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Abstract Starting from the general effective hamiltonian

relevant to the b → s transitions, we derive the expressions

for the full angular distributions of the B → K (∗)ℓ1ℓ2 decay

modes, as well as for B(Bs → ℓ1ℓ2) (ℓ1 �= ℓ2). We point out

the differences in the treatment of the lepton flavor violating

modes with respect to the lepton flavor conserving ones. The

relevant Wilson coefficients we evaluate in two different sce-

narios: (i) The (pseudo-)scalar coefficients are obtained using

the (pseudo-)scalar coupling extracted from the experimental

non-zero value of B(h → μτ), (ii) we revisit a Z ′ model in

which the flavor changing neutral couplings are allowed. We

provide the numerical estimates of the branching fractions of

the above-mentioned modes in both scenarios.

1 Introduction

With the discovery of Higgs boson at the LHC the Standard

Model (SM) has become a complete theory describing all

known phenomena at the energies around and below the elec-

troweak scale. The quest for physics beyond the SM (BSM)

is of major importance in order to solve the hierarchy and

flavor problems. In that respect the processes mediated by

the flavor changing neutral currents (FCNC) are particularly

interesting because they provide us with a window to BSM

physics through low energy experiments. Among those, most

attention in recent years has been devoted to the exclusive

b → s transitions because of the detection and measure-

ment of B(Bs → μ+μ−) at LHC [1], in addition to the

detailed angular distributions of the B → K (∗)ℓ+ℓ− [2,3]

and Bs → φℓ+ℓ− [4] decays which gave us access to a

number of observables, including those that are only mildly

sensitive to hadronic uncertainties, while being highly sensi-

tive to the potential effects of BSM physics [5–9]. Currently

a couple of discrepancies have been observed [10,11] but

their interpretation is still a subject of controversies which
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are mostly related to various sources of hadronic uncertain-

ties, cf. e.g. [12].

Although the significant effects of BSM physics were

expected to affect the hadronic part of the b → sℓ+ℓ− pro-

cesses, it turned out that the most surprising effect came from

the ratio

RK =
B(B → Kμ+μ−)q2∈[1,6] GeV2

B(B → K e+e−)q2∈[1,6] GeV2

, (1)

the measured value of which, RK = 0.745
(

+90
−74

)

(36) [13],

turned out to be 2.6σ lower than the one predicted in the

SM [14]. Importantly, in this ratio the hadronic uncertainties

cancel to a very large extent and the discrepancy is then natu-

rally attributed to the violation of the lepton flavor universal-

ity. There have been several attempts to describe this discrep-

ancy in terms of various BSM models [15–28]. Most of the

models allowing to accommodate the lepton flavor universal-

ity violation also allow for the lepton flavor violation (LFV).

Although the LFV exclusive decays based on b → sℓ1ℓ2

(ℓ1,2 ∈ {e, μ, τ }) have not been studied at the LHC so far,1 a

recent report by CMS on the observation of a 2σ excess

of h → μτ decay [30] boosted the interest in studying

Bs → ℓ1ℓ2, B → K (∗)ℓ1ℓ2, and Bs → φℓ1ℓ2 [31–39].

In this paper we provide the explicit expressions for the

angular distributions and decay rates of the above exclusive

processes, in the case of ℓ1 �= ℓ2. As we shall see, some

of the operators that do not contribute to the lepton flavor

conserving processes (LFC) can significantly contribute to

the LFV ones. By taking the limit m1 = m2 we retrieve the

known expressions for the LFC processes. Our formulas are

obviously applicable to any similar process and are written

in terms of hadronic matrix elements of the relevant opera-

tors and the associated Wilson coefficients. To get the Wilson

coefficients in the LFV case we will proceed in two ways: (i)

We will first assume LFV to be generated through the scalar

1 A notable exception has been the search for Bs → eμ mode at

LHCb [29].
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operator, via coupling to the Higgs boson, and estimate the

size of the Wilson coefficients C
μτ
S,P from the experimental

information on B(h → τμ), and then predict the decay rates

of the above-mentioned processes; (ii) We use a model with

a Z ′-boson in which the LFV is generated by the vector inter-

action, estimate the Wilson coefficients C
μτ
9,10 by the known

information as regards the Bs–Bs mixing and the other low

energy observables. This latter option has been discussed in

Ref. [39], which we briefly revisit.

The remainder of this paper is organized as follows: In

Sect. 2 we set the definitions of the effective Hamiltonian,

recall the standard parametrization of hadronic matrix ele-

ments and derive the formulas for all three types of the exclu-

sive b → sℓ1ℓ2 decay modes. In Sect. 3 we discuss the case

of the LFV contributions arising from the scalar operator and

derive the upper bounds on the specific decay modes using

CS,P extracted from B(h → τμ). In Sect. 4 we revisit the

upper bounds on the same processes derived in the frame-

work of the Z ′ model. We briefly summarize in Sect. 5.

2 Exclusive b → sℓ1ℓ2 decays

As a starting point we will extend the usual effective Hamilto-

nian for the b → s transitions by including the LFV operators

Heff = −
4G F√

2
VtbV ∗

ts

×
∑

i=7,9,10,S,P

(

Ci (μ)Oi (μ) + C ′
i (μ)O′

i (μ)
)

