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The peptide hormone leptin regulates food intake, body mass, and reproductive function
and plays a role in fetal growth, proinflammatory immune responses, angiogenesis and
lipolysis. Leptin is a product of the obese (ob) gene and, following synthesis and secretion
from fat cells in white adipose tissue, binds to and activates its cognate receptor, the leptin
receptor (LEP-R). LEP-R distribution facilitates leptin’s pleiotropic effects, playing a crucial
role in regulating body mass via a negative feedback mechanism between adipose tissue
and the hypothalamus. Leptin resistance is characterized by reduced satiety, over-
consumption of nutrients, and increased total body mass. Often this leads to obesity,
which reduces the effectiveness of using exogenous leptin as a therapeutic agent. Thus,
combining leptin therapies with leptin sensitizers may help overcome such resistance and,
consequently, obesity. This review examines recent data obtained from human and animal
studies related to leptin, its role in obesity, and its usefulness in obesity treatment.
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INTRODUCTION

Obesity-associated co-morbidities such as hypertension, dyslipidemia, type 2 diabetes mellitus, fatty
liver disease, heart disease, and some types of cancer cause about 3.4 million adults (over age 18)
deaths in 2016, according to the World Health Organization (1). They further reported that an
alarming 1.9 billion adults are overweight, and over 650 million overweight adults are obese.
Hyperleptinemia and resistance to a reduction of body mass are two common characteristics of
obesity (2). In this regard, studies report a strong positive association between serum leptin levels
and the percentage of body fat (3, 4). Thus, pharmaceutical companies are pursuing the idea of using
leptin-based drugs as a therapeutic strategy for weight loss (5, 6).

In 1994 Zhang et al. identified leptin as the product of the obese (ob) gene after characterizing
genetically obese (ob/ob) mice (7). This factor was coined leptin the following year, derived from the
Greek word leptos, meaning thin (8). Leptin regulates food intake, body mass, reproductive
functioning and plays a vital role in fetal growth, proinflammatory immune responses,
angiogenesis, and lipolysis (2, 9, 10). Studies demonstrated that the concentration of circulating
leptin decreases during fasting (11) or energy restriction (12) but increases during refeeding (13),
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overfeeding (14), as well as during surgical stress (15). These
effects provide an overview of how various pathways regulate the
leptin signaling system to maintain body mass. For example,
when the fat cells increase, leptin levels increase proportionally,
then bind to leptin receptors (LEP-R) in the brain that send
signals to inhibit food intake and increase energy expenditure
(16, 17). However, when a positive energy balance (i.e., caloric
intake exceeds energy expenditure) is sustained for critical
periods, weight is gained (3, 16, 17). Here we review the
literature to collate and provide a comprehensive summary of
the relationship between leptin signaling and obesity.
LEPTIN AND ITS COGNATE RECEPTOR

The leptin molecule is 16 kDa in size and comprises 167 amino
acids (including a 21 amino acid secretory signal sequence), and
it exhibits the tertiary structure of a globular protein (18, 19).
Leptin acts via its transmembrane receptors, the LEP-R, that
exhibit structural similarity to the class I family of cytokine
receptors, which include receptors for interleukins (IL), leukemia
inhibitory factor (LIF), colony-stimulating factor 3 (CSF-3),
growth hormone (GH), prolactin and erythropoietin (20–23).
These family members have characteristic extracellular motifs,
including four cysteine residues, a Trp-Ser-Xaa-Trp-Ser motif,
and fibronectin type III (FN III) domains (24). LEP-R exists in
several alternatively spliced variants labeled as LEP-Ra, LEP-Rb,
LEP-Rc, LEP-Rd, LEP-Re, and LEP-Rf and the extracellular and
transmembrane domains comprise over 800-amino acids and
34-amino acid, respectively, while a variable intracellular domain
characteristic for each of the LEP-R isoforms (21–23, 25). The
isoforms are classified into three classes: short, long, and
secretive (23).

The Role of Leptin in the Regulation of
Energy Balance
Brain lesion and stimulation research led to the discovery of the
“satiety center” in the ventromedial hypothalamic nucleus
(VMH) and the “hunger center” in the lateral hypothalamic
nuclei (LH). This defines the dual-center model for feeding,
Abbreviations: AgRP, agouti-re lated protein; AMPK, adenosine
5’monophosphate-activated protein kinase; ARC, arcuate nucleus; BAT, brown
adipose tissue; BBB, blood-brain barrier; CCL2, CC-chemokine ligand 2; CD,
cluster of differentiation; CNS, central nervous system; CSF-3, colony-stimulating
factor 3; DIO, diet-induced obese; DMH, dorsomedial hypothalamic nucleus; FN
III, fibronectin type III; GH, growth hormone; IL, interleukin; IL1R1, interleukin 1
receptor 1; JAK, Janus-associated kinase; LEP-R, leptin receptor; LEP-Rb, LEP-R
isoform b; LH, lateral hypothalamic nuclei; LIF, leukemia inhibitory factor;
MAPK/ERK - mitogen-activated protein kinases/extracellular signal-regulated
kinase; MCR, melanocortin receptor; NPY, neuropeptide Y; NTS, nucleus
tractus solitarius; ob, obese gene; PFK, 6-phosphofructokinase; PI3K,
phosphoinositol-3 kinase; POMC, proopiomelanocortin; POA, preoptic area;
pQTL, protein quantitative trait locus; PTP1B, protein tyrosine phosphatase 1B;
PVNparaventricular nucleus; RYGB, Roux-en-Y gastric bypass; SLR, selective
leptin resistance; SOCS3, cytokine signaling 3; STAT, signal transducer and
activator of transcription; TNFa, tumor necrosis factor a; VMH, ventromedial
hypothalamic nucleus; VTA, ventral tegmental area; WHO, World Health
Organization; a-MSH, alpha-melanocyte-stimulating hormone.
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proposing that energy input is provided through eating (26).
Thus, energy balance is maintained when energy from food
intake is equal to energy expenditure. About one year after the
discovery of the leptin gene, it is shown that leptin regulates
appetite and metabolism by inhibiting the synthesis and release
of neuropeptide Y (NPY) in the arcuate nucleus (ARC) (27).
Subsequently, it was discovered the LEP-R isoform b (LEP-Rb) in
the VMH, ARC, LH, and the dorsomedial hypothalamic nucleus
(DMH), which plays a crucial role in the regulation of energy
balance and body mass (28). Earlier studies revealed that lesions of
the ARC, VMH, or DMH could lead to hyperphagia and obesity in
rats (29, 30), and lesions of the LH can lead to anaphylaxis (31).
Later studies have demonstrated that leptin can inhibit neural
pathways activated by appetite stimulants (orexigenic) to reduce
energy intake and activate pathways targeted by anorexigenic to
suppress appetite (32, 33). Examples of orexigenic neuropeptides
include NPY and the agouti-related protein (AgRP). The product
of proopiomelanocortin (POMC), alpha-melanocyte-stimulating
hormone (a-MSH), is an anorexigenic (34). Neurons that
express AgRP, POMC, and melanocortin include those in the
central melanocortin system involved in energy balance regulation
(34, 35).

