensing-potential power spectr@{®. While 1

subdominant, this variance will become increasingly signifi- )

cant for future experiments as shown in the right-hand panel E(I)=B(I)—f dly [E(I)sin 2(¢, — ) +B(l,)

of Fig. 2. Since the power spectruﬁ'ﬁ"/’ is itself a measure ! #1,m !

of uncertainty in the deflection field, this additional variance

in lensing reconstruction acts as a bias during the power- xcos Ay, — ) Jo(I=1)[=11)- 1], (A1)
spectrum estimation because there isangriori way to dis- _ o o

tinguish it from the intrinsic variance of the underlying dis- e can exploit the sensitivity of the polarization modes to

tribution. Our calculation of the dependence of this variancdN€ l€nsing potential to construct lensing estimators from
on CI(_ﬁq} allows it in principle to be subtracted iteratively, guadratic combinations of polarization modes. We generalize

which will prevent a systematic 5-10 % overestimat€gf ri%.d(;g)atsofﬁg?lgr:rri)\// ecdombéngg]o ngX.X'} of ©, E, andB
at low L. ’

We close by considering several possible observational (XX 1)) emp= Fxe (LI B(L), (A2)
obstacles to the scheme for lensing reconstruction and
power-spectrum estimation presented above. One hindrangghere
is secondary contributions to the CMB such as the SZ and
ISW effects. These effects increase the total temperature f(_)E(I,I’)=C|®Ecos2(<p|—<p|,)(L~I)+C|(?E(L~I’)
power spectrum appearing in the denominator of the opti-
mum filterFgg(l4,l5) of Eq.(14) as would additional instru- =fee(l’,1),
mental noise. They also correlate with the large-scale struc-
ture at low redshifts inducing further non-Gaussian couplings fop(l,l)= Cf’Esin 21— @) (L-)=fge(l",]),
and additional variance to lensing reconstruction. Fortunately
for our purposes the frequency dependence of the thermal SZ N1 ~EE/| . EE s _
effect differs from that of a blackbody. It can therefore be fee(Ll)=[Cr(L-DH+CrA(L 1) ]Jcos e = ¢r),
separated in principle from the lensed primordial CMB by an ) EE BB o
experiment with several frequency channglg]. The ISW fFes(LI)=[Cr(L-N+C/7(L-1")]sin2(¢— ¢y
effect cannot be removed in this manner, but is too small to

77_2

significantly inhibit lensing reconstruction. Polarization- =Teel™),

dependent secondary effects are expected to appear at higher . BB

orders in the density contragt4], and we therefore antici- fes(l,I")=[CH(L-D+C"(L-1")]cos A p;— ¢y).
pate that they will not make a contribution at the levels con- (A3)

sidered here. A potentially more serious problem is that of

galactic foregrounds, which though uncorrelated with theln deriving these results we used parity considerations to
lensing signal may be substantial at certain frequencies. SiglemandC’®=C®=0. Using these relations, we follow the
nificant polarization has also been observed in some of theggpproach of Refl6] to derive symmetric lensing estimators
sourceg 15]. We hope to understand and minimize the ef-

fects of galactic foregrounds in future work, and to pursue iLAyx(L) d?l, . .

further refinements of lensing reconstruction. o(b=—7 (277)2X (1) X (1) Fxx(11,12),
(A4)
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We have explicitly symmetrized our estimators ¥# X' to
simplify the form of the optimal filter. The normalization
bias of the estimators is removed by choosing

A L=L2f&f I o) Fa(l ] B
XX( )_ (277)2 XX(lv 2) XX(le) ]
(AB)
and
A (L)=L2“ Gile 1[f (I1.15)
XX’ - (277)22 XxX'\1,12
-1
+ fyxr (I, 1) TFxx (11,12) (A7)

The minimum-variance filterdyx (l1,l,) for the various
caseg X,X'} are given by

foe(ly, 1) +fee(lz,11)
OOt ~EEt OEt~OEt , ~EE~OOt’
CPO'CEEL 20PECPEL CERCP

Foe(li,lp)=

PHYSICAL REVIEW D 67, 123507 (2003

fog(l1.l2) +fep(lz,l1)

Fe | ,I = ’
B( 1 2) Cﬁ@)tCFZEt""CIElEtCI(Z@t
fee(ly,ln)
Fee(ly,l) = ————,
eell1,l2 2C|ElEtC:EZEt
Feyl l):fEB(|1a|2)+fEB(|21|l)
EB\'1,12 CFlEtCFZBt'i_ ClBlBtCFZEt !
fag(li,l2)
Feg(ly,ly) = ——— 22 (A8)
BB( 112 2C|BlBtCIBZBt

Using these optimal filters for the estimators defined in Egs.
(A4) and(A5), we can calculate the variances for these esti-
mators in a fashion entirely analogous to EtP),

((d%x(L) - dxx(L ")) ema— (d%x(L) ) cme (dxx(L ")) cme)Lss

~ Axx(L) Axx('—')f d2|1f d?}
(

(X=X (= 1) X (1) X (12") Fxxl1,12) Fxx(11"12")

L L’ 2m)2) (2m)?
—(2m)28(L—L")Ccdd, (A9)
({3 (L) - Ay (L)) em— {dysr (L) Yoms (dxxr (L) Yeme)Lss
L Axx(L) Axxe(L") [ dBly o dip 1 " " t
=L X (277)Zf (277)24<[X(—I1)X (=) + X" (=1)X(=1y)]
XX )X (1" )+ X (1 )X 1) ) e (1 12) Fxer (117, 1") = (2m)28p(L — L) CH. (A10)

As for that of the temperature estimator, these variances will consist of zeroth-order te®fi§ il (L) =Axx(L) and

N§<°X’, xx'(L)=Axx (L), and first-order terms,

AZ(L) [ dly d?l;
NS xx(L) = j( f Fax(112) P11l R (11l ) Fx(— 12,12

L2 2m)2) (2m)?

+Clqlsfs—'z’\fXX(_|1'|2')fxx(_|2,|1')},

(1) —
Nxx: ,xx'(L) -

Aix'(L)J dz'lj d?ly
L? (2m)?) (2m)?

(A1)

1
Fxo (11.12) Fooxr (11 12 )7 AR [ =Tl ) fxrxr (= 12.027)

+xx (=l D) xox(— o, ") + Fxox(— 1) Fxxr (o, 1) + T (=1 1) (= 12,127) ]

# O oo (=112 o = 101) + o =Ll (=Ll )+ oo (=Ll ) (=1 1)

+xox(— 1, T (= 12,101},
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The filters given in Eq(A8) are no longer optimal in the dyx (L) defined in this paper are not independent, as they
presence of this additional noise, but the difference betweegre constructed from only three distinct maps. The covari-
these filters and the optimal filters should be negligible pro4nce matrix for the six estimators will therefore not be diag-

vided  that NS (L)<NQL(L), N (L) onal, and this needs to be taken into account if the estimators
<N§(0>2,’XX,(L). For the purposes of power-spectrum estima-are to be linearly combined to produce a single minimum-
tion, the termsNE) (L) andN), ... (L) are not only an  variance estimator. The off-diagonal elements of the covari-
additional contribution to the variance, but are also a systemance matrix can be evaluated in a straightforward manner
atic bias if not subtracted iteratively following E(R9). involving pairs of double integrals similar to those of Egs.

A final point to consider is that the six different estimators (A9) and (A10).
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