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Abstract Particle velocity distributions measured in collisionless space plasmas often show strong

deviations from idealized model distributions. Despite this observational evidence, linear wave analysis in

space plasma environments such as the solar wind or Earth’s magnetosphere is still mainly carried out using

dispersion relation solvers based on Maxwellians or other parametric models. To enable a more realistic

analysis, we present the new grid-based kinetic dispersion relation solver LEOPARD (Linear Electromagnetic

Oscillations in Plasmas with Arbitrary Rotationally-symmetric Distributions) which no longer requires

prescribed model distributions but allows for arbitrary gyrotropic distribution functions. In this work, we

discuss the underlying numerical scheme of the code and we show a few exemplary benchmarks.

Furthermore, we demonstrate a first application of LEOPARD to ion distribution data obtained from hybrid

simulations. In particular, we show that in the saturation stage of the parallel fire hose instability, the

deformation of the initial bi-Maxwellian distribution invalidates the use of standard dispersion relation

solvers. A linear solver based on bi-Maxwellians predicts further growth even after saturation, while

LEOPARD correctly indicates vanishing growth rates. We also discuss how this complies with former studies

on the validity of quasilinear theory for the resonant fire hose. In the end, we briefly comment on the role

of LEOPARD in directly analyzing spacecraft data, and we refer to an upcoming paper which demonstrates a

first application of that kind.

1. Introduction

The rise of spacecraft measurements has given us the possibility to directly probe natural plasma environ-

ments such as Earth’smagnetosphere and the solarwind, enabling a thoroughexaminationof existingplasma

models and their inherent assumptions in both linear and nonlinear regimes.

A typical problem of linear plasma physics, the propagation of small-amplitude waves in magnetized plasma

is a rich and diverse field of study which has attracted a lot of attention in the past and is still a hot topic in

modern plasma science. Special interest is dedicated to the stability of plasma waves. Whenever the velocity

distribution of a plasma deviates from a thermal Maxwell-Boltzmann distribution there is free energy in the

system which is accessed by linear eigenmodes and can lead to an exponential growth of wave amplitudes.

This wave growth is not only of interest with respect to linear processes, but it is also crucial for the onset of

nonlinear effects and turbulence in plasma media.

Stability analysis had been restricted to analytic magnetohydrodynamics andmultifluid models until numer-

ical tools enabled the investigation of more generally applicable models. These numerical tools reached

their peak of generalization with fully kinetic hot plasma dispersion relation solvers such as WHAMP

[Roennmark, 1982]. Being more realistic than simple fluid solvers, such kinetic eigenvalue solvers are still

limited by the necessity of a prescribed model velocity distribution function. Bi-Maxwellian, loss cone, and

kappa distributions—to name only a few—have proven to be useful approximations to real-world distri-

butions [Baumjohann and Treumann, 1996; Dory et al., 1965; Pierrard and Lazar, 2010]. However, spacecraft

measurements have triggered a growing awareness that low collisionality in natural plasma environments

can lead to strong deviations from these idealized model distributions [Marsch, 2006]. Since the wave

dispersion in a plasma sometimes crucially depends on the presence of resonant particle populations

which constitute only a tiny fraction of the overall distribution, minor changes in the resonant regime

can cause a major impact on the wave dynamics by stabilizing (destabilizing) otherwise unstable (stable)

eigenmodes.
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A better understanding of the stability of linear waves can also trigger a deeper insight into subsequent non-

linear processes like wave-particle or wave-wave interactions. In turn, wave-particle interactions react back

on the distribution function and modify the linear dispersion properties in the plasma. For example, the

saturation of linear kinetic instabilities often goes hand in hand with a deformation of the particle velocity

distribution [Seough et al., 2014, 2015]. This feedback loop between wave dispersion and resonant plasma

heating is currently only accessible with numerically demanding kinetic simulations. The deformation of the

distribution function invalidates existing standard dispersion relation solvers and makes a thorough linear

stability analysis hardly possible. The problem at this point is not the lack of a rigorous theoretical framework,

but it is merely the lack of a proper eigenvalue solver which inhibits a general investigation of realistic veloc-

ity distribution effects on linear wave propagation so far. In this paper, we aim to fill this gap by presenting

the newly developed dispersion relation solver LEOPARD (Linear Electromagnetic Oscillations in Plasmaswith

Arbitrary Rotationally-symmetric Distributions)which allows for any gyrotropic distribution function sampled

on a two-dimensional velocity grid (v∥, v⟂) and arbitrary wave propagation angles.