The interaction between the signaling of leptin and the
dominant feeding regulation constitutes a simple model: leptin
affects the transcription of POMC, whose a-MSH product is
released into the synapse to activate neurons via binding to the
melanocortin receptor (MCR) and leads to appetite-suppression
(36, 37). Also, leptin inhibits NPY/AgRP synthesis in neurons,
which, in turn, reduces the agonistic effect of AgRP on MCR
(Figure 1) (36, 37).

The significance of the melanocortin system is not only due to
the direct action of leptin in the hypothalamus but also the fact
that the loss of melanocortin 4 receptor (MC4R) function, a key
MCR expressed in the hypothalamus, is the most common
genetic cause of obesity in humans and occurs in 3-5% people
with extreme obesity (38, 39). In brief, leptin regulates energy
balance by modulating the activity of NPY/AgRP and POMC
neurons in the ARC nucleus (34). Another mechanism of energy
balance regulation was discovered by identifying rapid
regeneration of the ARC nucleus’ neural circuits using leptin
(40). Among ob/ob mice and wild-type mice are different
synapses extended on NPY/AgRP and POMC neurons (40).
Furthermore, leptin treatment normalized the synaptic density
on NPY/AgRP and POMC neurons 6 hours after treatment, a
few hours before it affected food intake (40). These findings
indicate that leptin acts on the hypothalamus by regulating
neuronal plasticity (34, 41).

Regulation of Leptin Secretion
Leptin is primarily produced in white adipose tissue. Still, smaller
quantities have been detected in other body tissues, including the
brown adipose tissue (BAT), placenta, fetal tissue, stomach,
muscles, bone marrow, teeth, and brain (42, 43). Leptin
circulates in the blood in both free and protein-bound forms,
where the free form of leptin is the biologically active form (43).
The equilibrium between free and bound leptin regulates leptin
bioavailability (39). Leptin can enter the central nervous system
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(CNS) (in the area of the choroid plexus) by receptor-mediated
transport (44). The LEP-R isoform plays a particularly significant
role in transporting leptin through the blood-brain barrier (BBB)
(44). A complex array of endocrine, neuroendocrine, and
paracrine signals governs leptin synthesis and secretion (45).
The secretion of leptin is proportional to body mass and
nutritional status. The serum leptin levels decrease during
starvation, associated with an adaptive physiological response
to the state of starvation (45). Furthermore, leptin secretion is
higher in subcutaneous than in visceral adipose tissue (46, 47).

Food intake, total body fat, as well as several hormones regulate
leptin secretion (45). Insulin and, to a lesser extent, other
pancreatic peptide hormones, including amylin, glucagon, and
pancreatic polypeptides, reduce food intake and affect leptin
secretion (48). Insulin is the primary regulator of leptin
production (49). Prolonged hyperinsulinemia leads to an
increase in leptin’s plasma concentration, while short-term
hyperinsulinemia does not cause such a change (49). Moreover,
insulin infusion increases plasma leptin concentration in humans
(50), and rodents with type 1 diabetes exhibit significantly reduced
leptin levels (51). Based on such in vitro studies, it is assumed
that insulin stimulates leptin production via glucose metabolism
(51–53). The blockade of glucose transports or glycolysis in
the presence of high insulin levels inhibits the expression
and secretion of leptin in adipocytes (51, 53). Changes in
glucose metabolism due to the application of a high-fat diet for
24 hours explain the reduced level of leptin in human circulation
and thus contribute to a high-fat diet in promoting weight
gain and obesity (54). The reduced level of leptin in the
Frontiers in Endocrinology | www.frontiersin.org 3
circulation observed during high energy consumption is
associated with humans’ hunger (45). Therefore, leptin flows
from the adipocyte into the bloodstream, passes through the
BBB, and arrives in areas of the brain involved in regulating
the hypothalamus’s energy balance (55). Unlike insulin,
catecholamines bind to b2- and b3-adrenergic receptors to
inhibit leptin synthesis (52), indicating a link between
neuroendocrine and sympathetic control of adipose tissue
endocrine function, i.e., the existence of negative feedback
between the brain and adipose tissue (56). Corticosteroids and
tumor necrosis factor a (TNF-a) stimulate leptin synthesis, while
thyroid hormones are likely to decrease it (49).

