
Vol:.(1234567890)

European Spine Journal (2019) 28:214–223

https://doi.org/10.1007/s00586-018-5778-7

1 3

ORIGINAL ARTICLE

Leptin and the intervertebral disc: a biochemical link exists 
between obesity, intervertebral disc degeneration and low back 
pain—an in vitro study in a bovine model

Anand H Segar1,2,3  · Jeremy C T Fairbank1,2 · Jill Urban3

Received: 20 February 2018 / Accepted: 19 September 2018 / Published online: 15 October 2018 

© The Author(s) 2018

Abstract

Purpose The aim of this study was to identify the effects of leptin upon the intervertebral disc (IVD) and to determine 

whether these responses are potentiated within an environment of existing degeneration. Obesity is a significant risk fac-

tor for low back pain (LBP) and IVD degeneration. Adipokines, such as leptin, are novel cytokines produced primarily by 

adipose tissue and have been implicated in degradative and inflammatory processes. Obese individuals are known to have 

higher concentrations of serum leptin, and IVD cells express leptin receptors. We hypothesise that adipokines, such as leptin, 

mediate a biochemical link between obesity, IVD degeneration and LBP.

Methods The bovine intervertebral disc was used as a model system to investigate the biochemical effects of obesity, medi-

ated by leptin, upon the intervertebral disc. Freshly isolated cells, embedded in 3D alginate beads, were subsequently cul-

tured under varying concentrations of leptin, alone or together with the pro-inflammatory cytokines TNF-α, IL-1β or IL-6. 

Responses in relation to production of nitric oxide, lactate, glycosaminoglycans and expression of anabolic and catabolic 

genes were analysed.

Results Leptin influenced the cellular metabolism leading particularly to greater production of proteases and NO. Addition 

of leptin to an inflammatory environment demonstrated a marked deleterious synergistic effect with greater production of 

NO, MMPs and potentiation of pro-inflammatory cytokine production.

Conclusions Leptin can initiate processes involved in IVD degeneration. This effect is potentiated in an environment of exist-

ing degeneration and inflammation. Hence, a biochemical mechanism may underlie the link between obesity, intervertebral 

disc degeneration and low back pain.
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Introduction

Low back pain (LBP) is the leading cause of years lived 

with disability, worldwide [1]. While the pathogenesis of 

low back pain is complex and not well understood, many 

authors have linked LBP to intervertebral disc (IVD) degen-

eration [2–4].

Obesity is another public health epidemic, described as 

one of the most important contributors to the worldwide dis-

ease burden [5]. Obesity is associated with an increased risk 

of cardiovascular disease, type 2 diabetes and cancer [6, 7]. 

Obesity is also a significant risk factor for musculoskeletal 

problems such as osteoarthritis [8, 9].

Over the past 20 years it has become evident that many of 

the pathological conditions arising in obese patients involve 

a systemic low-grade inflammation. Adipose tissue or fat, 

though once thought to be benign, serving as a source of 

energy, is now known to be a true endocrine organ producing 

a variety cytokines, termed adipokines. Leptin, discovered 

in 1994, is the prototypical adipokine and acts primarily to 

regulate appetite [10]. It is also the primary biochemical 

mediator of the inflammatory, degradative and pain-related 

effects of obesity and, while primarily the product of adipo-

cytes, is also produced by multiple other tissues including 

cartilages [11–13].

Both biological and clinical evidence implicates leptin in 

the pathogenesis of osteoarthritis and other musculoskeletal 

disorders [10, 14]. While inappropriate mechanical forces 

and changes in gait are thought to mediate osteoarthritic 

changes in joints of obese patients, biochemical pathways 

involving leptin produced by the intracellular fat pad can 

upregulate degradative enzymes [14, 15] in synovium and 

articular cartilage and lead to local expression of pro-inflam-

matory cytokines [16].

Obesity is also a risk factor for disc degeneration and low 

back pain with investigations concentrating on the role of 

altered body weight and biomechanics. Although leptin and 

its receptor have been localised in the IVD [13, 17], little 

is known about their possible roles. Given the similarities 

between cartilage and the IVD, leptin could mediate similar 

degradative processes and prove to be a biochemical link 

between obesity, IVD degeneration and LBP. Indeed, Urqu-

hart et al. [18, 19] found greater fat mass was associated 

with an increased back pain and reduced disc height and 

hypothesised biochemical factors as a mediator. Similarly, 

a large MRI population study showed similar relationship 

with obesity and disc degeneration [20]. Hence, we hypoth-

esise that leptin, an adipokine, can induce inflammation and 

degeneration in the IVD and that, as in articular cartilage, 

the effect is potentiated in a pro-inflammatory environment.

