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ABSTRACT

We present a summary of QCD formulae describing the effects
of scaling violation in lepton-hadron processes, with the
inclusion of recently derived higher order corrections. Deep
inelastic leptoproduction, one-hadron inclusive distributions
in leptoprcduction and in e*e~ annihilation and Drell~Yan
processes are discussed in detail. Higher order corrections
to parton densities, fragmentation functions and to lepton-
parton cross-ssctions in the above processes are presented
in a common factorization scheme, so that a comparative ana-
lysis of varicus processes as well as an independent analysis
of each of them is possible. A discussicn of the various
scheme dependenceszﬂ:next—to~leading level is alsc included.
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1. - INTRODUCTION

Recently, a number of higher order QCD ecalculations for inclusive spectra
in lepton-hadron processes have been performed by various groups 1)-9) the two-
loop corrections to the evolution of parton densities and fragmentation functions
as well as the one-loop corrections to all typical lepton-parton cross-sections are

available in the literature,

As a consequence, we have now at our disposal all the ingredients necessary
for carrying out a precise systematic analysis of the scaling viclation effects in

the existing data for various hard processes in the framework of perturbative QCD.

The predictive power of perturbative QCD follows from the universality of
parton densities : once extracted from the data in one process (or in a set of
processes), they can be used to derive an absolute prediction for any other hard

process, 1f only the corresponding lepton-parton cross-section is known.

However, after the next-to-leading effects have been included, one should
proceed with care : the parton density extracted in cne process can be merged with
the partonic cross-secticn derived for another process only if the QCD formulae for
both processes nave been derived in the same factorization scheme. This is due teo
the fact that the distinction between QCD corrections to parton densities and to
lepton-parton cross-sections is unique only at the leading log level and is a matter

of definition beyond it.

In fact, various higher order caleulations quoted above have been performed
using different factorization schemes. Usually, the authors define their own fa-
vourable scheme which iz very general and universal but then the explicit calcula-
tions are done for some particular corrections - just because the other effects

have been already derived by other groups,

Therefore, even if the results of Refs. 1)-9), when combined together and
transformed into one factorization scheme, provide the complete prediction for any
process, the present situation is very unsatisfactory for experimentalists
they would have still to do scme theoretical work in order to combine in a correct

way the results of varicus groups.

The aim of this paper 1s to introduce some systematics into the existing set
of higher order calculations. As averybody does, we work in our own favourable
scheme, defined in Ref. 7), and used in Refs. 7), 9), for the derivation of the two-

loop corrections for parton densities and fragmentation functions. However, the



one-loop corrections to various hard processes which are available in the litera-

3)-6) are also transformed into our scheme,

ture
Therefore, we present both the general formalism as well as the expli-

cit formulae for all "canonical"™ hard processes listed in the abstract in a unique

factorization scheme. The results presented here can be used both for deriving the

absolute prediction for any process as well as for relating various processes,

using the universality of parton densities.

The paper is organized as follows, In Section 2 we fix the notation and
we present the general'structure of the hard lepton-hadron cross-section as pre-
dicted by QCD. 1In Section 3 we present in a pictorial way the main steps of the
factorization scheme used in the paper. Section 4 contains a short review of
existing higher order results which are relevant for our presentation. The evolu-
tion equations for parton densities and fragmentation functions are discussed in
Section 5. We present there the explicit solutions for moments and the formal
solutions in the x space. The QCD predictions fer the processes listed in the
abstract are collected in Sections é to 9. Section 10 contains 2z discussion of
the nature of various scheme dependences affecting higher crder results., The
explicit formulae for the relevant lepton-parton cross~sections are given in the

“Appendix, while for consistently defined evclution probabilities we refer to the

results contained in Refs., 7) and 9).

2. - GENERAL STRUCTURE OF THE BEARD CROSS~-SECTION IN QCD

The QCD prediction for the inclusive cross-section in any hard prbcess can

be written, by neglecting power law corrections, in the following form

e 0R)= 5T T e, e, e, 010A% 0 024y F

)= 2 z, \dy z; zh-Lh ' o)

va Iy pP'v&kﬁS A-‘S & ﬁ;(.&) ) 0’;?@, ) /Z,) ﬁu(zmdj
¢ ©° (2.1)

In this secticn we explain the notation used in Eg. {(2.1). The notational

conventions defined here will be used throughout this paper for all particular pro-

cesses.