Molecular Mechanisms of Leptin Action
The distribution of the LEP-R facilitates the pleiotropic effects
of leptin (23). The binding of leptin to its receptor initiates
numerous signal transduction pathways and, as a result,
regulates a range of cellular functions in the body (19, 23).
LEP-R, as a member of the type I cytokine receptor family,
signals via the Janus kinase family (Figure 2) of tyrosine kinases
(57). The intracellular domain of all LEP-R isoforms contains in
the juxtamembrane region a “box” 1 -JAK-binding domain,
while LEP-Rb also includes a “box” 2 motif and a signal
transducer and activator of transcription (STAT)-binding sites
(23, 58–60). Usually, functional receptors for cytokines contain
the box 1 motif required for the interaction and activation of JAK
(61). Box 2 also plays a role in the interactions and selectivity of
JAK isoforms. However, for leptin signaling, only box 1 and an
Ala-Ala motif in the immediate environment are essential for
FIGURE 1 | Regulation of appetite by leptin acting on the nucleus arcuatus of the hypothalamus. POMC, proopiomelanocortin; NPY, neuropeptide Y; AgRP, agouti-
related protein; MCR, melanocortin receptors; GABA, g-aminobutyric acid.
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JAK activation (62, 63). Although initially only LEP-Rb was
observed as an isoform involved in signaling, it has also been
demonstrated for the short isoforms (64–66). Mainly JAK2
members of the JAK family proteins are associated with
membrane-proximal sequences of the intracellular receptor
domain, which is phosphorylated after binding the ligand.

LEP-R and other cytokine receptors do not have kinase
activity but couples with tyrosine kinases. After LEP-R binds
leptin, LEP-R undergoes a conformational change, critical for
leptin signaling and activation of the associated JAK2. JAK2
autophosphorylates and simultaneously phosphorylates tyrosine
residues on the functional LEP-R’s intracellular domain,
allowing binding of STAT proteins and their subsequent
translocation to the nucleus where they act as transcription
factors (23). Also, cytokine signaling 3 (SOCS3) and protein
tyrosine phosphatase 1B (PTP1B) can act as suppressors of
the JAK-STAT pathway (23, 67, 68). PTP1B is a known
negative modulator of leptin signal transduction via the de-
phosphorylation of JAK2. Excessive expression of PTPB1
reduces phosphorylation of JAK2 and inhibits the transcription
of SOCS3 and c-fos, which are induced by leptin (23).
Furthermore, isoforms of LEP-R with a long intracellular
domain may also activate other signaling pathways. The
binding of leptin to LEP-R also activates phosphoinositol-3
kinase (PI3K) (69) and mitogen-activated protein kinases/
extracellular signal-regulated kinase (MAPK/ERK) (70)
signaling cascades. The activation of each of these pathways
Frontiers in Endocrinology | www.frontiersin.org 4
contributes to leptin’s anorexigenic effects (suppressing appetite,
stimulating weight loss, and increasing thermogenesis) (69–71).

It is important to note that distinct signal transduction
pathways are responsible for mediating the leptin’s metabolic
effects compared with its cardiovascular effects. For example, the
JAK2/STAT3 pathway is primarily responsible for regulating
gene expression changes, while the PI3K pathway often signals
more rapidly through phosphorylation of cytoplasmic proteins.
The PI3K pathway plays an important role in leptin’s acute
effects, such as regulating food intake and arterial hypertension
(72). However, the Jak/STAT3, MAPK, and PI3K pathways
appear to collectively regulate energy balance (72).

The effects of leptin are similar to other acute phase reactants;
it increases the secretion of multiple inflammatory cytokines such
as IL-6, IL-12, and TNF-a (73). In turn, exposure to inflammatory
stimuli such as TNF-a and IL-1 increases leptin expression in the
adipose tissue and circulating leptin, which creates a feedback loop
that promotes inflammation (74, 75). This feedback loop
emphasizes how leptin promotes low-grade inflammation since
the proinflammatory mediators increase leptin expression and
other acute phase reactants that promote chronic inflammation.

The effects of leptin are manifold; it stimulates the expression
of IL-1Ra, a cluster of differentiation (CD) 25, CD39, CD69, and
CD71 (76), and the production of proinflammatory cytokines
TNF-a and IL-6 (77) in macrophages. The number of
macrophages present in white adipose tissue correlates directly
with obesity, i.e., obese individuals have more macrophages in
FIGURE 2 | Leptin signaling. L- leptin; LEP-R- leptin receptor; IRS 1/2, insulin receptor substrate 1/2; JAK 2, Janus kinase 2; PI3K, phosphoinositide 3-kinase; SH2,
Src-like homology 2; SHP-2, SH2 domain-containing protein tyrosine phosphatase; SOCS3, suppressor of cytokine signaling 3; STAT, signal transducer and
activator of transcription.
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adipose tissue (78, 79). The adipocyte-produced cytokines, CC-
chemokine ligand 2 (CCL2), contribute to this macrophage
infiltration process. The macrophages and adipocytes in adipose
tissue are major TNFa and IL-6 sources in obese individuals,
respectively. Thus, together these adipose tissue cells are also
involved in a feedback loop that perpetuates macrophage
recruitment and production of proinflammatory cytokines. These
feedback loops explain why obesity is associated with chronic pro-
inflammatory signaling pathways, abnormal cytokine production,
and increased acute-phase reactants (80) and why obesity increases
an individual’s risk of developing inflammatory-based diseases
and immune-mediated disorders (80–82).
LEPTIN AND OBESITY