Materials and methods

Disc cell isolation and culture

Bovine IVDs appear similar in cell and matrix proper-

ties to human discs and were used as a model system 

[21]. The nucleus pulposus (NP) and annulus fibrosus 

(AF) of the IVD were dissected from 18- to 24-month 

bovine tails, obtained from a local abattoir, within 2 h 

of slaughter.

IVD cells were isolated separately from the NP and AF 

by enzymatic digestion using a standard protocol [22]. The 

cells were then encapsulated in alginate beads to maintain 

cell phenotype [23–25]. The cells were suspended in a 

solution of 1.2% alginate at a concentration of 4 million 

cells/ml. This suspension was extruded through a 21G nee-

dle into 102 mM  CaCl2 where insoluble calcium alginate 

beads are formed, encapsulating the cells. Excess  CaCl2 

was removed by washing the beads thrice with phosphate-

buffered saline (PBS). This procedure resulted in spherical 

alginate beads each of 15 μl volume, containing 40,000 

cells per bead.

The beads were cultured in DMEM [25 mM Hepes, 

1 mM sodium pyruvate, 1000 mg/L glucose and pyridox-

ine) at 380 mOsm supplemented with antibiotic–antimy-

cotic solution (2% v/v) and foetal bovine serum (10% v/v)] 

at 1 million cells/ml and at 37 °C, 100% humidity in 21% 

 O2/1%  CO2.

Experimental procedure

Cells were cultured for 24 h initially to allow equilibration 

to the culture system. The cells were then exposed to leptin 

alone, at a concentration of 5, 10 or 25 μg/ml, for 48 h 

[14]. At the end of the experiment, the media and alginate 

were stored for later analysis, while RNA was extracted 

from the cells.

Following a similar protocol, cells were also exposed 

to a pro-inflammatory cytokine [TNF-α, interleukin 

(IL)-1β or IL-6] alone, at concentrations of 0.1, 1.0, 10 or 

100 ηg/ml, or in combination with leptin at 25 μg/ml. This 

combination of cytokines and leptin aimed to mimic the 

pro-inflammatory environment described in disc degen-

eration [26] and herniation [27]. The concentration of 

25 μg/ml for leptin was chosen for the pro-inflammatory 

experiments as this showed the greatest effect in isolated 

culture.
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Outcome measures

Biochemical measurements

Lactate concentrations were measured using a commer-

cially available lactate assay kit following the manufactur-

er’s protocol (Trinity Biotech, Dublin, Ireland). Sulphated 

GAGs were measured using a modification of the technique 

described by Farndale [28]. Nitric oxide was measured by 

the modified Griess reaction [29].

Matrix metalloproteinases

The activity and relative concentrations of matrix metallo-

proteinases (MMPs) were measured in the culture superna-

tant at various time points. Three methods were used.

Gelatin zymography is an electrophoretic technique that 

allows for substrate-dependent identification of MMP-2 

(gelatinase-A) and MMP-9 (gelatinase-B) at the picogram 

level and was used as described by Hu [30]. Recombinant 

human MMP-2 was used as a positive control. Western 

blotting allowed for visualisation of MMP-1, MMP-3 and 

MMP-13. Standard protocol was used with exceptions noted 

below. To improve sensitivity, 100 μg of protein was concen-

trated using StrataClean resin (Agilent Technologies, USA). 

Recombinant human MMP-1, MMP-3 and MMP-13 western 

blot standards were used as positive control and prestained 

standards as a molecular weight marker. Bovine reactive, 

primary anti-MMP-1, anti-MMP-3 and anti-MMP-13 anti-

bodies at a dilutions of 1:1000, 1:1000 and 1:5000, respec-

tively, were used (Abcam, Cambridge, UK). Chemilumi-

nescence was detected, and protein bands were quantified 

by densitometry on ImageJ and normalised to the relevant 

positive standard.

Fluorometric assay was used to quantify total MMPs. 

The assay is able to detect the presence of activated MMP-

1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-12, 

MMP-13 and MMP-14 down to nanogram concentrations. 

