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Abstract
Aims/hypothesis Pro-opiomelanocortin (POMC) neurons in
the arcuate nucleus (ARC) regulate energy homeostasis by
secreting α-melanocyte-stimulating hormone (α-MSH), de-
rived from POMC precursor, in response to leptin signalling.
Expression of Pomc is subject to multiple modes of regula-
tion, including epigenetic regulation. Methyl-CpG-binding
protein 2 (MeCP2), a nuclear protein essential for neuronal
function, interacts with promoters to influence gene expression.
We aim to address whether MeCP2 regulates hypothalamic

Pomc expression and to investigate the role of epigenetics,
particularly DNA methylation, in this process.
Methods We generated a mouse line with MeCP2 specifically
deleted in POMC neurons (Mecp2flox/y/Pomc -Cre [PKO])
and characterised its metabolic phenotypes. We examined
the DNA methylation pattern of the Pomc promoter and its
impact on hypothalamic gene expression. We also studied the
requirement of MeCP2 for, and the effects of, DNA methyl-
ation on Pomc promoter activity using luciferase assays.
Results PKO mice are overweight, with increased fat mass
resulting from increased food intake and respiratory exchange
ratio. PKO mice also exhibit elevated plasma leptin. Deletion
of MeCP2 in POMC neurons leads to increased DNA methyl-
ation of the hypothalamic Pomc promoter and reduced Pomc
expression. Furthermore, in vitro studies show that hyperme-
thylation of the Pomc promoter reduces its transcriptional
activity and reveal a functional synergy between MeCP2 and
cAMP responsive element binding protein 1 (CREB1) in pos-
itively regulating the Pomc promoter.
Conclusions/interpretation Our results demonstrate that
MeCP2 positively regulates Pomc expression in the hypothal-
amus. Absence of MeCP2 in POMC neurons leads to in-
creased DNA methylation of the Pomc promoter, which, in
turn, downregulates Pomc expression, leading to obesity in
mice with an accentuating degree of leptin resistance.
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Co-IP Co-immunoprecipitation
CREB1 cAMP responsive element binding protein 1
5hmC 5-Hydroxymethylcytosine
5mC 5-Methylcytosine
MeCP2 Methyl-CpG-binding protein 2
α-MSH α-Melanocyte-stimulating hormone
NPY Neuropeptide Y
POMC Pro-opiomelanocortin
PKO Mecp2flox/y/Pomc -Cre
RER Respiratory exchange ratio
RTT Rett syndrome
WT Wild type

Introduction

The fundamental cause of overweight and obesity is an energy
imbalance, i.e. increased food intake and/or reduced energy
expenditure. The leptin–melanocortin pathway is a key intrin-
sic regulator in the maintenance of energy homeostasis [1].
Leptin is secreted from adipose tissue and acts on at least two
groups of neurons: POMC neurons, which are activated by
leptin to produce anorexigenic POMC; and neuropeptide Y
(NPY)/Agouti-related peptide (AgRP) neurons, which pro-
duce orexigenic NPY and AgRP and are inhibited by leptin
signalling [2, 3]. Regulation of Pomc expression is critical for
energy homeostasis, as impaired Pomc regulation leads to
leptin resistance and obesity [4–6]. Pomc transcription is
mainly activated by leptin through the JAK2/STAT3 pathway
[7–10]. Deficits in JAK2/STAT3 signalling in POMC neurons
are associated with reduced Pomc expression, leptin resis-
tance and obesity [11, 12].

The expression of Pomc is subject to multiple levels of
control. In addition to upstream signalling, such as leptin
signalling, epigenetic modification of the Pomc promoter
may also play a significant role in the regulation of its expres-
sion. The role and mechanism of leptin signalling in regulating
Pomc expression is relatively well understood [13], while the
evidence for epigenetic regulation in hypothalamic Pomc ex-
pression has just begun to emerge. Embedded in a CpG island,
the 5′ promoter of human POMC is methylated in normal non-
expressing tissues, and is specifically unmethylated in express-
ing tissues, tumours and some cell lines [14]. Changes in peri-
conceptional or perinatal environment can change DNAmeth-
ylation levels of the Pomc promoter, which is associated with
obesity in adulthood. Pomc promoter was found to be
hypomethylated after peri-conceptional undernutrition in
sheep [15]. Early postnatal overfeeding predisposed the rats
to obesity, and hypothalamic Pomc promoter was found to be
hypermethylated and its expression was downregulated [16].
These studies all indicate that the hypothalamic Pomc promot-
er is a key target of perinatal epigenetic programming that leads

to permanent changes in gene expression and increased risk of
obesity.