Leptin Expression in Obesity
Severe early obesity develops from rare genetic mutations that affect
leptin signaling (2, 83). Such mutations often lead to congenital
leptin deficiency or high but ineffective leptin and leptin resistance
(84). Hyperleptinemia and resistance to reducing body mass are
two characteristics of typical obesity (2, 3, 85). Leptin is
overexpressed at the gene level in the adipose tissue of
individuals with obesity (86). Furthermore, strong positive
associations exist between plasma leptin levels and body fat
percentage (87, 88). Other studies point towards leptin resistance.
For example, plasma leptin levels and ob mRNA content decrease
in individuals with obesity at the initial time of weight loss but
increases as they continue to lose weight (88). Also, despite the
expectation, leptin therapy’s termination does not result in weight
gain and hyperleptinemia (89). There is also evidence that
hyperleptinemia does not mimic the CNS consequences of
chronic weight gain in diet-induced obese (DIO) mice (2, 89).

Different areas within the brain may be involved in the
temporal and spatial dysregulation of neurological functioning
associated with leptin under nutrient excess conditions (90). In
this regard, Matheny et al. demonstrated that consuming a diet
rich in high-fat induced leptin resistance in the ARC and ventral
tegmental area (VTA), while medial basal hypothalamic regions
stayed sensitive to leptin (91). Subsequently, the selective
downregulation of Ob-Rb using lentivirus in ARC promoted
diet-induced obesity in rats (92), demonstrating the ARC region
has a role when leptin resistance develops in obesity.
Interestingly, DIO is induced by the differential expression of
leptin in brain regions, which may result from the various
experimental methods used to regulate leptin expression.
Moreover, these studies show the anorectic effects of leptin are
not brain-specific. The ARC and VTA appear to be the main
areas for the responsiveness of leptin. When the response to
leptin is decreased in one region of the brain, it may be
overcompensated by another, which suggests coordinated
functioning. A high-fat diet may cause SOCS3 expression and
activation of STAT3 resistance by leptin in POMC (93), ARC
(94, 95), and AgRP neurons in rodents. Also, in AgRP neurons,
the expression of SOCS3 decreases after shifting from high-fat to
low-fat diets, indicating that those neurons may be more
sensitive to leptin than POMC neurons (90, 96).
Frontiers in Endocrinology | www.frontiersin.org 5
Experiments on obese mice confirmed a polymorphism in the
ob gene (97, 98). This polymorphism alters the leptin protein
function such that mice become morbidly obese (97, 98).
Similarly, mice with a polymorphism in the gene encoding
LEP-R, display altered leptin signaling that leads to obesity (99,
100). A single-nucleotide polymorphism identified in the 5’-
untranslated region of the leptin gene (LEP -2548 G/A
polymorphism) and its association with obesity is the most
studied in humans. Still, the literature data are inconsistent
(101–105). Carayol et al. designed and performed the first
protein quantitative trait locus (pQTL) analysis in obesity and
examined the role of genetic variations in determining protein
level variation (106). They identified cis-pQTL and trans-pQTL
signals associated with BMI at baseline and after the intervention
and concluded that in human adipose tissue, human NTases
belonging to the FAM46A family (family-with-sequence-
similarity-46) was a negative regulator of leptin signaling (106).

A range of studies has investigated genetic and epigenetic
factors that control leptin expression. For example, a distant
leptin enhancer 1 (LE1) sequence has been identified 16 kb
upstream from the transcription start site (TSS) of the ob
gene. The LE1 contains a 17-bp non-canonical peroxisome
proliferator-activated receptor gamma (PPARg)/retinoid X
receptor alpha (RXRa)-binding site, named leptin regulatory
element 1 (LepRE1) that is essential for fat-regulated expression
(107). In the same study, a functionally analogous LepRE1 site
was also found in a second DNA regulatory element 13 kb
downstream from the TSS of the ob gene. Non-coding RNAs
have been implicated in the regulation of leptin gene expression,
with its dysregulation linked to obesity (108) and in the
development of hypothalamic leptin insensitivity (109). In
addition, leptin has been shown to modulate the expression of
miRNAs that target POMCmRNA (110). Epigenetic mechanisms
linked to obesity that impact leptin and LEP-R expression are also
at play. A study investigating DNA methylation in promoter
sequences in bariatric surgery patients found higher Ob gene
promoter methylation patterns in pre bariatric surgery patients
compared to postoperative patients. Whilst DNA methylation of
the LEP-R gene promoter was significantly higher in the
postoperative group (111).

Leptin Resistance in Obesity
The term “leptin resistance” was coined shortly after discovering
leptin in 1994 (7, 112, 113). The concept of leptin resistance
implies the processes that result from a state of obesity impair the
effects of leptin, thereby contributing to the formation of obesity
and obstructing the potential efficacy of therapy with the use of
exogenous leptin (3, 113). Leptin resistance occurs due to the
leptin’s inability to reach the target cells, reduced LEP-R
expression, or disturbed LEP-R signaling (3, 113). There are
likely a number of molecular and genetic mechanisms that can
lead to leptin resistance. Although relatively rare, loss of function
mutations has been identified in genes encoding leptin and its
receptors (28, 114, 115). More common mechanisms likely
include defects in the pathways that regulate leptin synthesis.
Leptin concentrations are directly dependent upon Ob gene
transcription, which correlates with adipocyte size and lipid
May 2021 | Volume 12 | Article 585887
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content. A complete understanding of how these factors are
mechanistically linked or how such pathways are altered to
trigger leptin resistance remains unclear. However, additional
external stimuli, including eating behaviors and the circadian
rhythm, modulate leptin expression and may play a role (116). It
has been demonstrated that the decreased transport of leptin
across BBB can lead to leptin resistance. Microcapillary vessels at
the BBB express short truncated LEP-R forms that bind leptin
and transport it to the nervous system (21, 117). It has been
shown that even if plasma leptin levels rise above the range of
25–30 ng/mL, the concentration of leptin in cerebrospinal fluid
does not increase further (118). Furthermore, it appears that
excessive plasma leptin levels can result in decreased BBB
permeability (119, 120).