The commercially available SensoLyte 520 Generic MMP 

Assay Kit was used as per instructions (Anaspec, Califor-

nia, USA). Pro-MMPs were activated immediately prior to 

performing the assay using 1 mM APMA.

Quanti�cation of gene expression

Upon completion of the experiment, alginate beads were 

dissolved by the addition of citrate buffer and centrifuged 

for 5 min at 2500 rpm isolating the cells. The supernatant 

was removed and digested with 2 μl of papain at 60 °C for 

24 h. The cells were washed carefully with PBS to remove 

any carryover citrate buffer, and the ribonucleic acid (RNA) 

was isolated using the Qiagen RNeasy Mini Kit using the 

manufacturers protocol (Qiagen, Hilden, Germany). Briefly, 

cells were lysed using the provided RLT buffer with 2-ME, 

inactivating RNases and releasing the RNA. Homogeni-

sation, to reduce sample viscosity, was achieved with the 

QIAshredder. The homogenate was combined with 70% 

ethanol and applied to a silica membrane, to which RNA 

binds. Repeated washing and centrifugation with the pro-

vided buffers purified the RNA, which was finally eluted in 

RNase-/DNase-free water. RNA concentration and purity 

were assessed using a NanoDrop 1000 spectrophotometer. 

Samples were only used if the 260:280 ratio was greater than 

1.75. Genomic deoxyribonucleic acid (DNA) was eliminated 

from the RNA by adding precision DNase and heating to 

55 °C. This DNAse enzyme has no activity against RNA. 

Complementary DNA (cDNA) was synthesised from the 

RNA samples using the nanoScript reverse transcription 

premix (PrimerDesign, Manchester, UK).

Internal control genes were selected using the validated 

GeNorm algorithm designed by Vandesompele [31]. In this 

system, the two most stably expressed genes were EIF2B2 

and ACTB. Oligonucleotide primers were designed and 

validated by PrimerDesign. All PCRs utilised the 2× Preci-

sion Mastermix with SYBR green dye accordingly using 

the protocol supplied by PrimerDesign. The reaction was 

read on the ABI Prism 7000 (Applied Biosystems, Califor-

nia, USA). Melting curves were performed at the end of 40 

cycles to ensure a single amplification product. All data were 

analysed using the  2−∆∆Ct method with statistical analysis 

performed using Student’s t test as described by Schmittgen 

and Livak [32].

Statistical analysis

All data are presented as mean ± standard error of the mean 

(SEM) of at least three biological replicates (n ≥ 3). Compar-

ison across multiple groups was achieved using the two-way 

analysis of variance (ANOVA) with Bonferroni correction 

for multiple comparisons. A p value ≤ 0.05 was considered 

statistically significant.

Results

Leptin alone

Lactate production

Leptin alone had minimal effect on cellular energy metab-

olism. In the AF, there was no discernible change in lac-

tate production with increasing leptin concentration. The 

NP however showed a trend for a fall in metabolism with 

the increase in leptin concentration, but this did not reach 
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statistical significance (Fig. 1a). Lactate production per cell 

was significantly greater under all conditions for NP than 

for AF cells.

Glycosaminoglycan (GAG) production

Figure 1b shows the GAG production by both cell types. 

With increasing leptin, there was a trend for a fall in rates 

of production, but this was not significant. Compared to the 

control, AF and NP cells exposed to 25 μg/ml of leptin pro-

duced 14% and 19% less GAGs, respectively.

Matrix metalloproteinases production measured 

by zymography and western blotting

There was a clear dose-dependent increase in MMP-3 and 

MMP-9 production, by both AF and NP cells, with increases 

in leptin concentrations (Fig. 2). MMP-1 and MMP-2 did not 

follow this pattern in the AF and were not detectable in the 

NP. MMP-13 was not detectable for either cell type at any 

leptin concentration. Importantly, total MMP production was 

stimulated markedly with the addition of 25 μg/ml leptin by 

both AF and NP cells (Fig. 6).

Real‑time quantitative polymerase chain reaction

As leptin at 25 μg/ml had the greatest effect on cell metabo-

lism and protein production, gene expression was quantified 

in both cell types exposed to this concentration. Figure 3a 

shows that for the AF, MMP-7, MMP-11 and TNF-α were 

all markedly increased relative to the control. For the NP, 

there was an increase in expression of the ADAMTS-4, 

ADAMTS-5, IL-6 and TNF-α. There were no changes in 

the expression of the anabolic genes, aggrecan and collagen 

and the tissue inhibitor of metalloproteases (TIMPs).

