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Abstract We propose a new leptogenesis scenario in which
the lepton asymmetry and matter particles are simultaneously
generated due to the coherent oscillating Higgs background.
To demonstrate the possibility of our scenario, we consider
the type-I seesaw model as an illuminating example and show
the numerical analysis. In order to generate the required lep-
ton number |nL/s| = 2.4 × 10−10, we find that the scales
of the Higgs background oscillation is required to be higher
than 1014 GeV.

1 Introduction

The observation of the cosmic microwave background
(CMB) supports two important cosmological events [1,2].
One is the cosmic inflation that causes the exponential expan-
sion of the Universe. The evidence is shown in the scale
invariance of the power spectrum. Another important event
is the big bang nucleosynthesis (BBN) in which the abun-
dance of baryons (hydrogen, deuterium, helium, etc.) is fixed
from a second to 3 minutes after inflation. According to the
theory of the BBN, the required initial conditions to real-
ize the current Universe are a temperature higher than a
few MeV and the baryon number to photons number ratio
η = nB/nγ ∼ 6 × 10−10. Despite the CMB information
is originated after 380,000 years later from the BBN, the
observation shows η = (6.10 ± 0.04) × 10−10 [2,3]. How-
ever, these two events cannot connect directly because the
temperature of the Universe after inflation might go to zero
due to the extreme dilution. On the other hand, the BBN must
start with a high-temperature scale at least more than a few
MeV. Therefore, the Universe must be heated due to some
mechanism after inflation.
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The (re)heating theory has been developed by many
authors (for review, see e.g. [4–7]). Typically it is described
by the decay of the inflation field into other particles after
inflation, but a picture of the perturbative decay is not cor-
rect. Taking into account a particle coupled to the oscillat-
ing inflation field, the non-perturbative particle production
occurs and the produced particle number can grow exponen-
tially by parametric resonance [4,8–10]. This process hap-
pens before the Universe is thermalized, so-called preheating
era.

On the other hand, inflation makes our Universe no par-
ticle state because any particles are extremely diluted. Thus,
the Universe must evolve from no baryon number state to
non-zero baryon number state. This scenario is called baryo-
genesis that requires a small asymmetry between baryons
and anti-baryons. The Standard Model (SM) cannot produce
enough baryon asymmetry from a symmetric Universe. At
present, one of the hopeful scenarios is the thermal leptogene-
sis [11] in which superheavy right-handed neutrinos and their
interactions are added to the SM. The decay of right-handed
neutrinos can generate lepton number. This generated lepton
number can be converted into the baryon number through the
sphaleron process [12] after the decay of the right-handed
neutrinos.

Several baryogenesis scenarios associated with preheating
have been investigated in the past. The non-perturbative par-
ticle production due to the oscillating inflation field allows
creating heavier particles than the inflaton mass, while the
ordinary reheating theory cannot kinematically. This fact can
be applied to the baryogenesis scenario in which the parent
particles are heavier than the oscillating field [13–15]. The
oscillating background field that couples to the baryon or the
lepton can also induce the chemical potentials to the baryon
or the lepton numbers. The scenario due to such chemical
potential has been discussed in [16,17].

In this paper we propose a new scenario of the baryogene-
sis that occurs in the preheating era. In contrast to the scenar-
ios mentioned above, our scenario generates the baryons or
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leptons and their asymmetry simultaneously due to an oscil-
lating background field. In earlier studies, it was pointed out
the possibility of the asymmetry production in the preheating
era with simple scalar cases that have charge violating inter-
actions and C- and CP-violating parameters [18–20]. But it
is still not clear that there exist realistic models that can gen-
erate enough baryon or lepton asymmetry.

To show the story with a concrete model, we consider
the type-I seesaw model as an example. Then our scenario
corresponds to a new-type of non-thermal leptogenesis. A
sketch of our scenario is that the lepton asymmetry is pro-
duced by the non-perturbative particle production of the left-
handed neutrinos due to the coherently oscillating Higgs
background. For example, let us consider a lepton number
violating operatorCAB(H�A)(H�B) first proposed by Wein-
berg [21], where CAB is a coupling and H is the Higgs dou-
blet, and �A is the lepton doublet in the generation A. This
interaction also represents mass terms of the left-handed neu-
trinos in the case that the Higgs has a vacuum expectation
value. If the Higgs vacuum expectation value varies non-
adiabatically, the left-handed neutrinos would be produced.
An important point is that this neutrino production violates
the lepton number. Therefore, if the theory has C- and CP-
violating parameters, then the lepton number asymmetry is
also generated at the same moment. However, this process
must happen at a lower energy scale than the scale of the
coupling CAB . Otherwise, the backreactions or the neutrino-
Higgs scatterings happen, erasing the generated asymmetry.
Similar situations are investigated [23–28], but the interac-
tion contents or the generation structure in those studies are
different from ours. The models in [22,23,27] were consid-
ered the type-I seesaw and a dimension six operator that is
proportional to B + L current. Then, the lepton asymmetry
can be generated by a single generation. In [24–26], the case
that the coupling of the Wienberg operator is time-dependent
was studied. Compared with those studies, our scenario is
considered the type-I seesaw with three generations of the
left- and the right-handed neutrinos, without any other higher
dimensional operator and without the time-dependent cou-
plings. Recently, the similar scenario to ours have been dis-
cussed in [28] in which the flavour of the left-handed neutrino
is single.

Since it is difficult to obtain the analytic behavior, we
will demonstrate the formulation and show the results by the
numerical calculation. For simplicity, we neglect the spa-
tial expanding effect in the later calculation. Furthermore,
we assume that the energy scale of the produced left-handed
neutrinos is much lower than the mass scale of the heavy
right-handed neutrinos in order to avoid backreactions that
would erase the generated asymmetry. Then the production
of the right-handed neutrinos associated with the Higgs is for-
bidden, and the scattering of the left-handed neutrinos and the

Higgs intermediated with the heavy right-handed neutrinos
is also suppressed.

The paper is organized as follows. In Sect. 2, we derive the
basic operator equations and construct the effective theory in
which the right-handed neutrinos do not appear. Using these
results, we construct the equations of motion for two-point
functions and the Higgs background to evaluate the lepton
asymmetry in Sect. 3. The numerical results are also shown
in this section. We summarize our conclusion and discuss in
Sect. 4.

2 Formulation of operator equations

The goal of this paper is to demonstrate that the lepton
asymmetry can be generated by the oscillating Higgs back-
ground. At first, we explain what we must calculate to know
the generated lepton asymmetry. As mentioned in the previ-
ous section, we consider our model with the type-I seesaw
model that includes the SM and the three generations of the
right-handed neutrinos. Furthermore, we neglect the spacial
expanding effect in the later calculation for simplicity and
assume that the energy scale of the produced neutrinos is
much lower than the heavy right-handed neutrino scale in
order to avoid backreactions erasing the generated asymme-
try. In our formulation, we use the notation of the metric as
gμν = diag(+ 1,− 1,− 1,− 1), and use the two-component
spinors as the representation of fermions.