A more nuanced or selective form of leptin resistance (SLR)
has also been described, where the effects of leptin on appetite
(and body mass) are absent. Still, the results of leptin on the
sympathetic nervous system are preserved (3, 113). Interestingly,
SLR characterizes preservation of sympathetic nerve activity
(SNA) in the kidney and normal blood pressure (BP)
responses to leptin action in obesity, despite alterations in
responses to leptin in appetite, thermogenesis, and body mass
(121). Two potential overlapping pathogenic mechanisms for
SLR development have been proposed. Firstly, defects in
differential leptin molecular signaling pathways that mediate
selective as opposed to universal leptin action and secondly,
defects in processes that regulate brain site-specific leptin
actions (121).

Moreover, the latest studies unexpectedly propose that the
brain renin-angiotensin system (RAS) mediates the leptin
effects on renal and BAT thermogenic SNA with the absence
of the effects of leptin on food intake (121). These findings imply
that elevation or reduction of brain RAS activity may regulate
leptin actions on BP and energy expenditure with no impact
on the leptin-induced reduction in food intake (121). BAT
thermogenesis is stimulated by leptin via central LEP-R,
acting primarily through the sympathetic nervous system
(122–124). A few hypothalamic areas (DMH, preoptic area
(POA), paraventricular nucleus (PVN), VMH, ARC), but also
some extra-hypothalamic regions as the nucleus tractus solitarius
(NTS) participate in leptin-induced thermogenesis (125). The
sympathetic regulation of BAT implicates neurons of the NTS
that obtain vagal information and project nearby in the
hypothalamic areas and the brainstem (126). Since NTS
neurons have LEP-R, a specific administration of leptin to NTS
leads to a decline of body mass accompanied with a decrease in
food intake (124, 127).

Besides leptin actions/resistance on neurons in the hypothalamus,
an SLR that extends to some extra-hypothalamic brain areas has
been described. SLR in ARC of DIOmice has been shown, whereas
other hypothalamic and extrahypothalamic nuclei remain leptin
responsive (33, 95). Although DIO induced site-specific leptin
resistance, constant overexpression of leptin in CNS induced
leptin resistance in every brain region investigated. This suggests
that SLR is distinctive to DIO and is not a nonspecific central
neural response induced by high leptin exposure (91, 121).
Frontiers in Endocrinology | www.frontiersin.org 6
Furthermore, in contrast to insulin, which induces
improvement in SNA by acting in ARC as the only specific
site, leptin takes action in few hypothalamic sites, all of which
seem to interact in PVN (128). The main effects of insulin and
leptin in states of obesity include sexually dimorphic alterations.
The latest observations regarding the link between sexual
dimorphism and sympathetic in the obese human population
reveal that several variations exist in lean females that restrict
the effects of leptin and insulin to increase SNA and/or BP (128).
The first is that only during proestrus leptin increases SNA
by the synergistic effects of raised concentrations of estrogen. The
second one is that leptin and insulin do not induce the rise in
SNA, leading to vasoconstriction and BP elevation in females
while induced in males (128).

Furthermore, in obese males, sympathoexcitatory response to
insulin is increased, unlike in obese females, where it is
eliminated. Regarding leptin and its sympathoexcitatory
response, it is also preserved or increased in obese males. In
contrast, in obese females, the reproductive cycle is disturbed,
and the sympathoexcitatory response to leptin is limited. This is
probably due to the sexually dimorphic changes in NPY and
POMC entrants to PVN. In obese males, stimulant PVN and
NPY sympathoinhibitory response is abolished, and POMC
entrant to PVN is elevated, probably due to increased cellular
signaling of ARC and POMC induced by insulin.

Conversely, in obese females, stimulant NPY sympathoinhibitory
response is preserved and not inhibited by insulin, and POMC
insulin sensitivity may also be reduced. Until now, the
mechanisms for obesity-induced sexually dimorphic alterations
are not fully elucidated. There is a hypothesis that a considerable
suppression of NPY via hypertensive, as opposed to a non-
hypertensive branch of RAS, and a considerable POMC
excitation, in obese males concerning obese females might be
important. Nonetheless, the precise mechanisms in the base of
insulin and leptin actions on ARC, NPY, or POMC and silenced
in obese females have not yet been fully discovered (128).

Clinical Trials Examining the Effectiveness
of Leptin-Based Interventions in Obesity
Combining therapies of leptin and leptin sensitizers can
overcome leptin resistance (16, 129). Table 1 summarizes
some essential clinical trials investigating the use of such
agents. The first clinical study observing common polygenic or
simple obesity with recombinant methionyl human leptin (r-
metHuLeptin), also known as metreleptin, was carried out by
Heymsfield and colleagues in 1999 (130). As the leptin dose
increases, the group with obesity exhibits mean weight changes
ranging from 0.7 kg to 7.1 kg over 24 weeks (130). The
administration of pegylated human recombinant leptin (PEG-
OB) was studied in men with obesity (131, 132) using weekly
doses combined with a moderate diet. These pilot 12-week
clinical studies demonstrated no difference in weight between
the PEG-OB group and a placebo group (131, 132).