Methylated DNA is able to recruit methyl-CpG-binding
protein 2 (MeCP2), which regulates gene expression [17].
Mutation of Mecp2 is associated with Rett syndrome (RTT),
a neuropsychiatric disorder [18]. MeCP2 has long been
recognised as a transcriptional repressor that acts by binding
to methylated DNA and recruiting a repressor complex [19,
20]. Only recently has it been recognised that MeCP2 in the
hypothalamus may function as a transcriptional activator
through its interaction with cAMP responsive element binding
protein 1 (CREB1) in a DNA-methylation-independent man-
ner [21]. Many mouse models with mutant or deleted MeCP2
have been established to study RTT [18, 22–26]. Besides
RTT-like phenotypes, some of these mouse models share a
common obesity phenotype. Deletion ofMeCP2 in postmitotic
neurons, in postnatal CNS, or in Sim1-expressing neurons all
result in an overweight or obese phenotype [22, 25, 26],
indicating that MeCP2 in the CNS may play a role in regulat-
ing energy homeostasis.

We investigated whether and howMeCP2 could play a role
in the epigenetic regulation of Pomc expression in the hypo-
thalamus, and whether and how the epigenetic regulation,
especially DNA methylation, could contribute to obesity and
leptin resistance, based on knowledge that: (1) α-melanocyte-
stimulating hormone (α-MSH), a POMC product, is a key
regulator of energy homeostasis; (2) the Pomc promoter is a
target of epigenetic modification and the changes in DNA
methylation on Pomc promoter are associated with obesity;
and (3) MeCP2 is an important player in epigenetic regulation
and plays an important role in the hypothalamus as a tran-
scriptional regulator.

Methods

Animal welfare All experiments involving animals were
reviewed and approved by the Institutional Animal Care and
Use Committee of the Agency for Science, Technology and
Research (A*STAR). All mice in this study were housed
and bred in the Biological Resource Center (A*STAR) on a
12 h/12 h light/dark cycle with free access to food and water.

Generation of a mouse line with POMC-neuron-specific
deletion ofMeCP2 Twomouse lines B6.129P2-Mecp2tm1Bird/J
and Tg(Pomc1 -Cre )16Lowl/J were purchased from The
Jackson Laboratory (Bar Harbor, ME, USA). The two lines
were crossed to generateMecp2flox/y (control) andMecp2flox/y/
Pomc-Cre (PKO). Genotyping primer sequences are shown in
electronic supplementary material (ESM) Table 1.

Body weight and body composition Age-matched littermates
were weighed weekly or biweekly after weaning. Body
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composition was measured using EchoMRI-100 (Echo Med-
ical Systems, Houston, TX, USA) as previously described
[27].

Animal monitoring Oxymax/Comprehensive Lab Animal
Monitoring System (CLAMS; Columbus Instruments,
Columbus, OH, USA) was used to measure oxygen
consumption (V

⋅
O2 ), carbon dioxide production (V

⋅
CO2 ),

food intake and activity [28]. Paired mice were individually
housed in the chambers that were maintained at 24±1°C, and
provided with free access to chow diet and water. All mea-
surements were taken every 15 min for 3 consecutive days
after the mice were acclimatised for 2 days. Respiratory ex-
change ratio (RER) was calculated as the ratio of V

⋅
CO2 to

V
⋅
O2 . Basal metabolic rate (BMR) was determined by aver-

aging the lowest plateau region of oxygen consumption curve
corresponding to resting periods. The X-total or Z-total move-
ment was the total number of times the motion sensors detect-
ed for horizontal or vertical movement, respectively. All data
collected from monitoring over 3 days were used in relevant
analyses.

Plasma leptin measurements Mice were fasted for 2 h before
blood collection. Blood samples were collected into
Microvette blood collection tubes (Kent Scientific Coopera-
tion, Torrington, CT, USA) and cleared by centrifugation at
10,000 g for 2 min at 4°C. Plasma was collected and used for
mouse leptin measurement (mouse leptin ELISA, Millipore,
Billerica, MA, USA) according to the manufacturer’s
instructions.