The net lepton number can be defined by a vacuum expec-
tation value of U (1) Noether charge of the leptons as

L ≡
∫

d3x
∑
A

1

2
((〈νA†

L σ̄ 0νA
L 〉 − 〈νA

L σ 0ν
A†
L 〉)

+(〈eA†
L σ̄ 0eAL 〉 − 〈eAL σ 0eA†

L 〉)
−(〈ecA†

R σ̄ 0ecAR 〉 − 〈ecAR σ 0ecA†
R 〉)) (1)

where the superscript A runs the generation, and νL , eL and
ecR are the left-handed neutrino, the left-handed electron and
the charge conjugate of the right-handed electron, respec-
tively. The lepton number density nL can be obtained by
nL = L/V where V ≡ ∫

d3x is a spatial volume of the
system. As shown in (1), we need to follow every leptonic
two-point function. To derive the equations of motion for
each two point function, at first we derive the operator equa-
tions for leptons.

In later calculation, we derive the equations of motion for
each operator field and construct the differential equations for
all the required two-point functions using the operator equa-
tions. Then, we solve them numerically, and we follow the
time evolution of the generated lepton asymmetry referring
to the solved two-point functions.
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2.1 Lagrangian

The Lagrangian relating to the lepton sector is given by

Llepton =
∑
A

(�aA†σ̄ μi Dμ�aA + ecA†
R σ̄ μi Dμe

cA
R

+ν
cA†
R σ̄ μi∂μνcAR )

−
∑
A,B

(
1

2
MAB

R νcAR νcBR + √
2yABe Ha†�aAecBR

−√
2yABν εabHa�bAνcBR + (h.c.)

)
(2)

where superscripts A, B run 3 generations (flavor basis) and
a, b run SU (2)L components, and mass matrix of the right-
handed neutrinos MR is chosen to be diagonal and real com-
ponents. We choose the unitary gauge as H1 = 0, H2 =
h/

√
2, �1 = νL , �2 = eL , then the Lagrangian by each

component is shown by

Llepton =
∑
A

(
ν
A†
L σ̄ μi∂μνA

L + eA†
L σ̄ μi∂μe

A
L

+ecA†
R σ̄ μi∂μe

cA
R + ν

cA†
R σ̄ μi∂μνcAR

+gY Bμ ·
(

− 1

2
ν
A†
L σ̄ μνA

L − 1

2
eA†
L σ̄ μeAL

+ecA†
R σ̄ μecAR

)

+1

2
gWW 3

μ · (ν
A†
L σ̄ μνA

L − eA†
L σ̄ μeAL )

+1

2
gW (W 1

μ − iW 2
μ) · ν

A†
L σ̄ μeAL

+1

2
gW (W 1

μ + iW 2
μ) · eμ

L σ̄ μνA
L

)

−
∑
A,B

(
1

2
MAB

R νcAR νcBR + yABe heAL e
cB
R

+yABν hνA
L νcBR + (h.c.)

)
(3)

where Bμ and Wa
μ for a = 1, 2, 3 are the gauge boson fields,

gY and gW are the gauge couplings corresponding to U (1)Y
and SU (2)L gauge symmetries, respectively.

2.2 Equations of motion

2.2.1 Approximate solution for right-handed neutrinos

At first, we derive the equations of motion for the right-
handed neutrinos. From (3), the operator equations for the
right-handed neutrinos can be obtained as

0 = σ̄ μ · i∂μνcAR −
∑
B

(MAB
R ν

cB†
R + (y†

ν )ABhν
B†
L ), (4)

0 = σμ · i∂μν
cA†
R −

∑
B

(MAB
R νcBR + (yTν )ABhνB

L ). (5)

Since we assume that the scale of the non-perturbative par-
ticle production is enough lower than the right-handed neu-
trino mass scale, we can construct an effective equation in
which the right-handed neutrinos do not appear. Assuming
M−1

R ∂ � 1 in (4) and (5), we can obtain the approximate
solution as

ν
cA†
R =

∑
B

(−(M−1
R y†

ν )ABhν
B†
L + (M−1

R )AB σ̄ μ · i∂μνcBR )

= −
∑
B

((M−1
R y†

ν )ABhν
B†
L + (M−2

R yTν )ABi∂μh · σ̄ μνB
L

+(M−2
R yTν )ABh · σ̄ μi∂μνB

L )

+O((M−1
R ∂)2). (6)

Note that the first term in the above equation is of the lead-
ing order, and the second and third terms are of the next-to-
leading order.

2.2.2 Left-handed neutrinos

The operator equation for the left-handed neutrinos is given
by

0 = σ̄ μ · i∂μνA
L − 1

2
(gY Bμ − gWW 3

μ) · σ̄ μνA
L

+1

2
gW (W 1

μ − iW 2
μ) · σ̄ μeAL −

∑
B

y∗AB
ν hν

cB†
R . (7)

Substituting the approximate solution (6) to the above equa-
tion, we obtain an approximate equation without the right-
handed neutrinos as

0 = σ̄ μ · i∂μνA
L − 1

2
(gY Bμ − gWW 3

μ) · σ̄ μνA
L

+1

2
gW (W 1

μ − iW 2
μ) · σ̄ μeAL +

∑
B

(y∗
ν M

−1
R y†

ν )ABh2ν
B†
L

+
∑
B

(y∗
ν M

−2
R yTν )AB

×
(
ih · ∂μh + h2

(
1

2
gY Bμ − 1

2
gWW 3

μ

))
σ̄ μνB

L

−
∑
B

(y∗
ν M

−2
R yTν )ABh2 · 1

2
gW (W 1

μ − iW 2
μ)σ̄μeBL + · · · ,

(8)

where · · · means higher order terms. In the above operator
equation, we impose the following approximations:

h ∼ 〈h(t)〉, Bμ ∼ 0, Wa
μ ∼ 0. (9)
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These indicate that the Higgs has a homogeneous background
but the gauge fields do not have backgrounds.1 Then (8)
becomes a simpler equation as

0 = σ̄ μ · i∂μνA
L

+
∑
B

((y∗
ν M

−1
R y†

ν )AB〈h〉2ν
B†
L

+i(y∗
ν M

−2
R yTν )AB〈h〉〈ḣ〉 · σ̄ 0νB

L ) + · · · . (10)