, (2)

where the relevant operators are defined by

O9 =
e2

g2
(s̄γμ PL b)(ℓ̄1γ

μℓ2), O10 =
e2

g2
(s̄γμ PL b)(ℓ̄1γ

μγ 5ℓ2),

OS =
e2

(4π)2
(s̄ PRb)(ℓ̄1ℓ2), OP =

e2

(4π)2
(s̄ PRb)(ℓ̄1γ5ℓ2),

(3)

and the operators with flipped chiralityO′
9,10,S,P are obtained

from O9,10,S,P by replacing PL ↔ PR , where PL/R =
1
2
(1 ∓ γ5). In the SM the operators O9,10 play the major

role, together with the electromagnetic penguin operator

O7 = (e/g2)mb(s̄σμν PRb)Fμν . The corresponding Wil-

son coefficients are obtained through a perturbative matching

between the full and effective theories at the weak interac-

tion scale μ ≃ mW and then run down to the scale at which

the process takes place, namely μ = mb. After appropri-

ately absorbing the effects of O1−6 in the effective Wilson

coefficients, one finally has C7 = −0.304, C9 = 4.211,

C10 = −4.103 [40]. Other Wilson coefficients in the SM are

zero, C ′
7,9,10 = 0, C

(′)
S,P = 0. Of course, if m1 �= m2 all the

Wilson coefficients are zero in the SM and in order to gen-

erate their non-zero values one needs to work in a specific

framework of BSM physics. Before embarking on that part

of the problem, we will now derive the expressions for the

decay rates and angular distributions (when possible) starting

from the Hamiltonian (2).

2.1 Leptonic decay Bs → ℓ1ℓ2

We first focus on the simplest exclusive b → sℓ1ℓ2 mode,

Bs → ℓ1ℓ2, which is also instructive as far as the operators

contributing to the process are concerned. Of course, and

after the trivial replacements, the same expressions will be

valid for Bd → ℓ1ℓ2. We use the standard decomposition of

the hadronic matrix element,

〈0|b̄γμγ5s|Bs(p)〉 = i pμ fBs , (4)

where fBs is the Bs-meson decay constant, and we obtain

B(Bs → ℓ−
1 ℓ+

2 )theo

=
τBs

64π3

α2G2
F

m3
Bs

f 2
Bs

|VtbV ∗
ts |

2λ1/2(m Bs , m1, m2)

×

⎧

⎨

⎩

[m2
Bs

− (m1 + m2)
2] ·

∣

∣

∣

∣

∣

(C9 − C ′
9)(m1 − m2)

+(CS − C ′
S)

m2
Bs

mb + ms

∣

∣

∣

∣

∣

2

+[m2
Bs

− (m1 − m2)
2] ·

∣

∣

∣

∣

∣

(C10 − C ′
10)(m1 + m2)

+(CP − C ′
P )

m2
Bs

mb + ms

∣

∣

∣

∣

∣

2
⎫

⎬

⎭

, (5)

where λ(a, b, c) = [a2 − (b − c)2][a2 − (b + c)2]. What

immediately becomes evident from Eq. (5) is that in the

LFV channel the lepton vector current is not conserved,

i∂μ(ℓ̄1γ
μℓ2) = (m2 − m1)ℓ̄1ℓ2 �= 0, and the contribution

of C
(′)
9 cannot be neglected. Quite obviously, in the limit

m1 = m2 one finds the usual expression for B(Bs → ℓ+ℓ−).

Finally, when confronting theory with the experimental mea-

surements one needs to account for the effect of oscillations

in the Bs − Bs system because the time dependence of the

Bs-decay rate has been integrated in experiment. Therefore,

and to a good approximation, one can identify [41]

B(Bs → ℓ1ℓ2)exp ≈
1

1 − ys

B(Bs → ℓ1ℓ2)
th , (6)

where ys = �ŴBs /(2ŴBs ) = 0.061(9), as measured at

LHCb [42]. Notice that the non-conservation of the vector

current induces the term in Eq. (5) proportional to C9 − C ′
9,

which involves the difference of the lepton masses, and
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therefore the decay modes Bs → ℓ−
1 ℓ+

2 and Bs → ℓ+
1 ℓ−

2

should be studied separately, unless there is a reason that

(C9 − C ′
9)12 = −(C9 − C ′

9)21. One should therefore be

careful in relating the LFV with the LFC contributions via

a multiplicative factor. For that to be plausible, one should

make sure the contribution proportional to C9 − C ′
9 in the

LFV case is absent.

2.2 B → Kℓ1ℓ2

Throughout this paper we will use the kinematics of Ref. [43],

which for the case of B → Kℓ−
1 ℓ+

2 means that the main

decay axis z is defined in the rest frame of B, so that K and

the lepton pair travel in the opposite directions. The angle

between the negatively charged lepton and the decay axis

(opposite to the direction of flight of the kaon) is denoted by

θℓ and is defined in the lepton-pair rest frame. Concerning

the hadronic matrix elements we use the following (standard)

parametrizations:

〈K̄ (k)|s̄γμb|B̄(p)〉 =

[

(p + k)μ −
m2

B − m2
K

q2
qμ

]

f+(q2)

+
m2

B − m2
K

q2
qμ f0(q

2), (7)

〈K̄ (k)|s̄σμνb|B̄(p)〉 = −i(pμkν − pνkμ)
2 fT (q2, μ)

m B + mK

,

(8)

where f+,0,T (q2) are the hadronic form factors, functions of

q2 = (p − k)2 = (p1 + p2)
2, with (m1 + m2)

2 ≤ q2 ≤
(m B − mK )2. In the following the scale μ = mb will be

assumed. Using the above definitions we can then write the

differential decay rate in the following form:

dB

dq2
(B̄ → K̄ℓ−

1 ℓ+
2 ) = |NK (q2)|2

×
{

ϕ7(q
2)|C7 + C ′

7|
2 + ϕ9(q

2)|C9 + C ′
9|

2

+ ϕ79(q
2)Re[C7C∗

9 ] + ϕ10(q
2)|C10 + C ′

10|
2

+ ϕS(q2)|CS + C ′
S|2 + ϕP (q2)|CP + C ′

P |2

+ϕ9S(q2)Re[C9C∗
S] + ϕ10P (q2)Re[C10C∗

P ]
}

, (9)

where the ϕi (q
2) depend on kinematical quantities and on

the form factors, or more explicitly:2

ϕ7(q
2) =

2m2
b| fT (q2)|2

(m B + mK )2
λ(m B , mK ,

√

q2)

×

[

1 −
(m1 − m2)

2

q2
−

λ(
√

q2, m1, m2)

3q4

]

,

2 In the notation used to write the formulas for ϕa(b)(q
2) the upper signs

correspond to ϕa(q2) and lower to ϕb(q
2).