A B

Fig. 1  Lactate (a) and glycosaminoglycan (GAG) (b) production by annulus fibrosus (AF) and nucleus pulposus (NP) cells upon exposure to 3 

concentrations of leptin. Assays performed after 48 h of culture and exposure to leptin. Data represented as mean ± SEM

A

B

Fig. 2  Effect of leptin concentrations on matrix metalloproteinases 

(MMPs) produced by annulus fibrosus and nucleus pulposus cells. 

MMP-2 and MMP-9 measured by gelatin zymography and MMP-1 

and MMP-3 quantified by western blotting. At three concentrations of 

leptin (5, 10 and 25 μg/ml). Intensity normalised and represented as 

fold change relative to control. MMP-13 was not detected from either 

NP or AF cells, MMP-1 and MMP-9 not detected from NP cells. Data 

represented as mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001
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Leptin within a pro-in�ammatory environment

Given the upregulation of the pro-inflammatory cytokines, 

it was hypothesised that leptin and these cytokines may act 

synergistically thus potentiating further degradation within 

an already degenerate environment. Three cytokines, TNF-α, 

IL-1β or IL-6, were individually added to the culture system 

described above along with leptin at 25 μg/ml.

Lactate production

Figure 4a, b shows the combined effect of leptin and TNF-α. 

For the AF, there was a trend for increased energy require-

ment as TNF-α concentration increased with a small syner-

gistic effect of leptin. Conversely, in the NP, TNF-α was the 

primary driver of lactate production with no effect of leptin 

evident. The combination of leptin and IL-1β had very little 

effect on lactate production in either cell type (Fig. 4c, d) 

with the difference to the control driven mostly by IL-1β. 

Lactate production rates with IL-6 were increased by the 

addition of leptin at lower concentrations (0.1 and 1.0 ηg/

ml) in the AF.

Nitric oxide production

Leptin alone significantly increased nitric oxide (NO) pro-

duction rates in NP cells (Fig. 5). There was a synergistic 

increase with both TNF-α and IL-6 which was more marked 

at the lower concentrations of TNF-α and at higher con-

centrations of IL-6. Similar to the results seen with lactate, 

IL-1β was the primary driver of NO production with most of 

the effects seen at lower concentrations. NO was not detected 

in AF cells.

Matrix metalloproteinases production

Figure 6a, b shows the total activated MMP production, as 

measured by fluorescent assay by both cell types in response 

to leptin alone, pro-inflammatory cytokines (0.1 or 100 ηg/

ml) alone or the combination of the two. For both the AF 

and NP, leptin alone increased the production of total MMPs 

significantly. Although the fold changes are larger than that 

seen in Fig. 2, the assay used here is sensitive to a spec-

trum of MMPs and prior to quantification, pro-MMPs were 

activated.

Real‑time quantitative polymerase chain reaction

As the greatest synergistic effect was seen with leptin and 

0.1 ηg/ml IL-6, RNA was isolated from cells exposed to this 

combination of factors and gene expression assayed by RT-

qPCR. The only important differences in AF gene expression 

were with IL-6. In isolation, exposure to IL-6 led to down-

regulation of IL-6 gene expression, but with the addition of 

leptin there was a small increase in expression. There was 

a similar trend in the NP with a twofold increase in IL-6 

expression after leptin addition (Fig. 7b). Furthermore, in 

the NP, there was a significant synergistic upregulation in 

the expression of TNF-α, IL-6 and ADAMTS-4, by leptin. 

No change was seen with MMP-2 and MMP-9 and there 

was a slight non-significant decrease in the expression of 

TIMP-3.

Discussion

Our in vitro studies found that the adipokine, leptin, induces 

a degenerative and inflammatory cascade within the IVD. 

It upregulated the production of proteases such as the 

ADAMTSs involved in the degradation of aggrecan and 

also proteases able to destroy collagen and other matrix 

A

B

Fig. 3  Gene expression by both annulus fibrosus and nucleus pul-

posus cells in response to 25 μg/ml leptin normalised to ACTB and 

EIF2B2 and shown as fold change  2−∆∆Ct to control. Data represented 

as mean ± SEM of three independent experiments. *p < 0.05
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macromolecules at the gene and protein level (Figs. 2, 3). 