In section 2, we describe the theoretical and numerical foundations of the code. Section 3 presents four

benchmark setups with parametric model distributions, an application of the code to simulation data, and an

application to data obtained by spacecraft measurements. In section 4, we conclude with a discussion of the

results and potential future applications of the code.

2. The Code

Although it is clear from observations that collisionless space plasmas such as the solar wind can easily

develop and maintain strong deviations from idealized model distributions, there is—to the best of our

knowledge—still no efficient numerical tool which allows for a general examination of linear wave propaga-

tion subject to realistic particle velocity distribution functions. Dum et al. [1980] represents a first step in this

direction. They approximated measured distributions by an expansion in spherical harmonics to determine

realistic wave growth. However, the analysis is rather cumbersome and restricted to parallel wave propaga-

tion only. More recently, there was a series of publications which present efficient algorithms to compute the

Hilbert transform for arbitrary distributions using linear splines or B-splines of arbitrary degree [Brambilla and

Bilato, 2009;Micchelli et al., 2013; Bilato et al., 2014]. Again, the presented methods only allow for an efficient

computation of parallel wave propagation.

In the following, we present an approach which also allows for the analysis of obliquely propagating waves

and we comment on the numerical implementation of this method in the newly developed LEOPARD code.

2.1. Linear Kinetic Theory

Starting fromMaxwell’s equations, we can derive the general dispersion equation for electromagnetic waves

in a dielectric medium to be

0 = det

(
c2k2

𝜔2

(
k⊗ k

k2
− 1

)
+ 𝜖

)
, (1)

where c is the speed of light in vacuo, 𝜔 is the wave frequency, k is the wave vector, and 𝜖 is the dielectric

tensor of the considered medium [see, e.g., Brambilla, 1998].

The dielectric tensor can be obtained by linearizing the Vlasov-Maxwell system of equations which, in gen-

eral, describes the time evolution of a collisionless, multispecies plasma with distribution function f subject

to electric and magnetic fields. The determination of the dielectric tensor components is a standard text-

book problem and can be found, e.g, in Brambilla [1998]. Usually, part of the derivation is the assumption of

gyrotropy, i.e.,

𝜕f
(
v∥, v⟂, 𝜙

)
𝜕𝜙

= 0, (2)

where v∥ and v
⟂
are the particle velocities parallel and perpendicular to the background magnetic field, and

𝜙 is the gyroangle. Additionally, a further specification of the distribution is usually employed. Commonly,

f is chosen to be a Maxwellian or bi-Maxwellian distribution function. Here we also adopt the restriction
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to gyrotropic distributions but we refrain from specifying the distribution any further. The corresponding

expressions for the tensor components are then given by
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𝜕ṽ∥

)
,

(4)

�̃�2
v2
A

c2
𝜖zz = �̃�2

v2
A

c2
+ 2𝜋

∑
𝛼

∞∑
n=−∞

𝜇𝛼 q̃
2
𝛼
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𝜕ṽ
⟂

+
k̃∥ṽ⟂
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𝜕ṽ∥

)
,

(6)

�̃�2
v2
A

c2
𝜖xz = 2𝜋

∑
𝛼

∞∑
n=−∞

n𝜇2
𝛼
q̃3
𝛼
ñ𝛼
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where the velocity components ṽ∥ = v∥∕vA and ṽ
⟂
= v

⟂
∕vA are normalized to the Alfvén velocity vA = B0∕√

4𝜋nimi, the wave frequency �̃� = 𝜔∕Ωi is normalized to the ion gyrofrequency Ωi = qiB0∕(mic), the wave

number components k̃∥ = k∥di and k̃⟂ = k
⟂
di are normalized to the ion inertial length di = vA∕Ωi, the particle

species’ mass 𝜇𝛼 = mi∕m𝛼 and charge q̃𝛼 = q𝛼∕qi is normalized to the ion mass and ion charge, the density

ñ𝛼 = n𝛼∕ni is normalized to the ion density, and f̃𝛼 = f𝛼v
3
A
is the normalized velocity distribution function of

the particle species.