ϕ9(10)(q
2) =

1

2
| f0(q

2)|2(m1 ∓ m2)
2 (m2

B − m2
K )2

q2

×
[

1−
(m1 ± m2)

2

q2

]

+
1

2
| f+(q2)|2λ(m B , mK ,

√

q2)

×

[

1−
(m1 ∓ m2)

2

q2
−

λ(
√

q2, m1, m2)

3q4

]

,

ϕ79(q
2) =

2mb f+(q2) fT (q2)

m B + mK

λ(m B , mK ,

√

q2)

×

[

1−
(m1 − m2)

2

q2
−

λ(
√

q2, m1, m2)

3q4

]

,

ϕS(P)(q
2) =

q2| f0(q
2)|2

2(mb − ms)2
(m2

B − m2
K )2

×
[

1 −
(m1 ± m2)

2

q2

]

,

ϕ10P(9S)(q
2) =

| f0(q
2)|2

mb − ms

(m1 ± m2)(m
2
B − m2

K )2

×
[

1 −
(m1 ∓ m2)

2

q2

]

. (10)

Finally, the normalization factor in Eq. (9) reads

|NK (q2)|2 = τBd

α2G2
F |VtbV ∗

ts |2

512π5m3
B

λ1/2(
√

q2, m1, m2)

q2

×λ1/2(

√

q2, m B, mK ). (11)

Like in the previous subsection we see that due to the non-

conservation of the leptonic vector current, the new pieces

emerge in the functions ϕi (q
2). By taking the limit m1 = m2

in Eq. (10) we retrieve the known expressions for the LFC

case. We should also emphasize that the interference term

ϕ9S(q
2) changes the sign depending on the charge of the

heavier lepton. In other words, if one assumes that the Wilson

coefficients (Ci )12 = (Ci )21, then the difference between

B(B → Kℓ−
1 ℓ+

2 ) and B(B → Kℓ−
2 ℓ+

1 ) will be a measure of

the interference term proportional to Re[C9C∗
S].

2.3 B → K ∗ℓ1ℓ2 and Bs → φℓ1ℓ2

These processes proceed via B → K ∗(→ Kπ)ℓ1ℓ2 and

Bs → φ(→ K K̄ )ℓ1ℓ2. Since the expression for the angu-

lar distribution of the latter decay can be obtained by the

trivial replacements in the expression for the former decay

mode, we will focus on B̄ → K̄ ∗(→ K −π+)ℓ−
1 ℓ+

2 . As

already stated in the previous subsection, we adopt the kine-

matics of Ref. [43], which is even more explicitly specified

in Ref. [44] and fixed in such a way that they coincide with

the conventions adopted in experiments at the LHC [2,3]. In

the appendix of the present paper we give necessary details

concerning the kinematics of this process. Besides θℓ we also
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need θK , the angle between the decay axis −z and the direc-

tion of flight K − in the rest frame of K̄ ∗ (cf. Fig. 4). The

angle between the planes spanned by Kπ and ℓ−
1 ℓ+

2 respec-

tively is denoted by φ. In this case there are many more

form factors parametrizing the hadronic matrix elements,

namely,

〈K̄ ∗(k)|s̄γ μ(1 − γ5)b|B̄(p)〉

= εμνρσ ε∗ν pρkσ 2V (q2)

m B + mK ∗
− iε∗

μ(m B + mK ∗)A1(q
2)

+ i(p + k)μ(ε∗ · q)
A2(q

2)

m B + mK ∗

+ iqμ(ε∗ · q)
2mK ∗

q2
[A3(q

2) − A0(q
2)], (12)

〈K̄ ∗(k)|s̄σμνqν(1 − γ5)b|B̄(p)〉
= 2iεμνρσ ε∗ν pρkσ T1(q

2) + [ε∗
μ(m2

B − m2
K ∗)

− (ε∗ · q)(2p − q)μ]T2(q
2)

+ (ε∗ · q)

[

qμ −
q2

m2
B − m2

K ∗
(p + k)μ

]

T3(q
2), (13)

where εμ is the polarization vector of K ∗, and the form

factor A3(q
2) is not independent but related to A1,2(q

2) as

2mK ∗ A3(q
2) = (m B + mK ∗)A1(q

2)− (m B − mK ∗)A2(q
2).

The full angular distribution of the above decay reads3

d4B(B → K̄ ∗ → (Kπ)ℓ−
α ℓ+

β )

dq2d cos θℓd cos θK dφ
=

9

32π
I (q2, θℓ, θK , φ),

(14)

with

I (q2, θℓ, θK , φ)

= I s
1 (q2) sin2 θK + I c

1 (q2) cos2 θK + [I s
2 (q2) sin2 θK

+ I c
2 (q2) cos2 θK ] cos 2θℓ

+ I3(q
2) sin2 θK sin2 θℓ cos 2φ

+ I4(q
2) sin 2θK sin 2θℓ cos φ

+ I5(q
2) sin 2θK sin θℓ cos φ

+ [I s
6 (q2) sin2 θK + I c

6 (q2) cos2 θK ] cos θℓ

+ I7(q
2) sin 2θK sin θℓ sin φ

+ I8(q
2) sin 2θK sin 2θℓ sin φ

+ I9(q
2) sin2 θK sin2 θℓ sin 2φ. (15)

3 Please notice that the convention used in Eq. (12) is such that ε0123 =
+1.

After integrating over angles the differential decay rate is

simply

dB

dq2
=

1

4

[

3I c
1 (q2) + 6I s

1 (q2) − I c
2 (q2) − 2I s

2 (q2)

]

. (16)

The q2-dependent angular coefficients are combinations

of the decay’s helicity amplitudes, which can also be

expressed in terms of the transversity amplitudes A
L(R)
⊥,‖,0,t ≡

A
L(R)
⊥,‖,0,t (q

2) as follows:

A
L(R)
⊥ = NK ∗

√
2λ

1/2
B

×
[

[(C9 + C ′
9) ∓ (C10 + C ′

10)]
V (q2)

m B + mK ∗

+
2mb

q2
(C7 + C ′

7)T1(q
2)

]

,

A
L(R)
‖ = −NK ∗

√
2(m2

B − m2
K ∗)

×
[

[(C9 − C ′
9) ∓ (C10 − C ′

10)]
A1(q

2)

m B − mK ∗

+
2mb

q2
(C7 − C ′

7)T2(q
2)

]

,

A
L(R)
0 = −

NK ∗

2mK ∗
√

q2

{

2mb(C7 − C ′
7)

×

[

(m2
B + 3m2

K ∗ − q2)T2(q
2) −

λB T3(q
2)

m2
B − m2

K ∗

]

+ [(C9 − C ′
9) ∓ (C10 − C ′

10)]

·
[

(m2
B − m2

K ∗ − q2)(m B + mK ∗)A1(q
2)

−
λB A2(q

2)

m B + mK ∗

]

}

A
L(R)
t =−NK ∗

λ
1/2
B
√

q2

[

(C9−C ′
9) ∓ (C10−C ′

10)+
q2

mb + ms

×
(

CS − C ′
S

m1 − m2
∓

CP − C ′
P

m1 + m2

)]

A0(q
2), (17)

where, for shortness, λB = λ(m B, mK ∗ ,
√

q2), λq =
λ(m1, m2,

√

q2), and

NK ∗ = VtbV ∗
ts

[

τBd
G2

Fα2

3 × 210π5m3
B

λ
1/2
B λ

1/2
q

]1/2

. (18)

The upper signs in the above formulas correspond to AL
i and

the lower ones to AR
i . Notice that At also has the superscript

L(R), referring to the chirality of the lepton pair, which may

appear unusual when compared to the lepton flavor conserv-

ing case, and which we now explain. When ℓ1 = ℓ2 the

pseudoscalar density can be rewritten as

123
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ℓ̄γ5ℓ =
qμ

2mℓ

(ℓ̄γμγ5ℓ), (19)

so that the contributions coming from the operator O
(′)
P can

be absorbed in the amplitude At , which is associated to

the timelike polarization vector of the virtual vector boson,

ǫ
μ
V (t) = qμ/

√

q2. A similar approach cannot be applied to

the scalar operator O
(′)
S , because qμ(ℓ̄γμℓ) = 0, and one

must define a new amplitude AS to accommodate for the

residual scalar contribution. In the LFV case, m1 �= m2, one

can use the Ward identities to absorb both the scalar and

the pseudoscalar densities in the vector and axial currents,

respectively. Therefore, in the LFV case the amplitudes At

and AS are replaced by A
L(R)
t . Although the expressions for

A
L ,R
t are ill defined in the limit m1 = m2 we have checked

that the angular coefficients are very well defined and one

retrieves the standard formulas of Ref. [45].

Finally, in terms of the transversity amplitudes (17), the

angular coefficients I1−9(q
2) are given by

I s
1 (q2) =

[

|AL
⊥|2 + |AL

‖ |2 + (L → R)

]

×
λq + 2[q4 − (m2

1 − m2
2)

2]
4q4

+
4m1m2

q2
Re
(

AL
‖ AR∗

‖ + AL
⊥ AR∗

⊥

)

,

I c
1 (q2) =

[

|AL
0 |2 + |AR

0 |2
] q4 − (m2

1 − m2
2)

2

q4

+
8m1m2

q2
Re(AL

0 AR∗
0 − AL

t AR∗
t )

− 2
(m2

1 − m2
2)

2 − q2(m2
1 + m2

2)

q4

(

|AL
t |2 + |AR

t |2
)

,

I s
2 (q2) =

λq

4q4
[|AL

⊥|2 + |AL
‖ |2 + (L → R)],

I c
2 (q2) = −

λq

q4
(|AL

0 |2 + |AR
0 |2),

I3(q
2) =

λq

2q4
[|AL

⊥|2 − |AL
‖ |2 + (L → R)],

I4(q
2) = −

λq√
2q4

Re(AL
‖ AL∗

0 + (L → R)],

I5(q
2) =

√
2λ

1/2
q

q2

[

Re(AL
0 AL∗

⊥ − (L → R))

−
m2

1 − m2
2

q2
Re(AL

t AL∗
‖ + (L → R))

]

,

I s
6 (q2) = −

2λ
1/2
q

q2
[Re(AL

‖ AL∗
⊥ − (L → R))],

I c
6 (q2) = −

4λ
1/2
q

q2

m2
1 − m2

2

q2
Re(AL

0 AL∗
t + (L → R)),

I7(q
2) = −

√
2λ

1/2
q

q2
×

[

Im(AL
0 AL∗

‖ − (L → R))

+
m2

1 − m2
2

q2
Im(AL

⊥ AL∗
t + (L → R))

]

,

I8(q
2) =

λq√
2q4

Im(AL
0 AL∗

⊥ + (L → R)),

I9(q
2) = −

λq

q4
Im(AL

⊥ AL∗
‖ + AR

⊥ AR∗
‖ ). (20)

Once again, by taking the limit m1 → m2, one retrieves the

usual expressions for the coefficients of the angular distri-

bution of B̄ → K̄ ∗ℓ+ℓ−. Our expressions agree with those

recently presented in Ref. [44], and they are related to those

given in Ref. [45] via I4,6,7,9 → −I4,6,7,9. In order to com-

pare with the expressions for At and AS from Ref. [45] one

needs to identify

At = lim
m1→m2

(

AL
t − AR

t

)

,

AS = lim
m1→m2

[

m1 − m2
√

q2

(

AL
t + AR

t

)

]

. (21)

2.4 Numerical significance

To illustrate numerically the significance of the factors mul-

tiplying the Wilson coefficients, we use the form factors of

Refs. [46,47] and distinguish the case of LFV arising from

the vector operators, i.e.