Immunohistochemistry Immunohistochemistry was carried
out as previously described with slight modifications [29].
Mice were perfused with 4% paraformaldehyde and brains
were dissected and post-fixed at 4°C overnight. After cryo-
preservation in 30% sucrose, coronal cryosections (16 μm)
containing hypothalamus were cut from the brain blocks and
probed with anti-MeCP2 antibody (1:500; Upstate; catalogue
number ABE171, Billerica, MA, USA) and anti-POMC pre-
cursor (1:500, Phoenix Pharmaceuticals, Burlingame, CA,
USA) in blocking buffer (3% goat serum, 3% BSA and
0.01% Triton X-100 in PBS) for 48 h at 4°C, followed by
incubation with Alexa Fluor 488 goat anti-chicken antibody
(1:1,000, Invitrogen, Carlsbad, CA, USA) and Alexa Fluor
594 goat anti-rabbit (1:1,000, Invitrogen) for 1 h at room
temperature. Samples were then subjected to confocal imag-
ing using a Nikon A1R+si confocal microscope.

RNA extraction and quantitative PCR Mouse hypothalamus
was dissected into RNAlater (Invitrogen), kept overnight at
4°C and then stored at −80°C until required. RNA was
extracted from the hypothalami with RNeasyMini Kit (Qiagen,
Duesseldorf, Germany) according to the manufacturer’s

instructions, treated with DNase I (Invitrogen) and reverse-
transcribed with RevertAid (Fermentas, Ottawa, ON, Canada).
Quantitative PCR was performed using SYBR Green PCR
master mix (Invitrogen) and primers (see ESM Table 1) on
StepOnePlus real-time PCR system (Invitrogen). Samples were
analysed in triplicate and normalised against Gapdh as an
internal control. Relative changes in gene expression were
calculated by the ΔΔCt method.

DNA extraction and bisulfite sequencing Mouse hypothala-
mus was dissected and snap-frozen in liquid nitrogen. Geno-
mic DNA was extracted from mouse hypothalami using
DNeasy Blood & Tissue Kit (Qiagen). Sodium bisulfite con-
version was carried out using 1–2 μg genomic DNA with
Epitect Bisulfite Kits (Qiagen). Sequences for the bisulfite
sequencing PCR primers are shown in the ESM. The PCR
products were purified by gel extraction kit (Qiagen) and
ligated into pGEM-T Easy vector (Promega, Madison, WI,
USA). PCR products were sequenced for the Pomc promoter
region and at least 15 positive clones were analysed.

DNA plasmids The Pomc promoter–luciferase construct
(pGL3-Pomc) was a generous gift from D. Accili (Columbia
University, New York, NY, USA). pCMV-SPORT6-CREB1
was purchased from Open Biosystem (catalogue number
MMM1013-64862). Myc-tagged CREB1 was generated by
PCR and subcloned into pCMV5-Myc at EcoRI and BamHI
sites. The primer sequences are shown in ESM Table 1. To
generate glutathione S-transferase (GST)-CREB1, pCMV-
Myc-CREB1 was digested with EcoRI and BamHI, and
subcloned into the EcoRI and XhoI sites of pGEX-KG.

Methyltransferase treatment Plasmid pGL3-Pomc was treated
with different methyltransferases targeting CpGs of vary-
ing sequences, including MSssI (CG), HpaII (CCGG)
and HhaI (GCGC) (New England BioLabs, Ipswich, MA,
USA), according to the manufacturer’s instructions.
Methyltransferase-treated DNA preparations were then puri-
fied using a PCR purification kit (Qiagen) and used for
transfection.

Luciferase assay The luciferase assay was done as previously
described [30]. Briefly, HEK293T cells were transfected with
relevant plasmids using FuGENE6 (Roche, Basel, Switzerland).
After 2 days, transfected cells were washed with PBS, lysed in
200μl passive lysis buffer (Promega) and subjected to luciferase
activity measurement on a luminometer (Molecular Devices,
SpectraMax L, Sunnyvale, CA, USA). The firefly luciferase
activity was normalised against Renilla luciferase activity.