In (10), a matrix yνM
−1
R yTν · 〈h〉2 means the masses of the

left-handed neutrinos but it is not diagonalized in general.
This mass matrix can be diagonalized by Pontecorvo-Maki-
Nakagawa-Sakata matrix UPMNS as

mν(t) ≡ −UT
PMNSyνM

−1
R yTν UPMNS · 〈h(t)〉2 (11)

where mν is a diagonal matrix and every component is real.
Since UT

PMNSyνM
−1
R yTν UPMNS is a constant matrix, it can be

represented by the present Higgs vacuum expectation value
and the present left-handed neutrino masses:

UT
PMNSyνM

−1
R yTν UPMNS = − 1

〈hnow〉2 mν,now (12)

where

〈hnow〉 = 246 GeV, mν,now =
⎛
⎝m1

m2

m3

⎞
⎠ , (13)

and m1,m2,m3 are the masses of the left-handed neutrinos
in mass basis. Equation (12) can also be rewritten as [29]

1 = −m−1/2
ν,nowU

T
PMNSyνM

−1
R yTν UPMNSm

−1/2
ν,now · 〈hnow〉2

= −
[
m−1/2

ν,nowU
T
PMNSyνM

−1/2
R

]

×
[
M−1/2

R yTν UPMNSm
−1/2
ν,now

]
· 〈hnow〉2

= OT O (14)

where

O ≡ iM−1/2
R yTν UPMNSm

−1/2
ν,now · 〈hnow〉 (15)

is an orthogonal complex matrix. Using this matrix, the
Yukawa matrix yν can be represented by

yTν = − i

〈hnow〉M
1/2
R Om1/2

ν,nowU
†
PMNS. (16)

1 Although there are no backgrounds of gauge fields (one-point func-
tions), two-point functions that correspond to their number density are
not negligible. In our scenario, the gauge bosons can be produced by the
coherent oscillation of the Higgs background. We will see in Sect. 3.2
that the bosonic two-point functions appear in the Higgs sector.

Hence, we can obtain

y∗
ν M

−2
R yTν = 1

〈hnow〉2UPMNSm
1/2
ν,nowO

†M−1
R Om1/2

ν,nowU
†
PMNS.

(17)

Finally, the operator equation (10) written by the mass
eigenstate can be shown as

0 = σ̄ μi∂μν IL +
∑
J

(−[mν(t)]I J ν
J†
L + i[Z(t)]I J σ̄ 0ν J

L ) + · · ·

(18)

where the superscripts I, J run mass eigenstate indices,

ν I
L ≡

∑
A

(U †
PMNS)I AνA

L (19)

is a mass eigenstate of the left-handed neutrinos, and

[mν(t)]
I J ≡ 〈h(t)〉2

〈hnow〉2 · [mν,now]I J (20)

[Z(t)]I J ≡ 〈h(t)〉〈ḣ(t)〉
〈hnow〉2 · [m1/2

ν,nowO
†M−1

R Om1/2
ν,now]I J .

(21)

Note that Z is a non-diagonal Hermitian matrix in gen-
eral. The CP-violating parameters are included by the non-
diagonal complex elements.

Since it is convenient to treat the equations by the
Fourier transformed representation, we represent (18) by
each Fourier mode. We expand νL(x) by a plane wave and
each helicity mode as

[νL(x)α]I =
∫

d3k

(2π)3 e
ik·x ∑

s=±
(esk)α[νsk(t)]I (22)

where (esk)α is an eigen-spinor for the helicity operator that

satisfies:2

ki (σ̄ i esk)
α̇ = −s|k|(σ̄ 0esk)

α̇ ( s = + or − ). (26)

2 In this paper, we use the following representation:

(esk)1 =
√

1

2

(
1 + sk3

|k|
)

, (esk)2 = seiθk

√
1

2

(
1 − sk3

|k|
)

(23)

where

eiθk ≡ k1 + ik2√
(k1)2 + (k2)2

(24)

is a phase defined by the x- and y-components of the momentum. They
satisfy the following orthogonality conditions;

es†
k σ̄ 0erk = erkσ

0es†
k = δsr , eske

r−k = seiθkδsr . (25)
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Then (18) in the Fourier space can be represented by

∂tν
s I
k = is|k|νs Ik +

∑
J

(im I J
ν · se−iθkν

s J†
−k − Z I J νs Jk ) + · · · .

(27)

Later, we will use this differential equation to derive each
two-point functions.

2.2.3 Left- and right-handed electrons

Since the electron sector does not have interaction with right-
handed neutrinos, each equation for electrons is the same as
in the SM. Moreover, as long as we use the approximation
(9), the electron sector is separated from the left-handed neu-
trinos. Therefore, even if the lepton asymmetry is generated
in the neutrino sector, the effect does not influence the elec-
tron sector. For this reason, we ignore the electron sector in
this work.

3 Analysis of lepton asymmetry

As shown in the previous section, the net lepton number is
defined by (1). We expect that the lepton asymmetry from
the electron sector can be neglected. Thus, we only consider
the neutrino sector and obtain

nL 	 1

V

∫
d3x

∑
A

1

2

(
〈νA†

L σ̄ 0νA
L 〉 − 〈νA

L σ 0ν
A†
L 〉

)

= 1

V

∫
d3k

(2π)3

∑
I

∑
s=±

1

2

(
〈νs I†

k νs Ik 〉 − 〈νs I−kν
s I†
−k 〉

)
.

(28)

Therefore, we need to follow the values of each two-point
functions in order to know the net lepton number.

According to the CMB observation [1], the baryon number
in the Universe is given by

nB

s

∣∣∣
obs

= 8.6 × 10−11 (29)

where nB is the baryon density and s is the entropy density.
The lepton number required for achieving this observation
can be estimated as follows. After the lepton number is gen-
erated in our scenario, a part of it converts to the baryon
number through the sphaleron process which is in equilib-
rium at the temperature T � 1012 GeV. The amount can be
estimated by [12]

nB

s
= −28

79

nL
s

. (30)

Thus the required lepton number is

nL
s

= −79

28

nB

s

∣∣∣
obs

= −2.4 × 10−10. (31)

3.1 Differential equations for two-point functions

We can construct differential equations for the two-point
functions using the operator equation (27). The relevant dif-
ferential equations are given by

∂t 〈νs I†
k νs Jk 〉 = −

∑
K

(
〈νs I†

k νsKk 〉(Z∗)K J

+(Z∗)I K 〈νsK†
k νs Jk 〉

)

+im I I
ν [seiθk 〈νs I−kν

s J
k 〉]

−im J J
ν [seiθk 〈νs J−kν

s I
k 〉]∗ (32)

∂t 〈νs I−kν
s J†
−k 〉 = −

∑
K

(
〈νs I−kν

sK†
−k 〉ZK J

+Z I K 〈νsK−kν
s J†
−k 〉

)

+im I I
ν [seiθk 〈νs J−kν

s I
k 〉]∗

−im J J
ν [seiθk 〈νs I−kν

s J
k 〉] (33)

∂t [seiθk 〈νs I−kν
s J
k 〉] = 2is|k|[seiθk 〈νs I−kν

s J
k 〉]

−
∑
K

(
[seiθk 〈νs I−kν

sK
k 〉](Z∗)K J

+(Z∗)I K [seiθk 〈νsK−kνs Jk 〉]
)

+im I I
ν 〈νs I†

k νs Jk 〉 − im J J
ν 〈νs I−kν

s J†
−k 〉.