Instead of describing f̃𝛼 in a functional form, we rather take the distribution sampled on a two-dimensional

grid (ṽ∥, ṽ⟂) to compute the dielectric tensor elements. This lifts any restrictions imposed by idealized model

distributions and allows us to examine the influence of any arbitrary gyrotropic distribution function on linear

wave propagation. Naturally, this makes the computation of 𝜖 more cumbersome but—as we will see in the

next section—the numerical demand is still tractable, even for well-resolved distribution data grids.
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2.2. Numerics

Aswithmost of the existing kinetic dispersion relation solvers, LEOPARD is essentially a root-finding algorithm

which employs Muller’s method to determine the solutions 𝜔(k̃) of equation (1). The underlying code struc-

ture is very similar to the DSHARK codewhich is described in Astfalk et al. [2015]. Themost challenging part of

the numerical scheme—and therefore the only part of interest here—is the determination of the dielectric

tensor components. From equation (3) it becomes apparent that each component consists of a double sum
∑
𝛼

∞∑
n=−∞

over the particle species 𝛼 and the Bessel index n, and a double integral over the velocity components,

∞∫
−∞

dṽ∥

∞∫
0

dṽ
⟂
. Moreover, the integrals are of the form

∞

∫
−∞

dṽ∥

ṽl
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F
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ṽ∥, ṽ⟂

)

ṽ∥ − c1
(8)
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∞

∫
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dṽ
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(
c2ṽ⟂
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or Jn

(
c2ṽ⟂

)
J
′

n

(
c2ṽ⟂

))
, (9)

where l andm are integers, c1 is a complex-valued constant, c2 is a real-valued constant, and F is a real-valued

function of the velocity components.

The distribution function f̃𝛼 is provided to the code as a two-dimensional data grid. This implies that the inte-

gral must be evaluated on the grid which can be achieved by using standard numerical integrationmethods.

However, apart from being very demanding, this would also give rise to various sources of errors such as the

highly oscillating integrand in equation (9). An alternative approach is to interpolate F
(
ṽ∥, ṽ⟂

)
on the velocity

grid using a suitable interpolation scheme which allows for solving the integrals analytically. An interpola-

tionmethodwhich suits our needs is the cubic spline interpolationwhich approximates grid-based functions

piecewisely using third-order polynomials connecting the data points in a smooth and continuous fashion

(see Appendix A). Cubic spline interpolations are easy to implement; they give good fits for F
(
ṽ∥, ṽ⟂

)
, as long

as the velocity resolution is high enough, and they transform the integrals equation (8) and equation (9) in a

favorable way. Replacing F
(
ṽ∥, ṽ⟂

)
with the corresponding spline interpolation, equation (A1), the integrals

equation (8) and equation (9) become piecewise analytically solvable. Determining the integral equation (8)

then becomes trivial. Equation (9) is more challenging but still can be solved analytically using hypergeo-

metric functions (see Appendix B). After solving the integrals, we are left with a sum of analytic expressions

evaluated at the velocity grid points.

Since we have to compute a double integral, the spline interpolation has to be employed two times. First, for

the distribution function f̃𝛼 , say, in the parallel direction so that the integral with respect to ṽ∥ can be solved.

Subsequently, the coefficients of the parallel spline interpolation have to be spline-interpolated again with

respect to the perpendicular direction to solve the ṽ
⟂
integral. Which spline interpolation comes first depends

on whether f̃𝛼 is subject to 𝜕∕𝜕ṽ∥ or 𝜕∕𝜕ṽ
⟂
in equation (9). The chosen interpolation makes sure that the

corresponding derivative can be solved analytically as well.

A strength of the presented method is that the quality of the result solely depends on the quality of the

cubic spline interpolation which can be easily checked by plotting the interpolated data. This allows for a

quick and intuitive error analysis which is hardly possible in any sophisticated numerical integration schemes.

Furthermore, the algorithm is relatively fast. The time needed for a cubic spline interpolation on a reason-

ably sized grid is negligible. The most time-consuming part of the computation is the determination of the

hypergeometric functions.

The LEOPARD code can process an arbitrary number of particle species. In principle, for each species the code

has tobeprovidedwith a separatedistributiondata set. However, to increaseefficiency, LEOPARDwas coupled

to a standard bi-Maxwellian solver using the same implementation as the DSHARK code [Astfalk et al., 2015].

So if the user aims to investigate a setup which includes also bi-Maxwellian species, LEOPARD can switch to

the more efficient standard algorithm for these species instead of reading the distribution from data.