These degradative processes were further stimulated mark-

edly in the NP in a pro-inflammatory environment, particu-

larly in the presence of IL-6 (Figs. 6, 7). Moreover, in the 

NP, leptin strongly upregulated the expression of the pro-

inflammatory molecules themselves, particularly nitric oxide 

and the cytokines IL-6 and TNF-α (Figs. 5, 7).

That similar effects of leptin could be of relevance 

in vivo, has not been demonstrated directly in the disc. How-

ever, leptin and its receptors have been identified in degen-

erate regions of rat and human NP [13, 33] and also in AF 

cells [12, 34] which themselves produce leptin throughout 

the spectrum of degeneration [12]. The results thus indicate 

that a biochemical pathway involving increased leptin levels 

could be involved in the deleterious effects of obesity on disc 

degeneration and back pain.

The effect of leptin on nitric oxide (NO) production could 

also be of importance, not only in regard to degeneration 

[35] but also in relation to back pain. NO has been related to 

spine-related pain [36] and disc herniation [27]. Leptin alone 

and in combination with inflammatory mediators markedly 

increased rates of NO production (Fig. 5).

Of particular importance is the synergy found here 

between leptin and IL-6. Degeneration of the interverte-

bral disc is characterised by increased levels of pro-inflam-

matory cytokines which upregulate degradative processes 

[26]. Here we found that in the NP, interactions between 

leptin and IL-6 markedly increased production of MMPs 

A

B

C

D

E

F

Fig. 4  Lactate production by annulus fibrosus and nucleus pulpo-

sus cells in response to leptin and pro-inflammatory cytokines. Four 

concentrations (0.1, 1.0, 10 and 100  ηg/ml) of either TNF-α, IL-1β 

or IL-6 with or without 25  μg/ml of leptin. Data represented as 

mean ± SEM of three independent experiments. *p < 0.05 **p < 0.01 

***p < 0.001

A B C

Fig. 5  Nitrate production of nucleus pulposus cells in response to lep-

tin and pro-inflammatory cytokines. Four concentrations (0.1, 1.0, 10 

and 100 ηg/ml) of either TNF-α, IL-1β or IL-6 with or without 25 μg/

ml of leptin. Nitrate production was only detected by annulus fibrosus 

cells at a concentration of 100 ηg/ml of TNF-α (not shown). Data rep-

resented as mean ± SEM of three independent experiments. *p < 0.05 

**p < 0.01 ***p < 0.001
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and also the inflammatory molecules NO, IL-6 and TNF-α 

(Figs. 5, 7) relative to either IL-6 or leptin alone.

This pathway could act in vivo as leptin and IL-6 co-

localise within degenerated IVDs [34]. As shown in other 

cell types [37–39], leptin can upregulate IL-6 directly via 

the IL-6 specific receptor. On the other hand, IL-6 can 

control leptin release centrally [40]. Both IL-6 and leptin 

signal through a class I cytokine receptor; leptin appears 

to mediate its cytokine-like effects through this homol-

ogy [41]. However, trying to dissect the exact signalling 

pathways of leptin is complex with multiple pathways 

implicated including mitogen-activated protein kinases, 

protein kinase B, protein kinase C, nuclear factor kappa 

B, JAK-STAT, cyclins, NO and phosphoinositide 3-kinase 

[16, 37, 42, 43].

There are no large population studies investigating the 

relationship between leptin and back pain or disc degenera-

tion. It is clear in the literature that obesity is associated with 

both low back and leg pain [44]. However, in smaller studies 

Urquhart et al. [18, 19] found greater fat mass was associ-

ated with increased back pain and reduced disc height and 

hypothesised biochemical factors as a mediator. Clinically, 

multiple authors have shown that leptin and other adipokines 

are mediators of musculoskeletal degeneration. Most 

recently, Fowler-Brian et al. [45] found half of the effect of 

increased BMI upon knee OA could be explained by leptin, 

a strong indictment for deleterious biochemical effects of 

obesity. This effect was greatest in women, in keeping with 

a study by Karvonen-Gutierrez et al. [46], which showed a 

similar independent association. Greater serum and synovial 

leptin have also been correlated with greater severity of knee 

and hip OA [47–49]. Other adipokines such as adiponectin 

A

B

Fig. 6  Total MMP production by annulus fibrosus and nucleus pulpo-

sus cells in response to leptin and pro-inflammatory cytokines meas-

ured by a fluorescence assay. Two concentrations (0.1 and 100 ηg/ml) 

of either TNF-α, IL-1β or IL-6 with or without 25  μg/ml of leptin. 