Co-immunoprecipitation HEK293T cells were transfected
with MeCP2 (wild type [WT] or R106W) or Myc-CREB1
using the calcium phosphate transfection method. At 2 days
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after transfection, whole-cell lysates were prepared as previ-
ously described [30] and used for co-immunoprecipitation
(Co-IP). From the mixture 1 mg was incubated with anti-
Flag M2 affinity gel (Sigma-Aldrich, Munich, Germany),
EZview Red c-Myc-Agarose (Sigma-Aldrich) or control
IgG, respectively, overnight at 4°C. The immunoprecipitates
were washed extensively, resuspended in ×2 sample buffer
and subjected to SDS-PAGE followed by immunoblotting
with Flag (Sigma-Aldrich) or Myc (Santa Cruz, CA, USA)
antibodies. From the total cell volume, 2% was used as input.

GST-CREB1 protein expression, purification and pull
down BL21 bacterial cells were transformed to express
GST-CREB1 or GST. Fusion proteins were purified using
glutathione–Sepharose-4B beads (Amersham, Buckingham-
shire, UK) according to the manufacturer’s instructions. As
for GST-pull-down assay, protein-coupled glutathione beads
were incubated with 500 μg respective total cell lysate of
Flag-MeCP2-transfected HEK293 cells for 1 h at 4°C in
TNET buffer (50 mmol/l Tris-Cl, pH 7.4, 150 mmol/l NaCl,
1 mmol/l EDTA, 1% TritonX-100). The beads were washed
in TNET buffer, resolved by SDS-PAGE and immunoblotted
with Flag (Sigma-Aldrich) or CREB1 (Novus biological,
Littleton, CO, USA) antibodies.

Statistical analysis Data were presented as means ± SEM.
Statistics was performed by using two-tailed Student’s t test
or one-way ANOVA followed by Tukey’s post hoc test. The
significance limit was set at p <0.05.

Results

Specific deletion of MeCP2 in POMC neurons MeCP2 was
deleted specifically in POMC neurons by crossing the mice in
which exons 3 and 4 ofMecp2 were flanked by two loxP sites
[18] and mice with Cre driven by Pomc1 [31–34] (Fig. 1a).
MaleMecp2flox/y (control) andMecp2flox/y/Pomc -Cre (PKO)
mice were used for experiments (Fig. 1b). Selective deletion
of MeCP2 in POMC neurons was validated by immunohis-
tochemistry for both MeCP2 and POMC precursor. As shown
in Fig. 1c, at the ARC region where POMC neurons were
concentrated, POMC precursor was distributed in the cyto-
plasm while MeCP2 was restricted to the nucleus. MeCP2
was present in the nuclei of POMC neurons of the control
mouse but not in those of the PKO mouse, confirming the
specific deletion of MeCP2 in POMC neurons.

Increased body weight and fat mass and development of leptin
resistance in PKO mice Given that POMC neurons regulate
food intake and energy expenditure, we first assessed the roles
of MeCP2 in these processes by monitoring the body weight

of the mice. The PKO mice had higher body weights starting
from the age of 4months (Fig. 2a). Body composition analysis
showed that the PKOmice had higher fat mass compared with
controls from the age of 4 months. At 8 months of age, the
PKO mice continued to show increased fat mass; however,
they exhibited decreased lean mass as a percentage of body
weight (Fig. 2b, c), suggesting that body weight gain in the
PKOmice was mainly due to increased adiposity. To examine
the relative contribution of increased food intake and de-
creased energy expenditure to the observed body weight gain,
we performed indirect calorimetry on the PKO and control
mice by using the CLAMS metabolic chambers. The PKO
mice had higher food intake and RER when compared with
controls (Fig. 2d, e), though no difference was observed in
oxygen consumption, BMR or physical activities between
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PKO mice and controls (Fig. 2f–i). Increased RER in PKO
mice indicated lower usage of fat as an energy source, consis-
tent with increased fat mass in these mice. Compared with
controls, PKO mice had higher circulating leptin levels at the
ages of 4 and 8 months (Fig. 3a). Because leptin is secreted
proportionally from adipose tissue, we normalised leptin level
to fat mass. After fat mass normalisation, the leptin level of
PKO mice was still higher than that of controls at the age of
8 months (Fig. 3b). The findings of higher leptin levels and
increased food intake in the PKOmice suggest that these mice
developed leptin resistance. Although the increases in food
intake and RER in PKOmice were marginal and did not reach

statistical significance at the age of 5 months, and became
significant only at the age of 9 months (Fig. 2d, e), the subtle
energy surplus contributed to significant body weight differ-
ence over time (Fig. 2a). Collectively, these data indicate that
increased food intake and reduced consumption of fat as an
energy source account for the increased body weight and
adiposity in the PKO mice.