(34)

Note that correlation functions of three or more points that
provide the interaction effects do not appear in the above
equations because we approximate the bosonic operators
by background fields in the previous section. Although it
is still difficult to analytically solve these differential equa-
tions because of the time-dependent matrices mν and Z , the
numerical analysis can be performed in a relatively simple
way. The initial conditions for each two-point function are
chosen to be3

3 Actually, the asymptotic solution of (27) corresponding to zero par-
ticle state is given by

νs Ik (t) = [usk(t)]I J [ask]J + se−iθk · [vsk(t)∗]I J [as†
−k]J (35)

where

[
usk(t)

]I J = δ I J ·
√

1

2

(
1 − s|k|

[ωk(t)]I I
)
e
−i

∫ t
t0
dt ′[ωk (t ′)]I I (36)

[
vsk(t)

]I J = δ I J ·
√

1

2

(
1 + s|k|

[ωk(t)]I I
)
e
−i

∫ t
t0
dt ′[ωk (t ′)]I I (37)
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〈νs I†
k νs Jk 〉t=t0 = V · 1

2

(
1 + s|k|

[ωk(t0)]I I
)

· δ I J (39)

〈νs I−kν
s J†
−k 〉t=t0 = V · 1

2

(
1 − s|k|

[ωk(t0)]I I
)

· δ I J (40)

〈νs I−kν
s J
k 〉t=t0 = V · [mν(t0)]I I

2[ωk(t0)]I I · δ I J (41)

where t = t0 is an initial time, V ≡ ∫
d3x is a spatial volume

of the system, and

[ωk(t)]I I ≡
√

|k|2 + [mν(t)2]I I

=
√

|k|2 + 〈h(t)〉4

〈hnow〉4 ([mν,now]I I )2. (42)

3.2 Evolution of Higgs background

The time dependence of the matrices mν(t) and Z(t) is
described by the dynamics of the Higgs background. Thus,
we must follow the time evolution of the Higgs background
in order to solve Eqs. (32)–(34). The Lagrangian relating to
the Higgs sector is given by

LHiggs = DμHa†DμH
a − 1

4
λ(Ha†Ha)2 + LYukawa (43)

where LYukawa is the Higgs interaction terms with fermions.
We neglect the quadratic term of the Higgs because the scale
we focus is much higher than the electro-weak scale. Using
the unitary gauge, H1 = 0, H2 = h/

√
2, the Lagrangian in

each component can be represented as

LHiggs = 1

2
∂μh∂μh + 1

8
(g2

Y + g2
W )ZμZμh

2

+1

4
g2
WW+μW−

μ h2 − 1

4
λh4 + LYukawa (44)

where we denote(
Zμ

Aμ

)
≡

(
cos θ − sin θ

sin θ cos θ

)(
W 3

μ

Bμ

)
, (45)

sin θ ≡ gY√
g2
Y + g2

W

, cos θ ≡ gW√
g2
Y + g2

W

, (46)

W±
μ ≡ 1√

2
(W 1

μ ∓ iW 2
μ). (47)

The Lagrangian (44) leads the equation of motion for the
Higgs as

0 = ∂2
t h − ∂i∂i h + λh3

Footnote 3 continued
and ask (as†

k ) is an annihilation (a creation) operator which satisfies

[[ask]I , [ar†
k′ ]J ] = (2π)3δ3(k − k′)δsr δ I J , [[ask]I , [ark′ ]J ] = 0.

(38)

−
(

1

4
(g2

Y + g2
W )ZμZμ + 1

2
g2
WW+μW−

μ

)
h

+(fermion′s terms). (48)

Taking the vacuum expectation value in the above equation,
we can obtain the equation for the Higgs background as

0 = ∂2
t 〈h〉 + λ〈h〉3 + JBR (49)

where JBR is a backreaction term that consists of

JBR ≡ δm2
h · 〈h〉 + (fermion′s two − point functions)

+λ〈h̃3〉 − 1

4
(g2

Y + g2
W )〈ZμZμh̃〉

−1

2
g2
W 〈W+μW−

μ h̃〉, (50)

h̃ ≡ h − 〈h〉, (51)

δm2
h ≡ 3λ〈h̃2〉 − 1

4
(g2

Y + g2
W )〈ZμZμ〉 − 1

2
g2
W 〈W+μW−

μ 〉.
(52)

This backreaction plays a quite important role. As we will see
in Sect. 3.6.1, the lepton asymmetry cannot be fixed without
the backreaction.

Because the backreaction (50) includes too much informa-
tion and thus the form is complicated, let us extract the rele-
vant effect and approximate them to be a useful form. At first,
we neglect three-point functions since we constructed the dif-
ferential equations up to two-point functions. This approxi-
mation is valid as long as 〈Zμ〉 ∼ 〈W±μ〉 ∼ 0. Moreover,
we can expect that the bosonic two-point functions would be
much more significant than the fermionic functions because
each two-point function relates to the number density and
the bosons would be exponentially produced due to the para-
metric resonance by the coherent oscillation of the Higgs
background. Therefore, we can approximate the backreac-
tion term as

JBR ∼ δm2
h · 〈h〉. (53)

Speaking roughly, δm2
h is the product of the couplings and

the total number densities of the Higgs and the gauge bosons.
Because it is complicated to follow the time evolution of the
two-point functions of these species (52), we approximate
them by a single real scalar field4 as

δm2
h ∼ Ndeg · 1

4
g2
W 〈χ2〉 (54)

where χ is an artificial scalar field that satisfies

0 = ∂2
t χ − ∂i∂iχ + 1

4
g2
W 〈h〉2χ, 〈χ〉 = 0, (55)

4 The scalar χ defined here is NOT a new field in the type-I seesaw
model. We treat this scalar as an approximation technique to estimate
the degrees of freedom generated by the oscillating Higgs background.
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and

Ndeg ≡ 12λ

g2
W

〈h̃2〉
〈χ2〉 − g2

Y + g2
W

g2
W

〈ZμZμ〉
〈χ2〉 − 2〈W+μW−

μ 〉
〈χ2〉

(56)

∼ 12λ

g2
W

· 1 +
(

1 + g2
Y

g2
W

)
· 3 + 6 (57)

is an effective degrees of freedom included in (52). The coef-
ficients 1, 3, 6 in (56) correspond to the degrees of freedom
of h, Z ,W± bosons, respectively.