B(B̄ → K̄ (∗)ℓ1ℓ2) = 10−9
(

a12
K (∗) |C9 + C ′

9|
2 + b12

K (∗) |C10

+C ′
10|

2 + c12
K (∗) |C9 − C ′

9|
2 + d12

K (∗) |C10 − C ′
10|

2
)

,

(22)

from the case in which the LFV comes from the scalar oper-

ators,

B(B̄ → K̄ (∗)ℓ1ℓ2) = 10−9
(

e12
K (∗) |CS + C ′

S|2 + f 12
K (∗) |CP

+C ′
P |2 + g12

K (∗) |CS − C ′
S|

2 + h12
K (∗) |CP − C ′

P |2
)

. (23)

The values of the factors multiplying the Wilson coefficients

are obtained after integrating over all available q2’s and are

listed in Tables 1 and 2.

Notice also that the functions which are being integrated

to obtain those factors have a peculiar feature: those which

multiply |C9,10±C ′
9,10|

2 are more pronounced in the interme-

diate q2 region, whereas those multiplying |CS,P±C ′
S,P |2 are

mostly receiving contributions from the large q2 region. To

illustrate this feature, we show in Fig. 1 the coefficient func-
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Table 1 Values for the multiplicative factors defined in Eq. (22). The

quoted uncertainties are at the 1σ level

ℓ1ℓ2 a12
K ∗ b12

K ∗ c12
K ∗ d12

K ∗ a12
K b12

K c12
K d12

K

eμ 7.8(9) 7.8(9) 34(6) 34(6) 20(2) 20(2) 0 0

eτ 3.8(4) 3.9(4) 18(2) 18(2) 12.7(9) 12.7(9) 0 0

μτ 4.1(5) 3.6(4) 18(2) 17(2) 12.5(1.0) 12.9(9) 0 0

Table 2 Values for the multiplicative factors defined in Eq. (23) to 1σ

accuracy

ℓ1ℓ2 e12
K ∗ f 12

K ∗ g12
K ∗ h12

K ∗ e12
K f 12

K g12
K h12

K

eμ 0 0 12(1) 12(1) 26.2(4) 26.2(4) 0 0

eτ 0 0 5.5(6) 5.5(6) 15.0(2) 15.0(2) 0 0

μτ 0 0 5.2(6) 5.8(7) 14.4(2) 15.5(2) 0 0

tions ϕ9,10(q
2) [ϕS,P (q2)], which upon integration amount

to a
μτ
K and b

μτ
K [e

μτ
K and f

μτ
K ].4

Furthermore in the case of LFV generated by the scalar

operators the lifted helicity suppression of the leptonic

decay (5) leads to the following hierarchy among different

modes:

C
(′)
S,P �= 0, C

(′)
9,10 = 0 : B(Bs → ℓ1ℓ2) > B(B → Kℓ1ℓ2)

> B(B → K ∗ℓ1ℓ2). (24)

That hierarchy is inverted for the LFV processes generated

by the vector operators, namely

C
(′)
S,P = 0, C

(′)
9,10 �= 0 : B(Bs → ℓ1ℓ2) < B(B → Kℓ1ℓ2)

< B(B → K ∗ℓ1ℓ2). (25)

Of course the above discussion is valid as long as we do not

consider the case of LFV generated by both the scalar and the

vector operators, which we will not discuss in the following

anyway.

3 A case of CS,P �= 0: coupling to Higgs

In this section we focus on the specific example of a scenario

in which the LFV is generated through the scalar operators.

We will relate the 2.2σ excess of h → μτ observed by

CMS [30], to the decays Bs → μτ and B → K (∗)μτ .5

4 The purpose of the plots shown in Fig. 1 is to illustrate the shapes

of φi (q
2) = |NK (q2)|2ϕi (q

2) and the uncertainties on hadronic form

factors were omitted in the plots. Those uncertainties, instead, have been

properly accounted for when computing the factors listed in Table 2.

5 Please note that Atlas too observed an excess of h → μτ , although

the significance is only at the 1.2σ level [48]. They reported B(h →
μτ)Atlas = 0.77(62) %, to be compared with B(h → μτ)CMS =
0.84+0.39

−0.37 %.

In the scenarios in which the physics BSM comes solely

from the modification of the Higgs sector, the decay h → μτ

can be described by the Yukawa Lagrangian,

L
eff
Y = −yi j ℓ̄

i
Lℓ

j
Rh + h.c. (26)

The non-diagonal couplings yi j can originate in the mixing

of the Higgs doublet with additional scalar doublets, and the

above Lagrangian is fully adequate if the masses of other

Higgs states are larger than mh [49]. The only Wilson coef-

ficients in Eq. (2) that receive non-negligible contributions

through the scalar penguin diagrams are [50,51]

CS,P = −
yμτ ± y∗

τμ

2

mbv

16m2
W sin2 θW

×
(

6xt

xh

−
2x3

t

(1 − xt )3
ln xt +

4x2
t

(1 − xt )3
ln xt

−
x2

t

(1 − xt )2
+

3xt

(1 − xt )2

)

, (27)

where xt,h = m2
t,h/m2

W , v = 246 GeV, and the upper

(lower) signs corresponds to CS (CP ).6 Using the CMS

result, B(h → μτ) = 0.84+0.39
−0.37 %, and the formula Ŵ(h →

μτ) =
(

|yμτ |2 + |yτμ|2
)

mh/(8π), one obtains

1.9[0.8] < 103 ×
√

|yμτ |2 + |yτμ|2 < 3.2[3.6]
at 68 % [95 %] CL, (28)

which then amounts to

8.4[3.5] < 104 ×
√

|CS|2 + |CP |2 < 14.2[16.0]
at 68 % [95 %] CL. (29)

Notice that the couplings yμτ and yτμ are tacitly assumed to

be complex, in which case the quantity |yμτ |2 +|yτμ|2 is not

enough to completely determine the decay amplitudes of the

processes described here. One possibility to tackle this issue

is to use Eqs. (5) and (27), write

B(Bs → μτ) ∝ (m2
Bs

− m2
μ − m2

τ )(|yμτ |2 + |yτμ|2)
−2mμmτ Re(yμτ y∗

τμ), (30)

and combine it with the constraint coming from B(τ → μγ ),

namely7

B(τ → μγ ) =
αm5

τ

64π4Ŵτ

(

|Cγ

L |2 + |Cγ

R |2
)

(31)

6 We emphasize that in the situation in which yi j arise as a loop effect,

the Wilson coefficients in Eq. (27) would clearly be incomplete.