The lower (upper) indices of g, & and F refer to the initial state
{final state) particles. The indices L (') and h (h') stand for sets of ini-
tial (final) leptons and hadrons, i.e., & = {ﬁl,ﬁz,...}, ' = {2',2é,...},
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1 1
h = {n,h,, ..., }, h' = {af,n),...n1}. Thus g% P

Ton is the semi-inclusive dif-

ferential cross-section for the process !

{
l-t' 9\, -3 6‘-«‘- e\, + anything (2.2}

Some of the sets &, %', h, h' may be empty for a given hard process. At least

one of the leptonic sets #, &' must be praesent.

The arguments of do are the four-momenta of particles indicated by the
indices &, h, &', h'. For example, the cross-sections for the processes listed

in the abstract will be denoted as follows

e i pkt Ty
A6o,@n;0) , da. @esk), de @kek), deff (hh,;e.0)

The formula (2.1) has the kinematical structure of the parton model : the
incoming hadrons h are decomposed into partonz p (quarks and gluons), the

partons p interact inclusively with leptons :

l
P+,Q_ — P[-t- ,Q, 4+  anything (2.3)

and the final state partens p' fragment into hadrons h'. The lepton-parton
interaction in Eq. (2.3) is described by a "short-distance™ cross-section
d&i;p'(i,p;ﬁ‘p'). The notation for d5 1is the same as for dg with all hadrons
replaced by partons. As seen in Eq. {2.1), the variables z(z') are parton versus

hadron (or vice versa) four-momentum fractions :

- 2= fou b = frbo bl felm bt Y {0 B

(2.4)

1
The functions Fﬁ(z,Q2) {F;‘(z',Q2)) describe the parton densities in
hadrons {fragmentation of partons into hadrons). If the hadronic set h(h') is
empty, the corresponding set of parton densities (fragmentation functions) is

absent in Egq. (2.1).

Let us denote collectively all four-momenta entering Eg. {2.1) by v,

l.e., v = {Vl’v2""} = £,4',p,p",h0,0".
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The perturbative QCD can be applied in the kinematical region where all
invariants vi,vjii £3) are large and all dimensionéess fractions vi.vj/vk.vi
{1 #J, Kk#1) are finite and different from zero. Q° in Eg., (2.1) denotes one of
the large invariants vi-vjé in principle no matter which ons. In practice it is
convenient tc ceonstruct © from leptonic momenta. A1l masses are neglected, i.e.,
v2 = {vi,vg,...} = O. In this limit, Eg., (2.1) is exact in perturbative QCD. All
corrections to Eq. (2.1) are of the form 0(v2/Q2) and are included in the "higher

twist™ effects which are neglected in this paper.

Both ¢ and & can be expressed as functions of Q2 and of appropriate
dimensionless fractions. Denoting collectively by x the set of fractions, we can

write df in the form

de _ A C(x,&%)
dx Q? ’ (2.5)

L
In the parton model, the dimensiconless functions Fp(z,Qz), F;,(z',QE),

h
L L
'p (x,Qg} do not depend on G2 at all.

Cﬂp

In perturbtative GCD, the kinematical structure of the parton model formulae
remaing valid (up to higher twist effects) but scaling is broken. The Q2 depen-~

dence enters through the effective (running) coupling constant a(Qe). The functions
Ltp! 2 2

Cgp (x,Q7) are given by a power series in (Q°)
?j Pf (QQ‘?‘ 1 0o F{
2y =
C"-P (x,0%) = Cop ) + xé%) C o GO+ ... (2.6)

(O)£|p|
2 ke
@~ according to the evolution eguations :

where C {(x) is the parton model result. The functions F(z,Qz) evolve with

) . o
T ROy = L7 PR (@) ® P (x,e2)

{2.7a)
T A Y= (Y i
« d:dz FI’ (X’& E(ﬁ-" gﬂ?ﬂ,,Q(,d(ﬂ?J)@ F‘;' (x,&%) (2.7b)
where the probabilities Ppp,, Pppr are given by power series in a(Qa)
PP ~ PO @
B = O + L B0



(2.8b)

FP1 (X,O‘O g\:}: QQ 'i“ o ?F’

(2.7) denotes the convolution, i.e.