3. Test Cases

The setup of the LEOPARD code allows for processing arbitrary gyrotropic distribution functions enabling

a linear dispersion analysis beyond frequently used model distributions. That said, the distribution has to
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be provided to the code as a data set. The required data may be obtained from spacecraft measurements,

parametrized model distributions, or kinetic simulations. In this section, we exemplarily show how LEOPARD

is applied to data sets fromeither of the threementioned sources.We startwith a benchmark of bi-Maxwellian

and anisotropic kappa scenarios. Then, we examine the saturation stage of the parallel fire hose insta-

bility based on hybrid simulation data. And finally, we discuss the application of the LEOPARD code to

spacecraft data.

3.1. Parametric Distributions

Parametric models allow us to deduce idealized distribution functions from observations which repre-

sent average plasma states and facilitate systematic studies of plasma properties under specific conditions

describedby certain parameter sets. Arguably themost important andwidely usedparametricmodel in space

plasma physics is the anisotropic bi-Maxwellian distribution

f =
1

𝜋3∕2

1

v∥th

1

v2
⟂th

exp

(
−

v2
∥

v2
∥th

−
v2
⟂

v2
⟂th

)
, (10)

with the thermal velocities defined by v∥th =
√
2T∥∕m and v

⟂th =
√
2T

⟂
∕m containing the temperatures

parallel and perpendicular to themagnetic field, T∥ and T
⟂
, as the two free parameters of the model. Another

type of distribution function that enjoys growing interest for themodeling of solar wind andmagnetospheric

plasmas [Pierrard and Lazar, 2010] is the anisotropic kappa distribution,

f𝜅 =
1
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which contains the additional parameter 𝜅 satisfying 3∕2 ≤ 𝜅 ≤ ∞. The expressions 𝜃∥ =

√
2𝜅−3

𝜅

T∥

m
and

𝜃
⟂
=

√
2𝜅−3

𝜅

T⟂

m
denote the modified thermal velocities, and Γ(x) is the gamma function. This power law-type

distribution can be understood as an extension of the exponential bi-Maxwellian model which is recovered

in the limit 𝜅 → ∞.

For both types of distributions there already exist specific dispersion relation solvers, such as DSHARK, which

are usually faster and more efficient in computing dispersion curves than the code presented in this paper.

However, they can serve as a good test bed for benchmarking the LEOPARD code. Therefore, we pick four

exemplary scenarios which shall be investigated with LEOPARD, andwe benchmark the code’s results against

the DSHARK code.

Different from the dispersion relation solver presented, e.g., in Dum et al. [1980], LEOPARD can not only treat

parallel propagating modes, but in addition it also allows for 𝜃 ≠ 0∘. And since we see the main application

of the code in studying instabilities in space plasmas, we decided to benchmark a parallel fire hose-unstable

setup with 𝜃 = 0∘ and an oblique fire hose-unstable setup with finite propagation angle 𝜃 = 45∘. Both

setups are tested for a bi-Maxwellian model with anisotropic ions described by 𝛽∥i = 4 and 𝛽
⟂i = 2 and an

anisotropic ion kappa distribution with 𝛽∥i = 4, 𝛽
⟂i = 2, and 𝜅i = 4, where the beta parameters are defined by

𝛽∥i = 8𝜋niT∥i∕B
2
0
and 𝛽

⟂i = 8𝜋niT⟂i∕B
2
0
. The electrons are assumed to be isotropic andMaxwellianwith 𝛽e = 1.

To simplify the analysis, the electrons are treated with a standard Maxwellian solver (see end of section 2.2),

so that the code has to be provided with a distribution data set for the ions only.

The parallel as well as the oblique fire hose instability are both resonant in nature and therefore also serve as

a good test to demonstrate the ability of the code to accurately solve for kinetic effects.

Figures 1 and 2 show the results of the benchmark where LEOPARD was tested for different velocity

resolutions. Since the oblique fire hose instability is nonpropagating; only the growth rates are shown for

𝜃 = 45∘, whereas both real frequencies and growth rates are displayed for the parallel fire hose instability.

We also provide a cut of the employed distribution function at ṽ
⟂
= 0, overlaid with the cubic spline inter-

polations for the corresponding velocity resolutions. The outer parts of the spline-interpolated distributions

are apparently subject to unphysical oscillations introduced by the boundary conditions of the cubic splines.

The higher the velocity resolution, the less severe are the spline overshoots, and the better are the results.