Finally, the differential equation for the Higgs background
can be derived as5

0 = ∂2
t 〈h〉 + λ〈h〉3 + Ndeg · 1

4
g2
W 〈χ2〉〈h〉 (61)

= ∂2
t 〈h〉 + λ〈h〉3

+Ndeg · 1

4
g2
W

∫
d3k

(2π)3

(
|uk |2 − 1

2ωχk

)
〈h〉 (62)

where uk is χ ’s time-dependent wave function which satisfies

0 = ∂2
t uk + ω2

χkuk, ωχk ≡
√

|k|2 + 1

4
g2
W 〈h〉2, (63)

uk(t0) = 1√
2ωχk(t0)

, u̇k(t0) = −iωk(t0)uk(t0). (64)

The above initial conditions for uk indicate zero-particle state
as the initial state. Thus, this analysis is valid in the case that
the thermal particle number described by the temperature
of the Universe is negligible. We assume that the produced
bosons due to the oscillating Higgs background are more
than the thermal particles. Otherwise, the backreaction does
not sufficiently affect to the Higgs background and the final
lepton number would not be fixed.

3.3 Scales of the particle production

In this section, we discuss what the momentum scale of the
produced left-handed neutrinos is. Non-perturbative particle

5 The representation

χ(t, x) =
∫

d3k

(2π)3 e
ik·x (

uk(t)ak + uk(t)
∗a†

−k

)
(58)

leads to

〈χ2〉 =
∫

d3k

(2π)3a3 |uk(t)|2, (59)

but this term diverges. In order to renormalize, we add a counter term
as

〈χ2〉 → 〈χ2〉ren =
∫

d3k

(2π)3a3

(
|uk(t)|2 − 1

2ωχk(t)

)
(60)

by hand. The counter term 1/2ωχk corresponds to 〈0(t)|χ2|0(t)〉 where
|0(t)〉 is a vacuum state defined at time t .

production occurs when the adiabatic condition is violated.
The condition for producing the heaviest left-handed neutrino
is given by

1 �
∣∣∣∣ [ω̇k]heaviest

([ωk]heaviest)2

∣∣∣∣
k∼0

∼ 2〈hnow〉2

mν,heaviest
·
∣∣∣∣ 〈ḣ〉
〈h〉3

∣∣∣∣ (65)

where [ωk]heaviest ≡ [ωk]I I and mν,heaviest ≡ [mν,now]I I
for the heaviest generation I of the left-handed neutrinos. In
order to obtain the production scale, we need to know the
dynamics of the Higgs background. At the beginning of the
particle production era, the backreaction JBR in (49) can be
neglected. Then the time derivative of the Higgs background
can be represented as

|〈ḣ(t)〉| ∼
√

λ

2
(〈hmax〉4 − 〈h(t)〉4). (66)

In the derivation of the above equation, we assume 〈ḣ〉 = 0
when 〈h〉 = 〈hmax〉. Substituting (66) into (65), we obtain

1 � 23/2

√
Q

·
√

1 − (〈h(t)〉/〈hmax〉)4

|〈h(t)〉/〈hmax〉|3 (67)

where

Q ≡ 4

λ

(
mν,heviest〈hmax〉

〈hnow〉2

)2

= 4

λ
·
(
mν,heviest

0.1 eV

〈hmax〉
6.05 × 1014 GeV

)2

. (68)

Note that the parameter Q corresponds to the resonance
parameter q known in the Mathieu equation.6

In the case of Q 
 1 which corresponds to the broad
resonance, the condition (67) can be simplified to

|〈h(t)〉| �
√

2Q−1/6〈hmax〉. (71)

This result shows us the production area of the left-handed
neutrinos. Furthermore, applying the Tayler expansion to the
Higgs background

〈h(t)〉 ∼ 〈ḣ(t = t∗)〉(t − t∗) ∼
√

λ

2
〈hmax〉2(t − t∗) (72)

6 The Mathieu equation for a function y = y(x) is given by

0 = y′′ + (A − 2q cos 2x)y (69)

where A and q are the resonance parameters. In this equation, the
non-adiabatic condition is obtained as

1 �
∣∣∣∣ (

√
A − 2q cos 2x)′

A − 2q cos 2x

∣∣∣∣
A=2q

= 1

2
√
q

· | cos x |
sin2 x

. (70)
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where t = t∗ is a time when 〈h(t = t∗)〉 = 0, we obtain the
time scale of the particle production around 〈h〉 = 0 as

|t − t∗| �
(
Q1/6

√
λ

4
〈hmax〉

)−1

≡ �t. (73)

This time scale implies the momentum scale of the produced
particles as

|k| � |[mν(t = t∗ + �t)]heaviest| = 1

�t
≡ �k. (74)

In the case of Q � 1 which corresponds to the narrow
resonance, the condition (67) is satisfied for almost any value
of 〈h〉 except the narrow area of 〈h〉 ∼ 〈hmax〉. Therefore,
the time scale of the particle production is estimated by the
oscillation time scale of the Higgs background tosc as

�t ∼ tosc ∼
∫ 〈hmax〉

0
dh

1√
λ
2

(〈hmax〉4 − h4
)

= 0.9270 ·
(√

λ

4
〈hmax〉

)−1

(75)

and thus the momentum scale can be estimated by

|k| � |[mν(〈h〉 = 〈hmax〉)]heaviest| = mν,heviest〈hmax〉2

〈hnow〉2 .

(76)

3.4 Entropy density

Since the cosmological observation of the baryon number
density nB is normalized by the entropy density s as nB/s,
we need to estimate not only the net lepton number density
but also the entropy density. In this section, we discuss the
produced entropy in cases of the following two types of sit-
uation:

• Case A: The main contribution of the entropy is produced
by the perturbative decay of the inflation field φ.

• Case B: The main contribution of the entropy is produced
by the non-perturbative decay of the Higgs background
due to its oscillation, that is, the lepton number generation
and the entropy production occurs simultaneously.

The difference in Cases A and B are not only the dominant
component of the Universe in the epoch of entropy produc-
tion but also the entropy production mechanism. In many
cases, the situation is included in Case A. While in Case B,
the Universe must be dominant by the Higgs background.
To realize this situation seems difficult if the model includes
both the Higgs background and any inflation fields. As an

example of Case B, the Higgs inflation model [30] would be
applicable.