Similarly, Bartness et al. found that Fc-leptin’s weekly
administration (engineered leptin) did not lead to weight loss
than a placebo group (141). Hukshorn et al. investigated leptin’s
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TABLE 1 | Summary of some clinical trials involving the use of leptin-based therapies to treat obesity.

Study design Subjects Leptin level before therapy (ng/ml) Treatment/Drug Effects in the group with obesity Ref.

randomized, double-blind,
placebo-controlled,
multicenter, escalating dose
cohort trial in both lean and
obese adults, over 24 weeks

54 lean, 73 obese;
67 men, 60
women

37 have 15.9; 16 have 16.8; 16 have 16.4;
31 have 12.3; 26 have 15.1

r-metHuLeptin, daily
morning
subcutaneous
injection

• weight loss with a mean of
-7.1 kg after 24 weeks
• weight loss caused by r-
metHuLeptin may be due almost
entirely to fat loss

(130)

a randomized, double-blind,
placebo-controlled trial in
obese men, over 12 weeks

30 obese men; 15
from 30-placebo;
15 from 30-PEG-
OB

Placebo group: 20.4 ± 4.9; PEG-OB group:
20.4 ± 4.9

PEG-OB 20 mg/once
a weekly
subcutaneous
injection in
combination with a
moderate diet

• weight loss, body fat reduction,
total energy expenditure, or sleeping
metabolic rate differences were non-
significant when comparing the
PEG-OB group with the placebo
group

(131,
132)

a randomized, double-blind,
placebo-controlled study in
overweight men, over 46
days and a follow-up for 2
weeks

24 overweight
men; 12 from 24-
placebo; 12 from
24-PEG-OB

Placebo group: 7.3 ± 0.9; PEG-OB group:
7.0 ± 0.8

PEG-OB, 80 mg/
once a weekly
subcutaneous
injection in
combination with a
very-low-energy diet
(VLED)

• reduction in appetite after 46 day
and significant weight loss of 2.8 kg
more than the placebo group
• body composition, energy
expenditure, and metabolic variables
differences were non-significant
when comparing the PEG-OB group
with the placebo group

(133)

a randomized, double-blind,
placebo-controlled,
multicenter study in obese
adults over 3diet+12
treatment weeks

284 overweight
and obese; 187
women; 97 men

r-metHuLeptin, 10mg
twice daily or 20mg
once (a.m. or p.m.)
daily as a
subcutaneous
injection in addition to
a mildly energy-
restricted diet

• no significant weight loss
differences between the obesity and
placebo groups
• nocturnal administration of r-
metHuLeptin have no specific effect
on weight loss

(134)

a randomized, placebo-
controlled trial in obese
subjects with newly
diagnosed type 2 diabetes
over 2 weeks

18 obese; 6 from
18-placebo; 6 from
18-low dose of
leptin (30mg/day) 6
from 18-high dose
of leptin (80mg/
day)

Placebo group: 27 ± 7; Low dose of leptin
group: 24 ± 8; High dose of leptin group: 35
± 10

r-metHuLeptin, low-
dose (30 mg/day), or
high-dose (80 mg/
day)

• body weight and body
composition did not change after 2
weeks of treatment
• treatment with
• either low-dose or high-dose r-
metHuLeptin did not improve
• liver, skeletal muscle, or adipose
tissue insulin sensitivity
• in weight stable, obese subjects
with type 2 diabetes.

(135)

a randomized, double-
blinded, placebo–a
controlled trial, in obese
diabetic subjects over 16
weeks

71 obese; 41 men;
30 women

Placebo group: 38.0 ± 6.4; Free leptin in
placebo group: 15.8 ± 3.3; Leptin group:
35.2 ± 3.5; Free leptin in leptin group: 22.6 ±
4.7

metreleptin, 10 mg
twice daily as a
subcutaneous
injection

• body weight and circulating
inflammatory
• markers did not change
• HbA1c was marginally reduced
• total leptin, leptin-binding protein,
and antileptin
• antibody levels increased, limiting
free leptin availability
• and resulting in circulating free
leptin levels of ~50 ng/mL

(136)

a randomized, double-blind,
placebo-controlled cross-
over study, in at least 18
months post- RYGB women
who lost on average 30.8%
of their pre-surgical body
weight over 16 weeks

27 women 13 from
27-placebo; 14
from 27-leptin

Placebo group: 26.1 ± 2.8; Leptin group:
25.1 ± 2.8

metreleptin, 0.05 mg/
kg body weight twice
daily as a
subcutaneous
injection

• no significant effect of leptin
treatment on body weight in women
with relative hypoleptinemia after
RYGB

(137)

clinical proof-of-concept
study, randomized, double-
blind, active-drug-controlled,
multicenter study enrolled in
overweight/obese subjects
over 24-week

177 obese or
overweight men
and women

treatment with metreleptin (5mg b.i.d.) +
placebo for pramlintide (designated as the
metreleptin arm), pramlintide (360 mg b.i.d.) +
placebo for metreleptin (designated as the
pramlintide arm), or pramlintide (360 mg

pramlintide (analog of
human amylin) + r-
metHuLeptin

• combined therapy amylin + leptin
agonism results in more weight loss
in subjects with obesity than either
treatment alone and may have
therapeutic utility as part of an