In fact, for resolutions Δṽ∥ = 0.494 and Δṽ∥ = 0.976 the dispersion curves agree almost perfectly well with

the predictions of DSHARK. However, for the lowest resolution,Δṽ∥=1.397, the spline overshoots intrude into

the inner parts of the distribution function where the resonant particle populations are located which drive
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Figure 1. Results of the bi-Maxwellian fire hose benchmark. (top row) The real frequencies (left) and the growth rates

(right) of the parallel fire hose instability (PFHI) determined by DSHARK for a bi-Maxwellian setup with 𝛽∥i = 4 and

𝛽⟂i = 2 and by LEOPARD for corresponding model distributions with different velocity resolutions. (bottom row) The

growth rates of the oblique fire hose instability (OFHI) for the same setups but 𝜃 = 45∘ and a cut of the bi-Maxwellian

distribution at ṽ⟂ = 0 overlaid with the spline interpolations for the different velocity resolutions used in LEOPARD.

the fire hose instabilities. This leads to obvious deviations in the growth rates. The real frequencies on the

other hand are only slightly changed since they depend rather on the overall characteristics of the distribution

function and are therefore less vulnerable to the spline overshoots.

So if the velocity resolution of the distribution function is not too coarse, the spline interpolationwill provide a

good approximation and the LEOPARD code will accurately reproduce the dispersion curves for both parallel

and obliquely propagating modes.

3.2. Application to Simulation Data

Usingparametric distribution functions,we are still restricted to idealizedmodelswhich are of limited applica-

bility in real-world scenarios. The next step tomore authenticity is to consider distribution functions obtained

from grid-based kinetic simulations. In principle, such simulations already allow for investigating dispersion

properties for arbitrary distribution functions. However, a linear eigenvalue solver such as LEOPARD can per-

form this task in a much more efficient and accurate way. Since LEOPARD allows for directly correlating an

increase or decrease of the observed magnetic field amplitude with the local shape of the simulated distri-

bution, it can help to identify stabilizing or destabilizing features of the distribution and, e.g., also allows for

tracking how resonant particle heating changes the dispersion properties in a plasma and causes saturation

of kinetic instabilities. As an exemplary study, we present a numerical analysis of the saturation stage of the

bi-Maxwellian fire hose-unstable setup described in section 3.1. We carried out hybrid simulations with the

semi-Lagrangian Hybrid Vlasov Maxwell code (HVM), presented in Mangeney et al. [2002] and Valentini et al.

[2007]. The simulation setup is one-dimensional in position space and three-dimensional in velocity space.

The spatial grid is chosen to be aligned with the background magnetic field. The initial distribution function

of the ions is given by a bi-Maxwellian with 𝛽∥i = 4.0 and 𝛽
⟂i = 2.0, and the isotropic (fluid) electrons have

𝛽e = 1.0, in agreement with section 3.1. The instability is excited by introducing random noise perturbations
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Figure 2. Results of the fire hose benchmark with an anisotropic kappa distribution. (top row) The real frequencies (left)

and the growth rates (right) of the parallel fire hose instability (PFHI) determined by DSHARK for a kappa distribution

with 𝛽∥i=4, 𝛽⟂i=2 and 𝜅i=4 and by LEOPARD for corresponding model distributions with different velocity resolutions.

(bottom row) The growth rates of the oblique fire hose instability (OFHI) for the same setups but 𝜃 = 45∘ and a cut of

the kappa distribution at ṽ⟂ = 0 overlaid with the spline interpolations for the different velocity resolutions used in

LEOPARD.

to the initial magnetic field amplitudes. For the analysis, we picked out a single point on the spatial grid and

studied the time evolution of the local ion distribution function and the magnetic field amplitudes at that

point. Aswe can see in Figure 3, the initial temperature anisotropy in the iondistributiondrives an exponential

growth of the magnetic field amplitudes which fades around tΩi = 200where the instability saturates.

Figure 3. Time evolution of the local magnetic field amplitude By for a parallel fire hose-unstable setup simulated with

the hybrid code HVM, starting from a bi-Maxwellian ion distribution.
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Figure 4. (left) Time evolution of the local ion beta parameters 𝛽∥i, 𝛽⟂i and (right) time evolution of the local maximum

growth rate in the simulated system which was determined with a bi-Maxwellian solver, based on the local ion beta

parameters, and with the LEOPARD code, based on the local ion distribution function.