¥

The symbol ® in Egs. Ci{x) = Al{x) ® B(x)

means

g

A 4 )
C(x)= Sdngdxz A(’M)B(P‘z)a@')‘fﬁ)zﬁgk(ﬁgcé) (2.9)
5 X

In the fcollowing, it will be more convenient to use the notaticn

@) ! '\.S ot
YRy = P( (x) Em,() ’p@ ™ (x) (2.10)
indicate spacelike (timelike} probability. We will also

where the letters S(T)
as to the spacelike parton densities and fo the

refer to the functions Fﬁ
functions Fg (i.e., to the fragmentation functions) as to the timelike parton

densities.

The Q2 dependence of u(Q2) is determined by the rencrmalization group

equation 10),11)

& d aE) = - p aed]
ag? (2.11)

where the @ function Bla} 1is given by a power series in o ¢

p@ = (609'{'% T Pa %‘.f-*' (2.12)

where
F = /"( {E - 2
O — g

gd = '%?ttzi - ‘gg C&a}? - 2<3F"?

and our notation for colour factors is as follows :



C.=NA | C =N ; Tem A ¢
2N G 2 (2,14}
with N the number of colours and { the number of flavours. The censtants BO

and Bl are independent of the factorization scheme,

The solution of Eq. (2.11} can be cast into the form

WD 2 A g b bR o f
ES N 2 Euél/}\z[ R Rl Q“zez//@)j

(2, 15)

The value of A, fixing the strength of scaling violation effects, should be
extracted from the data ; its scheme dependence will be discussed in the last

section.

The series in Egs, (2.6) and (2.8) can be derived order by order in per-
turbative QCD., 1In practice, we have to truncate the series rather s00n, due to
the complexity of higher order calculations. The simplest approximation consists
in keeping only the lowest order terms in Egs. (2.6}, {2.8) and is called the
leading log approximation. At the leading log level, the partonic cross-sections
are given by the parton model expressions and the probabilities P(O) are known

12)

as the Parisi-Altarelli probabilities They are universal for both space

énd timelike evelutions :

o - B

(2.16)

(Ehe origin of the transposition in Eg. (2.16) is obvious : as seen from Egs. (2.7},
{0,3)

Ppp, describes the transition p <« p' whereas Pég:T) describes the transition
p>p'J.
. {1,3) {1,T)
In this paper we present the results for Ppp' (x), Ppp, (x) and the

L] L]
corrections C(l)ﬁpp (x) for the processes listed in the abstract. These functions

are referred to collectively as the next-to-leading corrections.

The relevance of the next-to-leading terms in analyzing the data follows
immediately from Eq. (2.15) : as seen, the change of A by a2 fixed amount (e.g.,
by a factor of 4) is equivalent to adding a next-to-leading centribution to the
probability of the form :
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APYx) = (Pofud) POCO

(2.17)

Tt means that the comparison of values of A, extracted from various hard processes
by means of the lsading log formulae is not very instructive. For exampls, if we

get A = 0.5 GeV for leptoproduction and A = 2 GeV for Drell-Yan with reasonable
X2 for both processes, it neither supports nor contradicts QCD. It might indicate
that, if QCD is right, the difference between the next-tc-leading corrections to

(1

both processes should be of order AP (x), given by Eq. (2.17).

3. - FACTORIZATION PROCEDURE

In order to calculate the QCD prediction for a given hard process, one has
to organize the resummation of Feynman diagrams contributing to the corresponding
eroas-section in such a way that the parton model structure as in Eg. (2.1) becomes
13),14) that the

inclusive cross-section for any hard process can be written in a factorized form.

explicit. This procedure is called factorization, It has been proved

The factorization procedure is not unique beyond the leading log approxi-

mation : various schemes provide different intermediate results for the coefficients
C(i)grp'{x) and P(i)

dciép is certainly unique but there is a freedom in the definition of parton
densities, fragmentation functions and nghort-distance” cross-sections. This ambi-

(x) in the series (2.6) and (2.8). The final result for

guity can be used in order to impose some additional constraints on parton spectra

or (and) partonic cross-sections.