(138,
139)

(Continued)
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influence in combination with a very low-calorie diet using PEG-
OB treatment (80 mg administered weekly). They found that
PEG-OB treatment resulted in significant additional weight loss
in severely energy-restricted, overweight men. It suggests that a
decrease in leptin concentrations during starvation increases
appetite in humans (133). Also, Zelissen et al. carried out a
study with calorific intake restricted to 500 kcal/day coupled with
10 mg of recombinant leptin administered daily (once or twice)
for 12 weeks (134). This trial did not show significant weight loss
differences between groups with obesity and placebo groups
(134). Mittendorfer et al. conducted a clinical study to
determine whether leptin treatment has weight loss–
independent effects on insulin action in obese subjects with
type 2 diabetes. They evaluated the impact of a low and high
dose of r-metHuLeptin treatment on insulin action, glucose
uptake, and lipolysis (135). The study results showed that r-
metHuLeptin does not have weight-loss–independent, clinically
important effects on insulin sensitivity in obese subjects with
newly diagnosed type 2 diabetes (135).

Furthermore, r-metHuLeptin/metreleptin treatment did not
alter body weight or circulating inflammatory markers but
marginally reduced HbA1c in obese hyperleptinemic patients
with type 2 diabetes (136). Also, total leptin, leptin-binding
protein, and antileptin antibody levels increased, limiting free
leptin availability (136). Korner et al. investigated whether leptin
treatment to post-Roux-en-Y gastric bypass (RYGB) patients
promotes further weight loss and shows no significant effect of
leptin treatment on women’s body weight with relative
hypoleptinemia after RYGB (137). Also, no changes were
shown in percent fat mass, resting energy expenditure, thyroid
hormones, or cortisol levels (137). A few clinical trials have
reported a reduced tendency to regain weight after caloric
restriction or weight loss coupled with recombinant leptin’s
daily administration. Those studies examined effects on skeletal
muscle and autonomic and neuroendocrine adaptation to mass
body maintenance (142) and reproductive hormonal regulation
(143). Potential mediators of weight regain, including the
cortisol, growth hormone, and thyroid axes were not
systematically affected (144–147).

Synergistic effects of leptin and amylin promote weight loss
while preventing the compensatory reduction in energy
expenditure associated with weight loss (138, 148). The
Frontiers in Endocrinology | www.frontiersin.org 8
combined therapy of leptin and pramlintide (an amylin
analog) results in more weight loss in subjects with obesity
than either treatment alone. This effect seems to be additive
rather than synergistic, suggesting that amylin and its analog
cannot increase leptin sensitivity (138, 139). The signaling
pathways induced by leptin and amylin overlap and exert an
additive effect in humans’ peripheral tissues (149).

Ravussin et al. administered metreleptin and pramlintide to
177 subjects with obesity, which resulted in a mean weight loss of
12.7% after 20 weeks (139). Unfortunately, some subjects
developing anti-metreleptin antibodies that led to suspending
the study. Later Chan et al. carried out a larger clinical trial with
metreleptin and pramlintide on 579 patients with obesity and
134 patients with lipodystrophy for 20-52 weeks (150). Antibody
development in patients with obesity or lipodystrophy was
associated with higher leptin concentration, and higher
antibody ti ters were associated with higher lept in
concentration (150). Other studies have shown that exercise
increases leptin sensitivity in human skeletal muscle (151),
which may provide an alternative to pharmacological sensitizers.

Despite the remarkable results of leptin-based therapy on
weight loss in genetically predisposed obese subjects (mutations
in the leptin gene), this approach has a limited or completely
absent effect on weight loss in subjects with common obesity,
especially in hyperleptinemic patients (3, 152). Different
responses to leptin-based therapy on weight loss in obese
subjects in clinical studies may be explained by differences in
treated population, study design, and administered therapy
(leptin type, dosage, etc.). Also, leptin resistance and increased
blood leptin level are significant factors that influence leptin-
based therapy’s success (3, 152). Indeed, further clinical trials are
needed to assess the selectivity and effectiveness of leptin-based
therapy on weight loss regarding obesity, particularly defined the
threshold of endogenous leptin level as a predictive factor for
therapy response to determining the dose-response ratio of
leptin-based therapy.

Development of New Leptin-Based
Therapies for Obesity
As previously mentioned, leptin administration combined with a
leptin sensitizer is a potential pharmacological strategy for
weight loss (5, 6). To avoid difficulties associated with leptin’s
TABLE 1 | Continued

Study design Subjects Leptin level before therapy (ng/ml) Treatment/Drug Effects in the group with obesity Ref.

b.i.d.) + metreleptin (5mg b.i.d.) (designated
as the pramlintide/metreleptin arm)

integrated neurohormonal approach
to obesity pharmacotherapy

a randomized, placebo-
controlled trial in overweight
and obese subjects with low
(baseline) BL leptin (females,
≤16 ng/ml; males, ≤5 ng/ml)
over 24 weeks

267 overweight or
obese men and
women; 171
female; 96 male;
Placebo- 111;
Metreleptin 10 mg-
74; Metreleptin 20
mg-72

171 female mean [SD] BL leptin, 14.2 [13.3] Metreleptin 10 mg or
metreleptin 20 mg as
a subcutaneous
injection

• Both metreleptin doses
decreased weight over time among
subjects with low BL leptin;
• metreleptin 20 mg showed
statistically significant decreases of
weight by week 8 (p<0.1)

(140)
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short half-life and low stability, leptin analogs capable of binding
and activating LEP-R are often used as another approach (6). A
few studies have examined blocking negative regulators of the
leptin signaling pathway, including SOCS3 and PTP1B, to
enhance leptin administration effects in individuals with
obesity (5, 153, 154). Inhibitors of PTP1B, such as
thiazolidinedione and trodusquemine, suppress weight gain
and decrease food intake and body weight in DIO mice (155).