Assay detects the cumulative activity of MMP-1, MMP-2, MMP-

3, MMP-7, MMP-8, MMP-9, MMP-12, MMP-13 and MMP-14. 

Data represented as mean ± SEM of two independent experiments. 

*p < 0.05 **p < 0.01 ***p < 0.001

A

B

Fig. 7  Gene expression changes in both annulus fibrosus and nucleus 

pulposus cells in response to leptin and 0.1 ηg/ml of IL-6. Normal-

ised to ACTB and shown as fold change  (2−∆∆Ct) to control. Data rep-

resented as mean ± SEM of three independent experiments. *p < 0.05



221European Spine Journal (2019) 28:214–223 

1 3

[50, 51], resistin [52] and visfatin [53] have all been associ-

ated with OA. Unfortunately, all but one of these studies are 

cross sectional and causation cannot be established.

With respect to the lumbar spine, Théron et al. [54] found 

liposuction of the adipose tissue in atrophied paraspinal 

muscles was associated with clinical improvement in back 

pain in 77.5% of patients studied. This improvement was 

accompanied by expansion of the paraspinal muscle mass. 

In this study, clinical improvement could be either improved 

muscle mass, decreased inflammatory adipose tissue or a 

combination of both. A recent study by James et al. would 

point to a biochemical link. The authors showed, in an ovine 

IVD injury model, an increased proportion of pro-inflamma-

tory M1 macrophages in paraspinal adipose tissue after disc 

injury, suggesting a local biochemical factors could mediate 

pain and inflammation in patients [55].

An important consideration of an in vitro study is the 

extent to which physiological conditions are reproduced. The 

AF and NP serve different physiological functions and as a 

result have a different cellular phenotype. Although culture 

in alginate beads preserves the phenotype of NP cells, it 

may not be the most appropriate culture system for AF cells 

[25]. However, there are distinct differences in phenotype 

and origin between these cell types with the nucleus cells 

notochordal and the annulus cells originating from the mes-

enchyme so the differences observed are unlikely to be only 

due to the culture conditions.

Furthermore, given the relative paucity of data regarding 

the IVD and leptin, we used concentrations drawn from the 

cartilage literature [14, 16], viz. 5–25 μg/ml. Although levels 

of circulating leptin increase in obesity, they are usually in 

the range 10–50 ηg/ml, an order of magnitude lower than 

used experimentally [10, 56–58]. However, studies in on 

osteoarthritic joints show that local concentrations of leptin 

may be considerably higher than those found in serum [58]. 

It thus seems likely that in the disc too, the levels of leptin 

would be higher than serum levels. Local leptin concentra-

tions could be increased by the IVD cells, which themselves 

produce leptin [13, 17, 42], and also by adipose tissue adja-

cent to the disc. Moreover, the levels of leptin required to 

stimulate disc cells in vivo may be lower than seen in our 

model bovine system; human NP cells responded to recom-

binant human leptin at a concentration of only 10 ηg/ml 

[42, 59, 60], similar to concentrations measured in serum, 

suggesting that indeed higher leptin levels seen in obesity 

could mediate disc degeneration and pain.

There is a fledging evidence base as to the role of leptin 

and the other adipokines in IVD degeneration. In a recent 

review, Sharma found only 15 in vitro studies investigating 

this relationship [61]. The author concluded that leptin can 

have significant effects on IVDs, but cautioned mechanistic 

and translational work is required to further understand this 

relationship. Future in vivo studies could look to establish 

the local and systemic levels of adipokines in patients suf-

fering from low back pain and disc degeneration. We have 

attempted to identify this with a cross-sectional clinical 

study investigating serum and paraspinal adipose tissue, the 

results of which are pending. If a strong association is seen, a 

larger longitudinal study would be required to further deline-

ate causation.

Conclusion

In summary, this study found that leptin increases produc-

tion and expression of degradative and pain-generating 

molecules by intervertebral disc cells. Crucially, leptin can 

initiate degenerative processes and within the inflamma-

tory environment seen in degenerate discs, it can potentiate 

degenerative process, thus supporting a biochemical link in 

the relationship between intervertebral disc degeneration, 

back pain and obesity.
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