In this paper we use everywhere the factorization scheme proposed in
Ref. 7), based on the general factorization programme of Ref. 13). The parton
and fragmentation function densities in this scheme are characterized by the fol-

lowing properties :

a) they are universal (i.e., they are definad without reference to any particular

hard process) ;

b) they satisfy the exact sum rules of the parton model :

i) fermion number conservation

4 ) _ (_5) = 1 :P(,T) (T} =
\SOM Lf%(ﬁ,d) 24@ ()] \iﬂt’([—-%("r‘*)“ %ﬁ (0= O (3.1)



ii) momentum conservation :

A

Zj‘atx x?@ (_x,c{) -2 gdx x?@? () = O
B % p'p ¢’ o PP (3.2)

In the following, we describe briefiy the main steps of the factorization
scheme used in the paper. Let us take as an example the deep inelastic electro-
production. First we write the inclusive lepton-hadron cross-section as the modulus
squared of the amplitude for the process £ + h + % (Fig. l}. Next, we perform
the decomposition of ¢ in the hadronic channel into two-particle irreducible
blobs ﬁﬁ, K and o (Fig. 2). In this way we separate the full process into two
well-defined objects : the lepton-parton "c¢ross-section” o and the "parton density"
F' = (1/1-K)F. We are working in the axial gauge and therefore, as it has been
proved in Ref, 13) the blob & contains no mass singularities - all of them are

collected in F'.

The decomposition in Fig. 3 already bears some resemblance to the formula
in Eq. (2.1) ; however, both objects G and F are still coupled by Lorentz
{gpinor) indices and four-momentum integrations. Now we make a set of formal mani-

pulations with the "generalized ladder" in Fig. 2. EBach kernel K is decomposed

K=PK+U-POK (3.3)

where P 1s some suitable defined projection operator, acting on parton lines
joining two neighbouring kernels., The acticn of the projector P is visualized
in Fig. 4. The parton lines are disconnected which indicates that P decouples
the blob K from the upper part of the ladder in vector (spinor) indices by pro-
Jecting on the physical polarizations of the propagating parton p. Alsc the
momentum integration is decoupled in the following way : P projects out the
logarithmically singular part [pole in & for n = 4+e {g > 0) dimensions] of
the integral [ (dpz/pz) over the virtual mass p2 of the parton {it is indicated
by a dot on theoline entering the blob K) and puts the line entering the upper
part of the ladder on shell {the round line). Consequently, the momentum of the
round line is parallel to the incoming hadron : p = zh and the term PK

is coupled to the upper part of the ladder only by one integral over =z.

Performing the decomposition (3.3) for each kernel K in the ladder in
Fig. 2 we get finally the structure in Fig. 5 : § and F are now Lorentz

scalars coupled only by one z integral and we get precisely the formula (2.1)
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5' ] 1 ¢ - A t
OLGQLL (‘e)kjgl ) = %_‘Sodi F‘:L (X)Q) A%P(g_)i?}ﬁ) (3.4)

The formal expressions for § and ¥ are

A ™ ~
00—, T = : £F (3.5)
A-(-BDK 1.7 K __ :

P
_ = A-(-B)K
Using the renormalization group methods we derive the evoluticn eguaticn {2.7a) for
FE. The coefficients of the series {2.6), (2.8) can be calculated by expanding the

expressions in {3.5) in power series in .

We want Lo stress the following properties of the formulae (3.5}

a) the parton density F is independent of the hard process {all details cencerning

the particular leptonic current are contained in o) ;

b) the partonic cross-section § does not contain mass singularities [since both
g and {1-P)K do noﬁj, i.e., it can be obtained by a perturbative expansion
in u(Qz) ;

c) the ambiguity in the definition of & and F is implied by that in
the definition of the projector P. In our scheme, P projects out only the
singular part of the integral f(dp2/p2) (pole in € in the dimenslonal
regularization of mass singularities) ; we could, however, change the defini-
tion of P by shifting any finite part of (1-P}E into PK in Eq. (3.3) ;

this does not spoil the finiteness of the partonic cross-section G but both

& anda F are affected by the redefinition of P, as seen in Egs. (3.5} ;

it has been shown in Refs. 7), 9) that our (minimal) definition of P implies

the sum rules {3.1)-(3.2).

The presentation of the scheme given above is obviously very simplified.
The reader interested in technical details is referred to 7), 9). However, even
without going intc details it should now be obvious how to proceed for any other
hard process : the procedure described above should be just repeated in any
hadronic channel independently. In Figs. 6-8 we illustrate the factorizaticn for
inclusive leptoproduction, inclusive annihilation and the Drell-Yan process.