Thus, modulation of endocytosis and the intracellular
trafficking of LEP-R (6) may be ways to treat obesity. Leptin
must cross the BBB through a specific and saturable transporter
(156) to bind LEP-R in the hypothalamus. In obesity, high leptin
levels lead to leptin resistance, which the transporter’s
hyperactivation may cause by the high levels of leptin (6).
Thus, another possible way to improve leptin therapy is to
enhance its ability to cross the BBB, potentially fusing it with
another molecule to improve uptake by vesicular endocytosis (6).

Although leptin reduces food intake and body mass and
stimulates energy expenditure, obese subjects that develop
leptin resistance did not respond to leptin-based clinical
therapies (157, 158). However, several leptin-sensitizing
compounds have been described to influence leptin action and
promote beneficial effects in DIO hyperleptinemic mice (159–
163). Leptin-sensitizing compounds may be divided into two
groups (160). Compounds that enhance the anorectic effect of
exogenous leptin but minimally affect weight loss, including
meta-chlorophenylpiperazine (164), metformin (165), and
betulinic acid (166). The other group comprises compounds
that induce weight loss in obese animals with hyperleptinaemia
and restore endogenous leptin signaling, such as glucagon-like
peptide-1 (167) and heat shock protein 90 inhibitors (168, 169).
Some of these leptin sensitizers are in clinical use for diabetes
therapy, such as amylin and pramlintide, that enhance leptin
action, probably increasing IL-6 production in microglia
ventromedial hypothalamic nucleus that in turn activates
pSTAT3 signaling in LepR neurons (170, 171). It was found
that resveratrol attenuates the expression of leptin in adipocytes,
elevates phosphorylation of STAT3 in the hypothalamus, and
restores leptin resistance in adult offspring from HF rat mothers
attenuating obesity (172). Ozcan and colleagues identified the
natural compound celastrol as a potential leptin sensitizer and
anti-obesity agent (161). They found that celastrol suppresses
food intake, increases energy expenditure, and reduces body
weight up to 45% in hyperleptinemic DIO mice (161). Although
celastrol’s molecular mechanism regulates leptin sensitivity
remains obscure, it was found that celastrol mediates leptin
sensitization and exerts anti-obesity effects through increasing
interleukin-1 receptor 1 (IL1R1) expression in the hypothalamus
(173). Furthermore, celastrol promotes leptin sensitivity through
inhibition of 6-phosphofructokinase (PFK) in skeletal muscle
and activation of adenosine 5’monophosphate-activated protein
kinase (AMPK), which leads to alterations in energy demand
from glycolysis to the free fatty acid oxidation in skeletal muscle
and increases energy expenditure (174). Another natural
compound that acts as a potential leptin sensitizer with
additional anti-diabetic actions is withaferin A (162).
Frontiers in Endocrinology | www.frontiersin.org 9
Treatment of DIO mice with withaferin A reduces body mass
by 23%, fat mass by 35%, endoplasmic reticulum stress, hepatic
steatosis, leptin level in the blood, and increases the potency of
leptin and energy expenditure (162). These effects of withaferin
A are exerted at least partly by sensitizing LEP-R signaling and
increasing STAT3 phosphorylation in the hypothalamus of DIO
mice (162). A partial reduction of plasma leptin level by leptin
neutralizing antibody in obesity state improved leptin sensitivity
and effectively led to weight loss and enhanced insulin sensitivity
(159). Despite the impressive leptin sensitizing effects, using
celastrol or withaferin A as an anti-obesity drug has some
adverse effects (175–177). Also, these compounds minimally
affect the body weight and metabolic disorders in genetically
predisposed obesity, such as ob/ob and db/db mice, which lack
leptin or the LEP-R (162).

Zhao et al., using leptin neutralizing antibodies in diverse
mouse models, reported that hyperleptinemia triggers
developing metabolic diseases (178). Partial leptin reduction
has been characterized by returning leptin sensitivity in the
hypothalamus, improving insulin sensitivity, and successfully
diminishing weight gain (178). The same author suggested that
increased leptin sensitivity resulting from partial leptin reduction
is a new promising therapeutic tool for treating obesity (178).
Another study by Ottaway et al. treated lean and obese mice with
an antagonist of the leptin receptor. Regarding (diet-induced
obese) DIO mice, antagonist improved body weight (BW) and
feeding in lean mice (179). This improvement is related to the
decline of expression of Socs3 in the hypothalamus (179). There
is an estimation that DIO mice that have hyperleptinemia
maintain leptin-feeding inhibition similar to lean mice and
oppose an attitude that the stability of DIO in mice is based on
resistance to endogenous leptin action (179).
CONCLUSIONS

The discovery of leptin has provided new insight into how to
control obesity. The altered expression of leptin and its receptor
leads to leptin resistance, which plays a critical role in obesity-
related complications (3, 4). Despite knowing that leptin is one of
the principal suppressors of appetite and leptin’s link with obesity,
the treatment of obesity using leptin-based therapeutics remains
to be fully explored (3, 4). The focus of further studies should be
identifying new mechanisms of leptin regulation at the whole-
body level to design new drugs that reverse leptin resistance. In
this regard, understanding the pathogenesis of obesity-related
disorders and the regulation of energy homeostasis by leptin
should provide new alternatives in obesity treatment.
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