The further analysis is split into two parts. First, we compute the second-order velocity moments of the ion

distribution to derive the time evolution of the temperature anisotropy at the given point on the grid. The

obtained 𝛽∥i(t) and 𝛽
⟂i(t) are shown in Figure 4 (left). Based on the computed anisotropies, we then employ

a bi-Maxwellian dispersion relation solver to get the corresponding fire hose growth rates (again, we used

the DSHARK code here; see dashed lines in Figure 4 (right)). In the second step, we drop the restriction

imposed by a bi-Maxwellian model. Instead, we gyroaverage the local distribution and directly feed it into

the LEOPARD code to get more realistic predictions of the linear dispersion properties during the satura-

tion stage. Comparing the results of both procedures in Figure 4 reveals obvious discrepancies which can

be understood by examining Figures 5–7. The pitch angle diffusion of the resonant particles caused by the

Figure 5. (top) Local ion velocity distribution function (filled contours) and corresponding bi-Maxwellian model based

on the local beta parameters (dashed contours) in the early stage of growth. (bottom) The fire hose growth based on a

bi-Maxwellian solver and LEOPARD.
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Figure 6. (top) Local ion velocity distribution function (filled contours) and corresponding bi-Maxwellian model based

on the local beta parameters (dashed contours) in the late saturation stage. (bottom) The fire hose growth based

on a bi-Maxwellian solver and LEOPARD.

high-amplitude parallel fire hose fluctuations introduces non-Maxwellian features in the distribution function

(see Figure 6). The particles get scattered to higher v
⟂
, and the tails in the parallel velocity direction become

stronglydepopulated for v
⟂
= 0. Thebi-Maxwellian solver cannot account for thesedeformations and system-

atically overpredicts the growth rates in the system. In fact, according to the predictions of the DSHARK code,

the system would still be highly unstable even after the magnetic field amplitudes in the simulation clearly

saturated. The maximum growth rate oscillates in phase with the temperature anisotropy around values as

high as 𝛾max∕Ωi > 0.04. Of course, one could attribute this obvious mismatch to the fact that in the saturation

stage the high field amplitudes invalidate the linear approach and nonlinear effects might obscure the stabil-

ity analysis. However, in contrast to the bi-Maxwellian solver the growth rates based on LEOPARD meet our

expectations very well. While the magnetic field amplitudes saturate around tΩi = 200, it predicts a strong

reduction of the growth rates to 𝛾max∕Ωi ∼ 10−3. Around tΩi = 230, 𝛾max goes slightly up again which seems

to be related to the fact that the local macroscopic temperature anisotropy is temporarily increasing again.

After that, however, LEOPARD predicts decreasing 𝛾max again, and the fire hose branch eventually becomes

stable around tΩi = 240, while the bi-Maxwellian solver still shows strong instability.

Figure 7 provides further qualitative insight into this premature saturation of the parallel fire hose insta-

bility. It shows the ion velocity distribution during the stage of growth (Figure 7, top) and after saturation

(Figure 7, bottom) with overplotted single-wave characteristics of the most unstable mode. Particles which

are in cyclotron resonance with a single wave roughly conserve their kinetic energy in the frame comoving

with the wave [see, e.g., Kennel and Engelmann, 1966], i.e., they obey

v2
⟂
+

(
v∥ −

𝜔k

k∥

)2

≈ const. (12)

The single-wave characteristics plotted in Figure 7 show the contours of the conserved energy in the comov-

ing frame of the most unstable mode. Gradients in the phase space density along these contours provide a

source of free energy. Thus, pitch angle scattering inducedby the growingwave amplitude is expected to lead

to a diffusion of the particles along the contours in the direction of decreasing phase space density which sta-

bilizes the plasma [see, e.g., Lyons andWilliams, 1984]. Comparing Figure 7 (top and bottom), we indeed see

that after saturation the ion velocity distribution is smoothed out along the single-wave characteristics which

eventually leads to the suppression of the fire hose growth.
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Figure 7. Local ion velocity distribution function (filled contours) in (top) the early stage of growth and in (bottom) the

late saturation stage with overplotted single-wave characteristics determined by equation (12).

This observation confirms that for the given setup the saturation of the parallel fire hose instability is not

primarily governed by the reduction of the macroscopic pressure anisotropy but it is rather due to resonant

pitch angle scattering. Furthermore, it shows that a linear stability analysis can still produce useful results even

in the presence of high fluctuation amplitudes as long as the distribution function is correctly described.

For further discussion on how these results comply with former investigations of the parallel fire hose

saturation, see section 4.