The formzl expression for the timelike density F(T) in Figs. 6, 7 is
very similar to the one given by Eq. (3.%) in the spacelike region. There is,

nowever, a difference in kinematics : the integrals j(dpz/p2) extend now over
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the positive values of pz, which introduces some differences at the subleading

level as compared with the spacelike case (k2 < 0), As a conseguence

@({s) o # PC’ for 4>0 (3.6)

The pictorial constructions in Figs. 6-8 clearly illustrate that the den-

(3) T)

{
sities F and F° for a specific hadron are identical in all hard processes.

r L]
The rule for calculating déipp to order o in any hard process is very

simple

L] t
a) calculate the appropriate "physical" inclusive cross-section dcipp with
on-shell massless partons, using the dimensional regularization of ultra-violet

divergences in the MS scheme in n = 4-¢ dimensions (e > 0)

b) regulate the mass singularities using dimensional regularization in n = 4+¢

dimensions {e > 0) ;

c? subtract the mass singularity pole and take u2 = (l/4ﬂ)eYQ2 {u 1s the unit
of mass in dimensional regularization and v 1is the Euler constant) ; the
result 1s equal to doi P! i the partonic cross-section d& defined in this

way 1s gauge invariant, therefore the calculation can be done in any gauge.

4. - EXISTING RESULTS FOR THE NEXT-TO-LEADING CORRECTTIONS

4.1, - Probabilities p'1r5)

The first calculation of P(l S)(x) has been performed by means of the

OPE technique l),2). In fact, the two-loop contributions to the anomalous dimen-

sions y(l)(n) of the Wilson operators have been calculated. In the meantine,
however, it becomes clear that there is a one-to-one correspondence between ano-
‘L (l’s)’x). The results of Refs. 1), 2)

malous dimensions vy ~'(n}) and moments of P
presented originally in a very complicated ferm were then considerably simplified 15

and finally inverted to x space 6)
. . . (1,3) {1,7) s
The diagrammatic calculation of P {x) and P {x) within the
factorization scheme presented in Section 3 has been done in Refs. 7t and 9). It

(1 S){ )

coincide exactly with the anomalous dimensions of Wilson operators in the minimal

has been proved there that in this scheme the spacelike probabilities

subtraction scheme, inverted into the x space,
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In fact, however, the results of Refs. 2) and 9) do not agree, 1.e., at
(1,3)
(=}

least one of them is wrong. There is a difference for the probability PéG
in the term proportional to the colour factor C?. The simple check of momentum
conservation [Eq. (3.2]] cannot help in finding the wrong result since both formulae

satisfy the momentum sum rule. For this reason we have done an additional check
9)

of our results
P(l,S)
pp!

: using the results for individual diagrams contributing to

we have calculated

ﬁcl - ﬁ,.l (4.1)
e G&q

where B, is the two-loop contribution to the beta function [Eq. (2.13]] and the
subscripts in Eg. (4.1) indicate two three-point vertices in QCD, used for an inde-

pendent derivation of Bl.

Tn the M8 scheme, the difference in Eq. {4.1) should be zerc because of

gauge invariance. We have got zero. In the formula (4.1) diagrams contributing
{

to Péé’s) are cancelled versus diagrams contributing to other probabilities

Péé}s) and for the latter both calculations gave the same result. Therefore

vanishing of the difference in Eg. {(4.1) provides a severe check of our result
(1,3)
for P (x).
A suggestive check has recently been completed by the authors of Ref. 17},
who have shown that our results, when translated into a suitable rencrmalization
scheme, imply the validity, at next-to-leading level, of a simple "supersymmetric"

relation among the four probabilities of the singlet matrix.

(1,T} (1,5)

The calculation of P is relatively simple once P iz known

since, as it has besen discussed in 7), both probabilities are connected (apart
from simple corrections) by analytic continuation. This fact has also been used

by the authors of Ref. 18) to derive P\l’T) (1,5 derived by the OFE

(l’T)(x
GG
given in Refs. 9), 18), which is the analytic continuation of the discrepancy for

using P
)

method. In consequence, there is also discrepancy in the formulas for P

P(l’s)(x) mentioned above.

To summarize, there are two complete calculations of the two-loop proba-

bilities P(l) : the one presented in Refs. 1}, 2), 18) and the other one given
in Refs. 7), 9). In at least one of the above sets of formulae, both Péé’s)

and P(l’T)

are wrong.
GG g
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lel
4.2. - Cross-sections dclp

(1) for all leptoproduction cross-sections were first

3)

The corrections C

derived by using the OPE method {(we hzve done an independent calculation

7l

within our scheme and we agree with OPE results).