3.4.1 Case A: entropy production by inflation field

The produced entropy density s at the decay time of the infla-
tion field t = tR is given by

s(tR) =
( g∗

180π

)1/4
(�φMpl)

3/2 = 0.65 · (�φMpl)
3/2 (77)

where g∗ ∼ 100 is the degrees of freedom of the relativistic
particles, �φ = 1/tR is a decay width of φ and Mpl =
1.22 × 1019 GeV is the Planck mass. Assuming the lepton
number generation is completed at t = tL < tR , the lepton
number density nL at t = tR can be written as

nL(tR) = nL(tL) · a(tL)3

a(tR)3 = nL(tL) · �2
φ t

2
L (78)

because of nL(t) ∝ 1/a(t)3 ∝ t−2 until t = tR . Therefore,
the lepton-to-entropy ratio at t = tR can be shown as

nL(tR)

s(tR)
= nL(tL) · �2

φ t
2
L

0.65 · (�φMpl)3/2 (79)

= 4.0 × 10−10 · nL(tL)�t3

10−8

( 〈hmax〉
1016 GeV

)2

·
(

�φ

1012 GeV

)1/2 (
Nosc

5

)2

(80)

where �t is a production time scale of the left-handed neu-
trino defined in (73) and

Nosc ∼ 1

2π
· tL

4tosc
(81)

is the number of the Higgs oscillation until the lepton number
generation completes. Hence, this scenario requires a high
scale amplitude around 〈hmax〉 ∼ 1016 GeV and strong decay
of the inflation field. We will see later with numerical results
whether enough lepton numbers are produced or not.

3.4.2 Case B: entropy production by the Higgs background

In this situation, we need to evaluate the entropy from
the information of the decay products through the non-
perturbative decay from the Higgs oscillation. In our anal-
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ysis, we estimate the entropy density with the distribution
functions of the produced particles as7

s =
∑

i for bosons

Ni

∫
d3k

(2π)3 [(1 + f (i)
k ) ln(1 + f (i)

k )

− f (i)
k ln f (i)

k ]
+

∑
i for fermions

Ni

∫
d3k

(2π)3 [−(1 − f (i)
k ) ln(1 − f (i)

k )

− f (i)
k ln f (i)

k ] (84)

where Ni and f (i)
k are the degrees of freedom and the distri-

bution function for species i particle, respectively.
In our scenario, sizable gauge bosons W± and Z and the

Higgs bosons are produced by the oscillating Higgs back-
ground. As we approximated in (54), we can also approxi-
mate (84) by the effective degrees of freedom Ndeg and the
distribution of χ particle. Then, we can obtain

s ∼ Ndeg

∫
d3k

(2π)3 [(1 + f (χ)
k ) ln(1 + f (χ)

k ) − f (χ)
k ln f (χ)

k ]
(85)

where the distribution function can be represented by the
wave function as

f (χ)
k = |u̇k |2 + ω2

χk |uk |2
2ωχk

− 1

2
. (86)

Since it is difficult to obtain the analytic results in this case,
we will see the numerical results in Sect. 3.6.

3.5 Model parameters

Before we show our numerical results, we mention the
required input parameters for our analysis. There are 17
model parameters required by the analysis of the lepton
asymmetry:

7 In the case of the equilibrium distribution

fk = 1

e(ωk−μ)/T ∓ 1
(− : bosons, + : fermions) (82)

where ωk = √|k|2 + m2 is one-particle energy, μ is chemical potential
and T is temperature, one can derive the familiar representation of the
entropy density from (84) as

s = ρ + p − μn

T
(83)

where ρ is the energy density, p is the pressure and n is the number
density.

• The gauge couplings gY , gW and the Higgs self-coupling
λ

• Masses of the left-handed neutrinos mν,now = diag(m1,

m2,m3)

• Masses of the right-handed neutrinos MR = diag(M1,

M2, M3)

• Complex orthogonal matrix O: 6 real parameters
• Initial values of 〈h(t0)〉, 〈ḣ(t0)〉

The SM parameters gY , gW , and λ could be determined by
the renormalization group running once the initial conditions
for 〈h(t0)〉, 〈ḣ(t0)〉 are determined.

For simplicity, we assume that m3 is the heaviest left-
handed neutrino and that a non-degenerate mass spectrum
to the left-handed neutrinos in later analysis.8 Taking into
account the observations of the neutrino oscillation [31], we
set the heaviest mass of the left-handed neutrinos as

m3 ∼
√

|�m2
32| =

√
2.5 × 10−3 eV. (87)

The mass scale of the right-handed neutrinos is con-
strained in our analysis. The lightest right-handed neutrino
must be much heavier than the heaviest left-handed neutrino
because of the validity of the effective theory. Hence, the
lightest mass of the right-handed neutrinos must be

[MR]lightest 
 max([mν(t)]heviest) (88)

= 〈hmax〉2

〈hnow〉2 m3 = 〈hmax〉2

1.21 × 1015 GeV
(89)

where 〈hmax〉 is a maximal value of |〈h(t)〉|. Note that the
typical scale in our scenario is characterized by

〈hnow〉2

m3
= 1.21 × 1015 GeV. (90)

Finally, we mention the treatment of the complex orthogo-
nal matrix O . Since this matrix does not have any constraints,
we treat it as a set of free parameters. The parametrization
can be taken as

O =
⎛
⎝ 1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 −s13

0 1 0
s13 0 c13

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ (91)

where

ci j ≡ cos θi j

= cosh(Im θi j ) · cos(Re θi j ) − i sinh(Im θi j ) · sin(Re θi j )

(92)

8 Although the case of the degenerate mass spectrum is also applicable
to our scenario, we do not consider such a case in this paper because
the mass scale of the left-handed neutrinos cannot be determined.
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si j ≡ sin θi j

= cosh(Im θi j ) · sin(Re θi j ) + i sinh(Im θi j ) · cos(Re θi j ).

(93)

The complex parameters θ12, θ23, θ13 correspond to 6 real
parameters.

3.6 Numerical results

Finally, we show our numerical results with a set of specific
parameters. In our analysis, we set the gauge couplings and
the Higgs self-coupling at the Higgs oscillation scale as9

g2
Y = g2

W = 4π · 1

40
, λ = 0.001. (94)

Then, the effective degrees of freedom defined in (56) is
evaluated as

Ndeg ∼ 12. (95)

Basically, the other parameters are free. In this paper, we
choose the parameters to be

mν,now = diag(0,

√
�m2

21,

√
|�m2

32|)
= diag(0,

√
7.5 × 10−5,

√
2.5 × 10−3) eV, (96)

MR = M1 × diag(1, 10, 100), (97)

θ12 = π

6
+ 0.1i, θ23 = π

12
+ 0.2i, θ13 = π

4
+ 0.3i,

(98)

where mν,now and MR are diagonal mass matrices of the left-
and right-handed neutrinos on 〈h〉 = 246 GeV and each θi j
defined in (91), (92) is a parameter of the orthogonal matrix
O . Furthermore, we assume

〈ḣ(t0)〉 = 0 (99)

for simplicity. With this assumption, we can regard 〈hmax〉
as 〈h(t0)〉. The rest parameters 〈h(t0)〉 and M1 are treated
as variables in our analysis. Using the above parameters,
we solve (32)–(34) and (62) numerically. Substituting the
obtained values into (28), (85) and (86) at each time, we can
follow the time evolution of the net lepton number.