3.3. Application to Space Measurements

After discussing the application of the LEOPARD code to parametric distributions and simulation data, we

now conclude by shortly outlining what we consider the main purpose of the code in future studies, namely,

the application to distribution data obtained from spacecraft measurements. Since measurements of space

plasma distribution functions are usually performed in a three-dimensional cartesian velocity space, a proper

transformation to field-aligned coordinates and a subsequent averagingover the gyroangle is requiredbefore

the data can be processed by the code. Due to gyrophase bunching, space plasmas can generate a significant

agyrotropy [see, e.g., Eastman et al., 1981; Gary et al., 1986], which alters the dispersion properties. While per-

forming the gyroaveraging, it is therefore important to ensure that the gyrotropy assumption inherent to the

code is still tolerably satisfied. This—of course—also applies to distribution data from kinetic simulations of

collisionless plasmas discussed above.

In Dum et al. [1980], wave growth was determined based on distribution data from the Helios 1 and 2 space-

craft. At this point, we refrain from demonstrating the application of LEOPARD to a specific data set but we

merely refer to an upcoming paper where the LEOPARD code is applied to measurements of the ARTEMIS

spacecraft, THEMIS 1 and 2. In this upcomingwork, it will be shown that thewave growth of ion beam instabil-

ities can crucially depend on the actual shape of the ion beam in velocity space. This reveals the limitations of
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conventionally used drift bi-Maxwellian dispersion solvers and justifies the need for an arbitrary distribution

dispersion solver in the space plasma community.

The performance of the LEOPARD code crucially depends on the quality of the applied cubic spline inter-

polation which furthermore relies on the velocity resolution of the provided data. For parametric model

distributions and simulation data, the resolution is solely limited by the numerical demand and can generally

be chosen high enough to ensure a robust analysis with LEOPARD. Spacecraft measurements, on the other

hand, are limited by the resolution of their instrumentation which might not yet meet the requirements for

a reliable cubic spline interpolation in all cases. Checking the spline interpolation for unphysical overshoots

provides an intuitive way to locate errors stemming from such poor data resolution.

4. Discussion and Outlook

In this paper, we presented a newly developed dispersion relation solver for arbitrary gyrotropic distribution

functions which—to the authors’ knowledge—is the first kinetic eigenvalue solver of that kind, allowing for

arbitrary propagation angles and an arbitrary number of particle species. The required distribution function is

provided to the code as a data set sampled on a (ṽ∥, ṽ⟂) grid. Applying a cubic spline interpolation to the data

then allows for analytically solving the velocity integrals which appear in the standard dispersion formalism.

In section 3, we successfully benchmarked the code with a bi-Maxwellian and an anisotropic kappa model

distribution. Subsequently, we investigated the saturation stage of the parallel fire hose instability by exam-

ining data produced with the hybrid code HVM, and we clearly demonstrated that for the chosen setup the

saturation of the parallel fire hose instability is mainly achieved by the pitch angle scattering of resonant par-

ticles and not primarily by the reduction of the pressure anisotropy. This investigation can be understood as

a follow-up on the discussions in, e.g., Gary et al. [1998],Matteini et al. [2006], Seough et al. [2015], and Astfalk

and Jenko [2016] concerning the resonant nature of the parallel fire hose instability and the effect of the defor-

mation of the distribution function on its saturation. Seough et al. [2015] presented a thorough study, utilizing

Particle-in-cell simulations to investigate the saturation of the parallel fire hose instability for different 𝛽∥i and

𝛽
⟂i and comparing the simulation results to the predictions of quasilinear theory. It was found that especially

for lower plasma 𝛽 , there was an obvious discrepancy between simulation and theory. This was attributed

to either the presence of nonlinear wave-wave interactions or the non-Maxwellian deformation of the distri-

bution due to pitch angle scattering which the chosen approach did not account for—Seough et al. [2015]

assumed that the distribution’s bi-Maxwellian shape is preserved throughout the saturationprocess. Basedon

the results of our short investigation, we suggest that the deviation of the distribution from a bi-Maxwellian

shapemay verywell be themajor cause of the premature instability saturation observed in the lower 𝛽 setups

of Seoughetal. [2015]. Thepitch angle scatteringof the resonant particles clearly inhibits further growth,while

the quasilinear theory based on a bi-Maxwellianmodelwould still predict further instability. Amore thorough

analysis of this and similar problems is left for the future.