1)

The corrections C( for leptoproduction and for the Drell-Yan process
have been derived in Ref. 4} and for one hadron inclusive leptoproduction and one

hadron inclusive e'e”™ annihilation in Refs. 5}, 67,

The factorization method used in the papers quoted above is different from
cur approach : instead of analyzing the QCD prediction for each hard process inde-
pendently, the authors derive only relations between various processes at a given
value of Q2. Nevertheless, since they use the dimensional regularization of
ultra-violet and mass singlarities, it is possible to extract the functions C(l)(x)
in the form appropriate for our scheme from the intermediate results of the calcula-
tion presented in Refs. 3)-6). Eﬁe have derived independently the correction to
the one~hadron inclusive e'e” annihilation ?y relating it by analytic continua-

3

tion with the correction to leptoproduction
in Ref. 5).]

and we have got the same result as

In summary, in the presentation of the results given in this paper, we

use :

a) P(l’S) and P(I’T) from Refs., 7), 9) ;

b) C(l) for leptoproduction from Refs. 3), 7) ;

c) C(l) for single hadron inclusive e'e™ annihilation and inclusive lepto-
production from Refs. 5), 6) ;

d} C(l) for the Drell-Yan process from Refs. 4).

5. = EVOLUTION EQUATION

In this Section we present the sclution of the evolution equations (2.7).

For this reason we introduce the following simplifications,

a) We drop hadronic indices and space-time indices, i.e., we consider the equations :

@%QZPCMQZJ:’ 9{._(31) % ?PPI [){,d(Ql)) ® PI(K‘QZ) (5.1)

21

B e R T L e P O, L T e



- 13 -

where

P= %%4)"') qf&’ ) G0 )ZL? / ('1} - iu’d’c’s’“"’—i’a’z'g

The solutions for Fﬁ and Fg can be obtained once the solution for is
known by obvious replacements : p > Fp P~ P‘S) in the spacelike region and
P FE, P > P(T) in the timelike region.

' q ]

b) We do not write explicitly the x dependence of functicns appearing in this

section [i.e., we write A, B, C, 1 instead of Alx), B(x), Cix), &{1-x)].

All products like C = AB can then be interpreted elther in X space as

.convolutions [?ee Eq. (2.9[] or in the n space {n - number of moments) as

the product of moments Cln} = A(n)B{n)} where

Zn) = gdxx 2 R =ABC

(5.2)

¢} We will also often neglect the Q2 and u(Qg) arguments, i.e., we will write

Eq. {5.1) in the form :

p=22 2 Fopr p’

Ql

Writing explicitly all types of partons, we have !

id. 2. 212 0% mr 1a =]
szqzt ;zrr[Z( q{,ﬂnﬁ 414,%") —@AQ_Q]

2 - o -
&d%_?. Q; 2T [% (EQ1KQK+ %%ﬂ)\) +“"G(G1 Q]

(5.3}

(5.4)

The system (5.4) can be considerably simplified after decomposing qu and an

into "valence™ and "sea" parts :

_ . v S
?mk Suc Ty * o9

Y - S
_q"‘qlk !'-k qq +?q
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The diagrams contributing to Pv and PS are shown in Fig. 9 ]the dia-
grams with disconnected lines appear after decomposing the formula {3. 5) for F
in powers of Kj There is a new qualitative phenomenen in the evolution equation

at the subleading level - the probability PqiaK is different from zero.

3
From charge conjugation invariance and SUN} symmetry we have )

flavour

Yo_pY. pv -
Yoa-Yan > X =gy B By - By i

N . (5.6)
E’It PAQ = P‘i / ?qq; 2?457:1‘. = Eﬁ‘l

Now, we define new probabilities as follows :
4 \
P2v=F +?P .
@ a7 *az
P

Yo = B - Y =P
Ber = T +2§E%Sq’ ar el (5.7)

Prg = 2§ B4

The difference between P,+) and P( ) appears at the next-to-leading level, as
{ -

discussed above. Therefore we will use in the following the notation :
) @
2@:) (XIO() PC (K) + —EC ) (_X) + CE ) 1>(.i) (X') + - (5.8)

where

(o} - (o) - (o (@
E(0! fv)(ﬂ) EL_)OQ £ &) (5.9)

Note that both P,+J and P( ) do not contain gluon intermediate states, i.e.,

{ -
they are diagonal in flavour. Thus the valence (non-singlet) probability Péo)(x)
3plits into two non-singlet probabilities P(+), P{_) beyond leading log level.