Reduced hypothalamic Pomc expression in the PKO mice To
understand the mechanism underlying the increased food
intake, body weight and fat mass, we performed real-time
quantitative PCR to examine Pomc expression in the hypo-
thalamus. As expected, only the PKOmice – not the controls –
expressed Cre in the hypothalami (Fig. 4a). At the age of
4 months, the hypothalamic Pomc mRNA level was already
lower in PKO mice (Fig. 4b). As Pomc expression is posi-
tively regulated by leptin, we normalised the Pomc expression
to leptin level. As the PKO mice had higher leptin levels, the
normalisedPomc expression was even lower in the PKOmice
when compared with the controls (Fig. 4c). Npy mRNA level
was unaltered, while Agrp mRNA level was lower in PKO
mice, possibly to compensate for reduced Pomc levels
(Fig. 4d, e). At the age of 9 months, the hypothalamic Pomc
mRNA level remained lower in PKO mice, but no difference
was found in Npy and Agrp levels (Fig. 4f–h). These results
suggest that an absence of MeCP2 in POMC neurons contrib-
utes to reduced Pomc expression, and that MeCP2 in POMC
neurons plays a role in regulating Pomc expression.
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Increased DNA methylation of the Pomc promoter in PKO
mice We tested whether the DNAmethylation status of Pomc
promoter was changed, as this may explain the altered Pomc
expression in the PKO hypothalamus.We examined the meth-
ylation status of 18 CpGs between −209 to +13 on the Pomc
promoter using hypothalamus samples from PKO and control
mice. Overall, DNA methylation levels at different CpG sites
on the Pomc promoter showed an upward trend in the PKO
mice compared with controls when the mice were 4 month
olds, with eight out of 18 CpGs showing significantly higher
methylation levels in the PKO mice (Fig. 5a). DNA methyl-
ation level increased considerably in control mice, and by
15 months of age there was no difference in the methylation
level between the PKO and control mice (Fig. 5b). At the age
of 4 months, the average percentage of methylated cytosines
of all 18 CpGs was lower in the control than in the PKO mice
(35.2±2.5% vs 52.0±3.6%; Fig. 5c). By the age of 15months,
the percentage of DNA methylation was no longer different

between the two genotypes (Fig. 5c). Notably, reduced hypo-
thalamic Pomc expression was observed at the age of
4 months (Fig. 4b, c), but not at the age of 15 months
(0.31±0.017 vs 0.32±0.075, n =3 per genotype), suggesting
a negative correlation between DNA methylation level and
Pomc expression.

Hypermethylation of the Pomc promoter decreases its
activity We further examined the relationship between Pomc
promoter methylation and its expression by luciferase
assay. A plasmid (pGL3-Pomc) containing the luciferase gene
driven by the Pomc promoter was treated with different
methyltransferases targeting CpGs of varying sequences, includ-
ing MSssI (targeting CG), HpaII (CCGG) and HhaI (GCGC).
The plasmid pGL3-Pomc contained −646 to +65 of the Pomc
gene, which covered the 480 bp upstream of the transcription
start site that was required for the full promoter activity [35, 36].
Within the promoter region, there were 20 CpG sites targeted by
MSssI, one CpG site by HpaII and four CpG sites by HhaI. All
three methyltransferases significantly reduced Pomc promoter
activity, with lower promoter activity corresponding to more
methylated CpG sites (Fig. 5d), suggesting that hypermethyla-
tion of Pomc promoter decreases its promoter activity.

Functional synergy of MeCP2 and CREB1 in regulating
Pomc promoter activity Deletion of MeCP2 in POMC neu-
rons led to reduced Pomc expression, suggesting that MeCP2
may be a positive regulator of Pomc promoter activity. We
examined this possibility and also tested whether CREB1 was
a co-activator by using the luciferase assay. Co-transfection of
WTMeCP2 and CREB1 resulted in a significant activation of
Pomc promoter activity compared with transfection of
MeCP2 or CREB1 alone (Fig. 6a). Expression of a mutant
MeCP2 containing the point mutation R106W failed to en-
hance Pomc promoter activity (Fig. 6a). Co-IP experiments
showed that MeCP2 and CREB1 interacted with each other,
and that MeCP2 R106W mutant showed weaker interaction
with CREB1 (Fig. 6b). The GST pull-down assay confirmed
the direct interaction betweenWTMeCP2 and CREB1, which
was abolished by an R106W mutation in MeCP2 (Fig. 6c),
suggesting that MeCP2-CREB1 interaction may be required
for the synergistic effect onPomc promoter activity. However,
as the R106W mutation lies within the methyl-CpG binding
domain of MeCP2, methyl-CpG binding activity of MeCP2
may also be required for the regulation. These experiments
suggest that MeCP2 functions as an activator of Pomc pro-
moter, and the activation requires its interaction with CREB1.