7 For the Wilson coefficient we take the results of Ref. [49],

C
γ

L =
1

12m2
h

mτ

v
y∗
τμ

(

−4 + 3 ln
m2

h

m2
τ

)

+ 0.055
y∗
τμ

(125 GeV)2

and CR = C∗
L

∣

∣

μ↔τ
.
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Fig. 1 Coefficient functions φ9,10(q
2) = |NK (q2)|2ϕ9,10(q

2) and

φS,P (q2) = |NK (q2)|2ϕS,P (q2) appearing in Eq. (10), which after

integration over q2 give the factors a
μτ
K , b

μτ
K , e

μτ
K , and f

μτ
K in Eqs. (22,

23). Full curves correspond to φ9(q
2) and φS(q2), while the dashed

ones to φ10(q
2) and φP (q2)

Fig. 2 In the left panel we plot the branching fraction of Bs → τμ

decay as a function of yτμ = yμτ . The segment shown in full line is the

one corresponding to yτμ extracted from B(h → τμ) to 2σ . In the right

panel we show B(h → τμ) by the brighter (darker) stripe to 1(2)σ as

reported by CMS, versus B(Bs → τμ) [blue], B(B → K τμ) [red],

B(B → K ∗τμ) [orange]

and B(τ → μγ )exp. < 4.4 × 10−8 [52]. As of now nothing

can be said about the complex phases of these couplings and

in the following we assume them to be zero.

As indicated in Eq. (24) the most sensitive channel to the

presence of CS �= 0 is the leptonic decay mode B(Bs →
ℓ1ℓ2). To exacerbate the phenomenon we focus on the μτ -

decay channel and show in Fig. 2 its dependence on the cou-

pling yμτ = yτμ. We also show the plot of B(h → τμ) ver-

sus the branching fractions of the modes we are interested

in for increasing values of yτμ. The horizontal stripes corre-

spond to the 1σ (darker) and 2σ (brighter) result reported by

CMS.

Finally, the bounds on the LFV modes obtained in this

way are:

B(Bs → μτ) < 3.9 × 10−13 ,

B(B → Kμτ) < 3.8 × 10−14 ,

B(B → Kμτ) < 1.2 × 10−14 . (32)

These bounds are too small for current experimental searches.

The purpose of this section, however, was only to illustrate

the effect of LFV generated through the scalar couplings

extracted from the experimental bound on B(h → μτ). If

the origin of such a coupling is different from the one dis-

cussed here, the above bounds could be larger (less stringent)

but the hierarchy given in Eq. (24) will still hold true.

4 A case of C9,10 �= 0: coupling to Z
′

In this section we revisit a Z ′ model, already discussed in the

context of this problem in Ref. [39]. It illustrates the case in

which the LFV is generated by the (axial-)vector operators.

Furthermore, since our bounds somewhat differ from those

reported in Ref. [39] we believe it is worth discussing it in

more detail. The most general lagrangian involving Z ′ reads

LZ ′ ⊃ gL
ℓi ℓ j

ℓ̄iγ
μ PLℓ j Z ′

μ + gL
sb s̄γ μ PLb Z ′

μ + (L → R),

(33)

where we assume that the Z ′ boson couples only to the second

and third generations of quarks and leptons. Since the scale

of new physics is assumed to be well above the electroweak

one, the SU (2)L gauge invariance has to be preserved, which

then implies that, for example, gL
ℓi ℓ j

= gL
νi ν j

and gL
sb = gL

ct .

After integrating out the Z ′, the relevant Wilson coeffi-

cients read

C
(′)μτ
9 = −

π
√

2m2
Z ′

1

αG F VtbV ∗
ts

g
L(R)
sb (gR

μτ + gL
μτ ),

C
(′)μτ
10 = −

π
√

2m2
Z ′

1

αG F VtbV ∗
ts

g
L(R)
sb (gR

μτ − gL
μτ ), (34)
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where the primed Wilson coefficients are proportional to gR
sb.

To get the value of g
L(R)
sb we use the information on the Bs–

Bs mixing amplitude and add the contribution coming from

the couplings to Z ′. More specifically, we add

H
Z ′
eff = C1(b̄γμ PLs)(b̄γ μ PLs)

+C ′
1(b̄γμ PRs)(b̄γ μ PRs) + C5(b̄i PLs j )(b̄ j PRsi ),

(35)

to the SM contribution. The Wilson coefficients are easily

computed at μ ≈ m Z ′ and read

C
(′)
1 =

(

g
L(R)
sb

)2

2m2
Z ′

, C5 = −
2gL

sbgR
sb

m2
Z ′

, (36)

which then, combined with

〈B̄0
s |b̄γμ(1 − γ5)s b̄γ μ(1 − γ5)s|B0

s 〉 =
8

3
f 2
Bs

m2
Bs

B1(μ) ,

〈B̄0
s |b̄i (1 − γ5)s j b̄ j (1 − γ5)s|B0

s 〉

=
2

3
f 2
Bs

m2
Bs

(

m Bs

mb(μ) + ms(μ)

)2

B5(μ) , (37)

lead to

�m
exp.