9 For the Higgs self-coupling λ, there exists the vacuum stability prob-
lem that the coupling λ tends to run into negative at high scale � 109−15

GeV [32,33]. Since our scenario requires the oscillation of the Higgs
background, we assume that the Higgs self-coupling maintains positive
at the focusing scale.

3.6.1 Case A: entropy production by inflation field

At first, we focus on a situation of Case A in which the entropy
production is induced by the decay of the inflation field after
the generation of the lepton asymmetry. As discussed in Sect.
3.4.1, hmax ∼ 1016 GeV is required. Our numerical results
with

〈h(t0)〉 = 1016 GeV, M1 = 1017 GeV (100)

are shown in the upper panel of Fig. 1. One can see that the
evolution of the net lepton number oscillates between the
positive and negative with a similar magnitude of 10−6 at
the first stage. The flipping of the sign happens when the
Higgs amplitude reaches to the edge, i.e., 〈h(t)〉 ∼ 〈hmax〉.
After the Higgs amplitude dumps at t ∼ 190�t where �t is a
time scale of the particle production defined in (73), however,
the oscillation of the lepton number stops and its evolution
freezes around

nL�t3 ∼ 2 × 10−6. (101)

The main reason for the amplitude reduction of the Higgs
background is the resonant production of the gauge bosons
and the Higgs boson. The production of the left-handed neu-
trinos with lepton number violation also occurs but the energy
conversion from the Higgs background is much smaller
because the interaction is suppressed by the right-handed
neutrino mass scale. Once enough bosons are produced, their
plasma behaves as an effective mass of the Higgs back-
ground. In consequence, the Higgs background loses its
energy and the non-adiabatic condition, and hence the all
of the particle production finally stops. Since the neutrino
production freezes, the asymmetry flipping also freezes. As
seen in the lower panel of Fig. 1, the asymmetry flipping
lasts forever if the backreaction is not taken into account in
the analysis. Therefore, the effect of the backreaction has an
important role to fix the final amount of the asymmetry.

Substituting the numerical results (101) and Nosc ∼ 7 into
(80), one can obtain

nL(tR)

s(tR)
∼ 2.4 × 10−10 ·

(
�φ

4.2 × 106 GeV

)1/2

. (102)

Thus, there exist possible parameters to explain in Case A if
the amplitude of the Higgs background and the right-handed
neutrino mass scale is higher. Note that the estimation here
is valid in the case that the effect of the decay product from
the inflation field can be neglected during the generation of
the lepton asymmetry. Because the backreaction to the Higgs
background in our numerical analysis only includes the con-
tribution from W± and Z . If the contribution of other decay
products is not negligible, the time evolution of the Higgs
background, and hence, the net lepton number would change.
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Fig. 1 Upper: the time evolutions of the lepton number in a volume
of �t3 and the amplitude of the Higgs background. The parameters are
set by 〈h(t0)〉 = 1016 GeV and M1 = 1017 GeV. The first two figure
shows the time evolution of the net lepton number with normal and
logarithmic scales of the vertical axes. The third figure shows the time
evolution of the Higgs amplitude. Lower: the time evolutions with the
same parameters to the upper panel but without the backreaction effect
(JBR = 0 in (49))

In contrast to the case of parameters (100), cases of the
lower scales of 〈h(t0)〉 and M1 tend not to be able to explain
the current asymmetry. According to our calculation with
parameters 〈h(t0)〉 = 1.5 × 1014 GeV and M1 = 1015 GeV,
the analysis shows nL(tL)�t3 ∼ −4 × 10−9 and Nosc ∼ 5.
(See the lower panel of Fig. 3 for its evolution.) These results
lead

nL(tR)

s(tR)
∼ 2.4 × 10−10 ·

(
�φ

1.4 × 1015 GeV

)1/2

. (103)

Because the required decay width is greater than the mass of
the inflation field mφ ∼ 1013 GeV, this scenario seems not
to work.

3.6.2 Case B: entropy production by the Higgs background

Next, we focus on the situation of Case B in which the entropy
production occurs through the resonant particle production
of the gauge bosons W± and Z due to the oscillation of the
Higgs background. Since we assume the main production of
entropy happens in this dynamics, the lepton-to-entropy ratio

is fixed after all of the particle production due to the Higgs
background completes. In this case, surprisingly, enough lep-
ton asymmetry can be generated even if the scale of the ampli-
tude of the Higgs background is smaller than Case A. As an
example of the successful results, we show the numerical
results with the parameters

〈h(t0)〉 = 1.5 × 1014 GeV, M1 = 1015 GeV (104)

in Fig. 2. The upper panel shows the time evolution of the
lepton-to-entropy ratio and the amplitude of the Higgs back-
ground. Although the aspects of the time evolutions are sim-
ilar as seen in Fig. 1, one can see a different point that the
graph of |nL/s| seems to decrease in its evolution during
the flipping of the asymmetry. The reason can be seen from
the lower panel of Fig. 2 that shows the time evolutions of
the number density of bosons, entropy density, and net lepton
density in the volume �t3. Actually, the magnitude of the net
lepton number is almost fixed except its sign. But the entropy
is generated exponentially by the parametric resonance. As a
result, nL/s reduces at the early stage, and the magnitude is
fixed because the entropy production becomes steady at the
later stage. It is also interesting that the produced entropy is
much smaller than the bosonic number density.

Finally, we show the comparison with different values for
〈h(t0)〉 and M1 in Fig. 3. According to this result, larger scale
of 〈h(t0)〉 and M1 gives larger magnitude of nL/s. Although
we fix 〈h(t0)〉/M1 = 0.1 in this comparison, the case of
〈h(t0)〉/M1 < 0.1 leads smaller magnitude of nL/s during
the whole time evolution. This figure also shows that more
than 1014 GeV scales for 〈h(t0)〉 and M1 are required to
generate |nL/s| ∼ 10−10 in our scenario.