Discussion

In this study, we demonstrate that mice with specific deletion
of MeCP2 in POMC neurons exhibit increased body weight
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Fig. 4 ReducedPomc expression in the hypothalamus of PKOmice. (a).
Real-time quantitative PCR measurements using hypothalamic samples
showed that Cre was only expressed in PKO mice. (b) Hypothalamic
Pomc expression was reduced in 4-month-old PKO mice. (c) Leptin-
level-normalised Pomc expression was lower in 4-month-old PKO hy-
pothalamus. (d) Npy expression in the PKO mice was similar to that in
the control mice at 4 months of age. n =3 per genotype. (e ) Agrp
expression was reduced in 4-month-old PKO mice. (f) Hypothalamic
Pomc expression was reduced in 9-month-old PKO mice. Npy (g) and
Agrp (h) expression in the PKO mice was similar to that in the control
mice at the age of 9 months. n=5–12 mice per genotype for 4-month-old
groups and n =5–6 per genotype for 9-month-old groups unless otherwise
indicated. White bars, control; black bars, PKO. All gene expression was
normalised to Gapdh . Data are presented as mean ± SEM. PKO vs
control mice of the same group: *p <0.05, **p <0.01 and ***p <0.001
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and fat mass, and leptin resistance. PKO mice show increased
Pomc promoter methylation and reduced hypothalamic Pomc
mRNA, consistent with a regulatory role of MeCP2 in POMC
neurons. Moreover, MeCP2 and CREB1 synergistically pro-
mote Pomc expression in vitro.

MeCP2 is highly expressed in the CNS. It has been pro-
posed that different RTT phenotypes are caused by loss of
MeCP2 function in specific neurons [26]. There are numerous
mouse models with mutation or deletion of MeCP2 that give
rise to an array of RTT-like phenotypes [18, 22–26]. However,
most of these mouse models have altered MeCP2 in all or
most of the CNS, making it difficult to delineate the specific
role ofMeCP2 in different neurons. Overweight or obesity is a
common phenotype in mouse models with deletion ofMeCP2
in postmitotic neurons, in postnatal CNS and in Sim1-express-
ing neurons [22, 25, 26], as well as in some patients with
atypical RTT [37–40]. A plausible mechanism for the over-
weight or obesity phenotype may be the reduced levels of

brain-derived neuropeptide (BDNF), an established regulator
of energy balance [41] and target of MeCP2 regulation
[42]. In our study, we deleted MeCP2 in a single functional
neuron type (POMC neurons), which plays a key role in the
regulation of energy homeostasis. As Bdnf expression and
secretion is secondary to POMC neuron activation [41], we
did not measure Bdnf expression and chose to focus on Pomc
expression in the PKO mice. The findings that PKO mice
show dysregulated energy homeostasis indicate that MeCP2 in
POMC neurons is essential in energy homeostasis regulation.

The signalling cascades involved in the regulation of the
functions of POMC neuron have been extensively studied;
they include the Janus kinase 2 (JAK2)-signal transducer and
activator of transcription 3 (STAT3) and phosphoinositide-3-
kinase (PI3K) pathways activated by leptin and insulin,
respectively [32, 43]. As many of these signalling pathways
in POMC neurons converge at the regulation of Pomc expres-
sion, defects at different steps along the signalling pathways
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Fig. 5 Increased DNA methylation of the Pomc promoter in the PKO
hypothalamus. (a) At the age of 4months, DNAmethylation at eight out of
18CpG sites on thePomc promoter was upregulated in PKOhypothalamus
compared with that of controls. (b) At the age of 15 months, no difference
was observed in the levels of DNA methylation of the Pomc promoter in
the hypothalamuses of control and PKO mice. (c) The average percentage
of methylated cytosines on the Pomc promoter was higher in PKO mice at
the age of 4 months, but similar to controls at the age of 15 months. The
percentage of methylated cytosines at different CpG sites between −209
and +13 on the Pomc promoter was measured by bisulfite sequencing from