Bs

�mSM
Bs

= 1 +
2π2

G2
F m2

W |VtbV ∗
ts |2ηB S0(xt )m

2
Z ′

×

[

η1(g
L
sb)

2 + η1(g
R
sb)

2 − η5
B5(mb)

B1(mb)

(

m Bs

mb + ms

)2

gL
sbgR

sb

]

,

(38)

where η1,5 account for the evolution of the Wilson coeffi-

cients from the scale μ = m Z ′ down to μ = mb, which we

evaluate using the two-loop QCD anomalous dimensions to

find [53–56]

η1 = 0.79[0.80], η5 = 0.89[0.90] for m Z ′ = 1 TeV,

η1 = 0.77[0.78], η5 = 0.88[0.89] for m Z ′ = 2 TeV,

(39)

where in the square brackets we quote the values obtained

to leading order in QCD. The hadronic quantities entering

Eq. (38) have been computed by means of numerical simu-

lations of QCD on the lattice in Ref. [57] and read

fBs = 228(8) MeV, BMS
1 (mb) = 0.86(3),

BMS
5 (mb) = 1.57(11) . (40)

Since we consider here only the scenarios in which either

gL
sb �= 0, gR

sb = 0, or gR
sb �= 0, gL

sb = 0, the last term in

Eq. (38) will always be zero for us. Therefore, keeping in

mind that (�m
exp.

Bs
/�mSM

Bs
) = 1.02(10), and by using the

above ingredients we find, to 2σ accuracy,

|gL(R)
sb |
m Z ′

≤ 1.6(8) × 10−3 TeV−1 . (41)

Another coupling needed in Eq. (34) is gL
μτ which can

be extracted from the deviation of the measured B(τ →
μν̄μντ )exp. = 17.33(5) % [52] with respect to its Stan-

dard Model prediction B(τ → μν̄μντ )
SM
theo. = 17.29(3) %,

namely [39,58]:8

δBτμ = B(τ → μν̄μντ )exp. − B(τ → μν̄μντ )
SM
theo.

= −
m5

τ

1536π3Ŵτ m2
Z ′

8G F√
2

(

gL
μτ

)2
+ O(1/m4

Z ′). (42)

Finally, the last coupling needed in Eq. (34) is gR
μτ , which

can be bounded from B(τ → μμμ)exp. < 2.1 × 10−8 [52],

by using the expression [39]

B(τ → 3μ) =
m5

τ

1536π3Ŵτ m4
Z ′

(

gL
μμ

)2
[

2
(

gL
μτ

)2
+
(

gR
μτ

)2
]

.

(43)

Besides gL
μτ , which we discussed above, we need the value

of gL
μμ, which can be obtained from a fit to the b → sμμ

data. To that end we consider two scenarios: the one in which

the new physics contribution to the lepton flavor conserving

channel comes entirely from gL
sb, i.e. C

μμ
9 = −C

μμ
10 , and the

case in which the coupling to quarks is entirely right-handed,

gR
sb, and the Wilson coefficients satisfy C

′μμ
9 = −C

′μμ
10 . Con-

cerning the value of C
(′)
9 we can derive it as in Ref. [28], by

relying on the safest quantities as far as hadronic uncertain-

ties are concerned, which to 2σ accuracy results in

C
μμ
9 ∈ [−0.52,−0.19], C

μμ ′
9 ∈ [−0.41,−0.08], (44)

and this makes RK consistent with experiment.9

Such an obtained gL
μμ is then used to get gR

μτ by means of

Eq. (43). Notice, however, that for very small values of gL
μμ

the value of gR
μτ can be excessively large if we require the sat-

uration of the experimental bound. In those cases we invoke

8 For completeness we remind the reader that the SM expression for

the leptonic decay rate reads

B(τ → μν̄μντ ) = ττ

G2
F m5

τ

192π3
E

⎡

⎣1 − 8
m2

μ

m2
τ

+ 8

(

m2
μ

m2
τ

)3

−

(

m2
μ

m2
τ

)4

−12

(

m2
μ

m2
τ

)2

ln

(

m2
μ

m2
τ

)

⎤

⎦ ,

where the radiative and the correction due to the propagation of W

amounts to E = 0.996.

9 One can otherwise use the results of the global fit: C
μμ
9 ∈

[−1.04,−0.34], and C
μμ ′
9 ∈ [−0.05, 0.43] from Ref. [11], or C

μμ
9 ∈

[−0.91,−0.18], and C
μμ ′
9 ∈ [−0.12, 0.33] from Ref. [10], also valid

to 2σ accuracy.
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Fig. 3 Upper bounds on the branching fractions B(B → K ∗μτ) >

B(B → Kμτ) > B(Bs → μτ), as a function of the BSM contribu-

tion to C
(′)μμ
10 extracted from the LFC decay modes in two setups: in

Scenario I we use C
μμ
10 = −C

μμ
9 while keeping C

′ μμ
9,10 = 0, and in Sce-

nario II we take C
′ μμ
10 = −C

′ μμ
9 with C

μμ
9,10 = 0. Shaded regions

correspond to the values given in Eq. (44), obtained by combining

B(Bs → μμ) with the high q2 bin of dB(B → Kμμ)/dq2, which

result in RK consistent with experiment, cf. Ref. [28]. See text for dis-

cussion concerning the couplings g
L(R)
sb,μτ

the perturbativity requirement and set the bound to |gR
μτ | ≤ 1.

With all above ingredients in hands we can compute C
μτ(′)
9,10 by

means of Eq. (34), and then use the obtained values to predict

the upper bounds for the rates of the decay modes we discuss

here. In Fig. 3 we show such bounds for both scenarios: (i)

in Scenario I we use C
μμ
9 = −C

μμ
10 to determine gL

μμ, while

in (ii) Scenario II we use the condition C
′ μμ
9 = −C

′ μμ
10 .

The resulting bounds satisfy the hierarchy noted in Eq. (25).