4 Conclusion and discussion

In this paper, we proposed a new leptogenesis scenario in
which the lepton asymmetry is generated by the coherent
oscillating Higgs background, and demonstrated that the
type-I seesaw model as an illuminating example can generate
enough lepton number. Although the analytic results are not
derived because of the difficulty of the analysis, we showed
the numerical results with some choices of parameters. We
emphasize that in our scenario the particle production and
the asymmetry generation occur simultaneously. Hence any
perturbative decay processes do not need during the lepton
asymmetry generation. This is a quite different point from
the ordinary scenario. Although we discussed the type-I see-
saw model, a similar scenario is possible to be constructed
by other models that include the baryon or lepton number
violating interaction, C- and CP-violating parameters, and
the time-varying background fields. If such a model has the
oscillating background field and baryon or lepton number
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Fig. 2 Numerical results with parameters 〈h(t0)〉 = 1.5 × 1014 GeV
and M1 = 1015 GeV. Upper: the time evolution of the lepton-to-entropy
ratio, its absolute value with the logarithmic scale and the amplitude of
the Higgs background. The final value of the lepton-to-entropy ratio at
t/�t = 100 is nL/s = −6.54 × 10−10. Lower: the time evolution of
the number of bosons, their corresponding entropy and lepton number
in volume �t3

Fig. 3 The time evolution of the absolute value of the lepton-to-entropy
ratio comparison with several initial conditions. The initial value of
〈h(t0)〉 and the lightest right-handed neutrino mass M1 are varied but
their ratio is fixed as 〈h(t0)〉/M1 = 0.1. The time scale �t is evaluated
in the case of 〈h(t0)〉 = 1010 GeV

violating interaction with C and CP violation, then the asym-
metry could be generated.

We considered two cases of entropy production separately.
One is due to the perturbative decay of the inflation field, that
is considered in the standard reheating theory. In this situa-
tion, the typical amplitude scale of the Higgs background
is required around 〈h〉 ∼ 1016 GeV. Another case is due
to the non-perturbative decay from the oscillating Higgs
background, in which the Higgs inflation model would be
applicable. An advantage compared to Case A, lower scale
〈h〉 ∼ 1014 GeV is possible. Note that the parameter choice in
Sect. 3.6 is an example in whole parameter space. For exam-
ple, there exists the allowed parameter choice for 〈h0〉 � 1014

GeV in Case B if other parameters (e.g., Mi , θi j , etc.) are
chosen to the different values.

In both cases, the quite large initial value for the Higgs
background compared to the electroweak scale is required. In
Case B, the origin of such a large value would be expected that
the quantum fluctuation grows before or during inflation as
similar to the chaotic inflation because the Higgs is identified
to the inflaton.10 However, to apply this expectation might be
not straightforward in Case A. Once the Higgs achieves the
large expectation value before or during inflation, its value
can be maintained as long as the Higgs oscillation scale is
smaller than the Hubble friction

√
λ〈h0〉 � H . If we consider

the chaotic inflation, then H ∼ 1013−14 GeV at the end of
inflation is expected. Then, the initial Higgs background must
be 〈h0〉 � Hend/

√
λ ∼ 3 × 1014−15 GeV in order to start the

Higgs oscillation after inflation. As we have seen in (103), the
lower initial value of 〈h0〉 leads a unfavorable requirement
�φ � mφ to explain the present baryon asymmetry. Thus,
if one wants to seek the origin of the large initial value 〈h0〉
by the quantum fluctuation, additional conditions might be
required to maintain the Higgs initial background in Case A,
e.g., the existence of a flat-shape potential at 〈h〉 > 〈h0〉 or
other mechanisms.

Because we used some approximations in our analysis
to avoid complicated formulations, we need to mention the
validity and the condition.

First, we constructed an effective theory in which the right-
handed neutrinos do not appear. If one wants to apply to a case
that the scale of the initial amplitude of the Higgs background
is larger than the mass scale of the right-handed neutrinos, a
complete calculation is needed.

Secondary, we neglected the fermionic two-point func-
tions and any correlation functions of more than two-points.
In the case that the bosonic resonant production is not rele-

10 The chaotic-type Higgs inflation is already ruled out because the
CMB spectrum requires λ ∼ 10−13. The successful Higgs inflation
model [30] has the non-minimal coupling between the Higgs and grav-
ity. In the case of λ = 0.001, the logarithmic potential is realized at
|〈h〉| � 6 × 1016 GeV. In |〈h〉| � 6 × 1014 GeV, the Higgs potential
behaves as the SM.

123



Eur. Phys. J. C (2020) 80 :1098 Page 13 of 14 1098

vant, the fermionic two-point function could affect the back-
reaction in (50) as well as the bosonic terms. If the effects
of the correlation functions of three and more points could
be included in the analysis, the results would describe the
effects of decay and scattering processes, which could pro-
vide secondary sources of the lepton asymmetry.

Thirdly, our analysis neglects the decay of the Higgs and
the gauge bosons. If those particles rapidly decay in the lepto-
genesis time scale, the parametric resonance that reduces the
energy of the Higgs background does not occur. For example,
the decay rate of W can be evaluated by

�W = 0.058 · g2
WmW = 0.058 · 1

2
g3
W |〈h〉| (105)

where the coefficient 0.058 is taken to satisfy the current
experimental result �W = 2 GeV [34,35] at the electroweak
scale. Applying our parameter (94), one can obtain

�W = 0.0051|〈h〉|. (106)

Using the Boltzmann equation neglected the expansion effect

∂t nW = −�W (t)nW (107)

where nW is the number density of W boson, we can estimate
the decrease rate of W bosons in each interval of the particle
production as

nW (t + 2tosc)

nW (t)
= exp

[
−

∫ t+2tosc

t
dt ′ �W (t ′)

]

= exp

⎡
⎣−2

∫ 〈hmax〉

0
dh

0.0051h√
λ
2

(〈hmax〉4 − h4
)
⎤
⎦

= e−0.0051π/
√

2λ = 0.70 (108)

where tosc is the quarter-oscillation time defined in (75) and
we used (66) as going to the second line. Because of the
decay rate of Z , �Z = 2.5 GeV, the decrease rate of Z could
be similar. Since 70% of W and Z bosons could survive
until the next particle production, we can expect that still
the parametric resonance can work well. If the decay of W
and Z is taken into account, the end time of the leptogenesis
would be slightly longer because the resonance efficiency is
reduced.

Finally, we neglected the spatial expanding effect in the
whole calculation. Although a realistic model must include
the expansion effect, we ignored it for simplicity and to
see a clear structure of the dynamics. As we mentioned
above, the Higgs background can maintain the initial value
of its amplitude when the Hubble parameter H is much
larger than the oscillation scale of the Higgs background
(H 
 √

λ|〈hmax〉|). The Higgs background can start to
oscillate after the expansion scale becomes smaller than the

oscillation scale (H �
√

λ|〈hmax〉|). However, the expand-
ing effect might change the whole dynamics seriously. Since
the time scale of the particle production �t is much smaller
than the Hubble inverse H−1 in many cases, the expand-
ing effect at the moment of the particle production can be
negligible. But the spatial expansion makes the amplitude of
the Higgs background shrink, and thus the velocity of the
background at the particle production area becomes smaller.
Consequently, the amount of the produced left-handed neu-
trinos would be reduced, and thus there is a possibility that
the lepton asymmetry would become smaller. On the other
hand, entropy production would also be reduced. The result
might strongly depend on the evolution of the Hubble param-
eter, i.e., the matter contents. We leave the analysis with the
expanding effect to a future work.
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