at least 15 positive clones per mouse (n=4–5 mice per genotype). White
bars, control (a–c ); black bars, PKO (a–c ). Data are presented as
mean ± SEM. PKO vs control mice of the same group: *p<0.05. (d)
Effects of DNAmethylation onPomc promoter activity by luciferase assay.
Reduced Pomc promoter activity was observed in HEK293 cells that were
treated with different methyltransferases (MSssI, HpaII and HhaI). Firefly
luciferase activity was normalised to that of Renilla luciferase.
Methyltransferase-treated luciferase activity is expressed as a percentage
of control. Data are presented as mean ± SEM of three independent
experiments, each performed in triplicate: **p<0.01 and ***p<0.001

242 Diabetologia (2014) 57:236–245



lead to reduced Pomc expression and leptin resistance. How-
ever, changes on Pomc promoter itself, such as epigenetic
modifications, directly affect Pomc expression regardless of
upstream signalling [14], which may in turn contribute to
leptin resistance. The Pomc promoter fragment in this study
is within the tissue-specific CpG island that is differentially
methylated in different tissue types [44]. Consistent with the
finding that Pomc expression is closely related to its promoter
methylation [45], we observed an increased DNAmethylation
of the Pomc promoter and decreased Pomc mRNA expres-
sion in vitro and in the PKO hypothalamus. The molecular
mechanism underlying the increased Pomc promoter methyl-
ation in the absence of MeCP2 is unknown. A possible model
based on a study of the epigenetic regulation of Pdx1 in
intrauterine growth retardation [46] is that the absence of
MeCP2 causes reduced Pomc expression that results in a
transition from open active to less active chromatin confor-
mation, which features lower histone acetylation and higher
dimethylated H3K9. As histone methylation and DNA meth-
ylation reciprocally influence each other [47], increased
dimethylated H3K9 may lead to a higher level of DNA
methylation, resulting in a closed inactive chromatin confor-
mation and further reduction of Pomc expression.

According to this model, MeCP2 functions as an activator
ofPomc expression. This notion is supported by the luciferase
reporter assay experiments, which show thatMeCP2 regulates
Pomc promoter activity positively and synergistically with
CREB1 (Fig. 6a). This is consistent with a previous finding
showing a synergistic effect between MeCP2 and CREB1
[21]. It appears that binding between MeCP2 and CREB1 is
required for their cooperation, as mutant MeCP2 that does not
bind to CREB1 fails to upregulate Pomc promoter activity.
Further studies, such as sequential chromatin IP (ChIP), will
help to confirm the simultaneous occupation of MeCP2 and

CREB1 on the Pomc promoter and the functional synergy
between MeCP2 and CREB1 on Pomc expression.

Two recent studies report that MeCP2 binds to both
5-methylcytosine (5mC) and 5-hydroxymethylcytosine
(5hmC) with similar high affinities [48, 49]. Highly expressed
in CNS, 5hmC is enriched in actively transcribed genes,
whereas 5mC is enriched in less active genes. Moreover,
MeCP2 is the major 5hmC-binding protein in the brain [49].
The bisulfite conversion method used in our study does not
differentiate 5mC and 5hmC. Technologies are being devel-
oped to allow analysis of 5hmC at single-base resolution.
Future studies may be directed to examine whether 5hmC
exists on the Pomc promoter and whether MeCP2 binds to
5hmC to regulate Pomc transcription. MeCP2 is also critical
during neuron development as MeCP2 deletion in mouse
brain results in reduced neuron size [22]. We did not observe
a significant reduction in POMC neuron size or number in
PKO mice. However, a more detailed analysis is needed to
determine the effect of MeCP2 deletion on POMC neuron
development in PKO mice.

Our results show that lack of MeCP2 in POMC neurons is
associated with increased DNA methylation of the Pomc
promoter and decreased Pomc expression in the hypothala-
mus, which accounts for the observed obesity and leptin
resistance phenotypes, including increased food intake, less
burning of fat and higher body weight. This study demon-
strates that MeCP2 is a positive regulator of Pomc expression
in the hypothalamus; and hypermethylation of the Pomc
promoter reduces Pomc expression in the hypothalamus and
contributes to leptin resistance.
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