We focus on the values of C
(′)μμ
9 = −C

(′)μμ
10 �= 0 (and

C
(′)ee
9 = 0), which give RK consistent with the one mea-

sured at LHCb. That range of values correspond to the shaded

regions in the plots in Fig. 3. The resulting bounds are:

Scenario I II

B(B → K ∗μτ) ≤ 1.6 × 10−8 9.3 × 10−8

B(B → Kμτ) ≤ 0.9 × 10−8 5.2 × 10−8

B(Bs → μτ) ≤ 0.8 × 10−8 4.6 × 10−8

We stress once again that the above bounds are obtained

after assuming that the BSM physics effects come in the

scenarios with either C9 = −C10, or C ′
9 = −C ′

10. In other

words either gR
sb = 0, or gL

sb = 0. If no assumption as regards

the BSM physics is being made, and both gL
sb and gR

sb were

left free, then the third term in the brackets of Eq. (38) would

play an important role and the resulting bounds on the above

decay modes would be weaker.

5 Summary

In the present paper we discussed the possibility of observ-

ing the LFV modes in exclusive decays based on b →

sℓ±
1 ℓ∓

2 . Starting from the low energy effective hamiltonian,

we derived the expressions for decay rates for Bs → ℓ1ℓ2,

B → Kℓ1ℓ2, B → K ∗(→ Kπ)ℓ1ℓ2, and similar modes.

We show that the extra contributions proportional to the dif-

ference between lepton masses arise in the case of LFV

modes, thus requiring particular care when trying to aver-

age the (lepton) charge-conjugated modes. We then exam-

ined the situation in which the LFV is generated by the

(pseudo-)scalar operators, to distinguish it from the one in

which the LFV comes from the coupling to (axial-)vector

operators. In the former case we find that most of the events

would occur at larger values of q2, while in the latter case

the events are expected to be equidistributed over a large

window of q2’s. Furthermore, we find that the hierarchy

of the branching fractions of our modes change: while in

the case of coupling to the (axial-)vector operators we find

B(Bs → ℓ1ℓ2) < B(B → Kℓ1ℓ2) < B(B → K ∗ℓ1ℓ2), in

the case of coupling to the (pseudo-)scalar operators we get

B(Bs → ℓ1ℓ2) > B(B → Kℓ1ℓ2) > B(B → K ∗ℓ1ℓ2).

To illustrate both cases we first used a phenomenological

Lagrangian that encodes B(h → μτ) �= 0, as recently sug-

gested by CMS, to derive the bounds that seem to be too low

for these decay modes to be probed experimentally. In the

second case we revisited a Z ′ model in which a (small) tree

level flavor changing neutral couplings are allowed, and after

a short discussion concerning the specific scenarios and the

channels allowing to bound the relevant LFV couplings, we

derive bounds which generically suggest the branching frac-

tions of all the modes we consider to be less than a few times

10−8, which are thus more likely to be probed experimentally.

As a by-result of our analysis we revisited the computation

of the angular distribution of B → K ∗(→ Kπ)ℓ1ℓ2, which

is often a source of confusion in the lepton flavor conserving

case, due to incomplete information given in most of the
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papers on the subject. We were able to confirm the results

of Ref. [44], where full and unambiguous information was

provided, by an independent explicit calculation.
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Appendix: Angular conventions and kinematics

Our angular conventions for the decay B̄ → K̄ ∗(→
K −π+)ℓ−

1 ℓ+
2 are summarized in Fig. 4. In the B rest frame,

the leptonic and hadronic four-vectors are defined by qμ =
(q0, 0, 0, qz) and kμ = (k0, 0, 0,−qz), where

q0 =
m2

B + q2 − m2
K ∗

2m B

, k0 =
m2

B + m2
K ∗ − q2

2m B

, and

qz =
λ1/2(m B, mK ∗ ,

√

q2)

2m B

. (45)

In the dilepton rest frame, the leptonic four-vectors read

p
μ
1 = (Eα, |pℓ| sin θℓ cos φ,−|pℓ| sin θℓ sin φ, |pℓ| cos θℓ),

(46)

p
μ
2 = (Eβ ,−|pℓ| sin θℓ cos φ, |pℓ| sin θℓ sin φ,−|pℓ| cos θℓ),

(47)

where

E1 =
q2 + m2

1 − m2
2

2
√

q2
, E2 =

q2 − m2
1 + m2

2

2
√

q2
, and

|pℓ| =
λ1/2(q2, m2

1, m2
2)

2m B

. (48)

In the same way, one can write in the K ∗ rest frame

p
μ
K = (EK ,−|pK | sin θK , 0,−|pK | cos θK ), (49)

pμ
π = (Eπ ,+|pK | sin θK , 0,+|pK | cos θK ), (50)

where EK , Eπ , and |pK | are given by similar expressions.

Fig. 4 Angular conventions for the decay B̄ → K̄ ∗ℓ−
1 ℓ+

2

Polarization vectors

In the B rest frame, we choose the polarization vectors to be:

ε
μ
V (±) =

1
√

2
(0,±1, i, 0), ε

μ
K ∗(±) =

1
√

2
(0,∓1, i, 0),

ε
μ
V (0) =

1
√

q2
(qz, 0, 0, q0), ε

μ
K ∗(0)=

−1
√

k2
(kz, 0, 0, k0),

ε
μ
V (t) =

1
√

q2
(q0, 0, 0, qz),

(51)

where V stands for the virtual gauge boson, Z∗ or γ ∗. These

four-vectors are orthonormal and satisfy the completeness

relations,

∑

n,n′

ε
∗μ
V (n)εν

V (n′)gnn′ = gμν, (52)

∑

m,m′

ε
∗μ
K ∗(m)εν

K ∗(m
′)δmm′ = −gμν +

kμkν

m2
K ∗

, (53)

where m ∈ {0,±}, n, n′ ∈ {0, t,±}, and gnn′ = diag(1,−1,

−1,−1).
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