Finally, we briefly discussed the application of LEOPARD to direct measurements of spacecraft in natural

plasma environments. A first systematic study of this kind is postponed to an upcoming paper where the

code will be applied to THEMIS measurements. In section 3.3, we mentioned that the limited resolution of

spacecraft data can be a severe issue for the performance of the LEOPARD code. However, the improved

instrumentation of upcoming space missions such as Solar Orbiter and THOR will enable a more and more

accurate linear dispersion analysis. In both simulation and real-world applications, LEOPARD will allow for

directly linking observed growth (or damping) in magnetic field amplitudes with features in the local distri-

bution functions with unprecedented accuracy. It is our hope that this will further deepen the knowledge of

linear wave physics in both basic theory and natural plasma environments such as the solar wind or planetary

magnetospheres.

Appendix A: Cubic Spline Interpolation

The cubic spline interpolation for a given set of n data points (x1, y1),… , (xn, yn) can generally be written as

S(x) =

n−1∑
i=1

Si(x) =

n−1∑
i=1

ai × (x − xi)
3 + bi × (x − xi)

2 + ci × (x − xi) + di, (A1)

where xi ≤ x ≤ xi+1 and 1 ≤ i ≤ n − 1.
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The parameters ai , bi, ci , and di are the spline coefficientswhich have to be determined. Several types of spline

interpolation schemes satisfyingdifferentboundary conditions canbe found in the literature [see, e.g.,DeBoor

et al., 1978;McKinley and Levine, 1998]. In most of our cases, natural splines (also known as free splines) have

proven to be the best choice. The corresponding spline coefficients can be determined using the following

conditions:

(I) Si(xi) = yi for 1 ≤ i ≤ n − 1

(II) Si(xi+1) = yi+1 for 1 ≤ i ≤ n − 1

(III) S
′

i−1
(xi) = S

′

i
(xi) for 2 ≤ i ≤ n − 1

(IV) S
′′

i−1
(xi) = S

′′

i
(xi) for 2 ≤ i ≤ n − 1

(V) S
′′

1
(x1) = 0 and S

′′

n−1
(xn) = 0.

The conditions (I) and (II) ensure the continuity of the splines at eachgridpoint. Conditions (III) and (IV) further-

more ensure the continuity of the first and second derivatives at the grid points to guarantee the smoothness

of the splines. And condition (V) is the boundary condition for natural splines. These conditions create a com-

plete set of equations which uniquely determines the coefficients of the spline interpolation. This system of

equations takes the form of a tridiagonal matrix and can be solved using the Thomas algorithm.

The spline interpolation method implemented in the LEOPARD code was thankfully provided by

Prof. Alexander Godunov, Associate Professor of physics at Old Dominion University, Norfolk, VA, USA.

Appendix B: Hypergeometric Function

The generalized hypergeometric function can be written as

pFq
(
a1,… , ap; b1,… , bq; z

)
=

∞∑
n=0

p∏
k=1

(
ak
)
n

q∏
k=1

(
bk
)
n

×
zn

n!
, (B1)

where
(
xk
)
n
= Γ(xk + n)∕Γ(xk) denotes the Pochhammer symbol [see, e.g., Slater, 1966].

The hypergeometric functions 1F2 and 2F3 appear in the codewhen solving the v⟂ integral, equation (9), after

the cubic spline interpolation, equation (A1), was applied to the grid-based quantity F
(
ṽ∥, ṽ⟂

)
. Exemplarily,

the solution of, e.g., Im=∫ dṽ
⟂
ṽm−1
⟂

J2
n

(
𝜆𝛼 ṽ⟂

)
is given by

Im =
1

2n +m

ṽm
⟂

22n

(
𝜆𝛼 ṽ⟂

)2n
Γ(n + 1)2 2F3

(
n +

1

2
, n +

m

2
; n + 1, n + 1 +

m

2
, 2n + 1; −

(
𝜆𝛼 ṽ⟂

)2)
. (B2)

For numerical reasons, the hypergeometric functions are not directly computed with equation (B1) but with

the continued fraction formula

pFq
(
a1,… , ap; b1,… , bq; z

)
= 1 +

(
z

p∏
k=1

ak

)

(
q∏

k=1

bk

)⎛
⎜⎜⎜⎝
1 + Kk

⎡
⎢⎢⎣
−

z
p∏
j=1

(k+aj)

(k+1)
q∏
j=1

(k+bj)

,

z
p∏
j=1

(k+aj)

(k+1)
q∏
j=1

(k+bj)

+ 1

⎤
⎥⎥⎦

∞

1

⎞
⎟⎟⎟⎠

. (B3)
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