It will also be convenient to use the following linsar combinations of the

quark densities :

&) _ ) *) = cD)

i 79t % 9 Eﬂ

= A , &) T =) {(5,10)
%% , "% q,;

Thls is true up to two loops :-at higher orders piq may be different from

I
aq”

et L L L B e P L S e s G e e o e e g
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After simple algebra, the system (5.4} can be rewritten using the new

notation as follows :

2 +y )
@ %f‘q’t - %{{PFFC{ +PFQCI1

5
Qféwq = 501_: [PQFq«&)+ E@{g@rl (5.11)
% €) ©
&%ﬁ& - %?@q@ (5.12)

* 2 ¢)_ 4 9@
Q%z [qiﬂ“é‘qu]: %{E@I%A Tz 1 ] (5.13)

)

Now only q(+ aid © distributions are coupled in a non-trivial way.
The non-singlet eguation (5.12) 1s completely deccupled and can be solved inde-
pendently. The same can be done for Eq. (5.13) : we find first the Q2 evolution

of q§+) - (l/f)q(+) and then substitute q(+) derived from the system (5.,11).

In the following, we will use the matrix notation

fFF- EFG‘ ?44 f’ll
? - -
f;F Eﬂqq ?%4 Eazz (5.14)

Tn order to write the solution of the system (5.11) in a compact form we introduce

the evolution matrix

F‘FF &%) E Fq (x) B €% Faz (€@ x)
E(&@x = -
EG‘F CQ—L/ Xy E a6 (€x) E-D. p (&3 x) Ezz(d;x) {5.15)

defined as the solution of the eguation

Ii

A E = APE
sz' 2T (5.16}

In Eq. (5.16) and in the following the matrix notation is implicit, i.e.,

2
®e), = JZ_,{ By B«
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In a similar way, we define two non-singlet evolution functions E

@1i E i- s .P-i- P E_ +
a ¢ ap'eke (5.17)
The solution of Egs. (5.11)-(5.13) can be written as follows in terms of

the evolution functions :
&) QZ - (@) 3O
% € ) C")( CL,;
A9 = Epp (@) FP 4 B @ G

él (@) = Eeﬁ:(&l) a'@-) + EQE[ (Qz)'é (5.18)

@) 0 3 X 1 .
) - B304 [0 %50

~ (1)

Here 95 (x), a(+)

(x) and Gix) are arbitrary (Q2 independent) input distri-
butions. They are not determined by perturbative QCD and should be extracted from
the data,

In the following, we will use the evolution variable t inatead of Q2 :

+ -2 0 ¥
{50 D(CQ')_) (5.19)
The argument of ¢ will be neglected as before, i.e.,
_ ot
X - Koo 2
2T aT (5.20)

Now Egs. (5.18) can be written as follows :

AW =[O+ A R0 ER)

where

R=-2®- R@{i e (5.22)
(o]
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Equation (5.21) is either the matrix gsinglet equation (5.11) (then the matrix
notation is implicit) or one of the non-singlet equations (5.12)-(5.13} [ﬁhen the

subscripts (+) are implicit].

tet us denote the leading log soluticn of Eq. (5.21) by E(O)(t), i.e.,

d +£0.5 = POEO
% %) = DYER®)

(5.23)
Now we impose the initial condition
E@(O) =4 (5.24)
or, more explicitly
© ©

€ ,X = = Of-X

E@)( / )‘t=o B en)],_ = 56-¥
(5.25)

S@u-xy O

t=o & O-x) (5.26)

The rull solution of Eq. {5.21) can now be written as a power series in o :

OE [4 + %TTU+ O[dl):l ECO)G?)

{6.27)

Inserting the formula (5.27) into Eg. (5.21) we obtain the following equation for

the functions Uix)

(U, 2€@7 - %"U +R

{5.28}

(0)_,(0)

where {P,P(O) 7 o= Up TP T UL For the non-singlet case the commutator vanishes

and we simply get :

0 . )
Uy = "éoR@): %‘ZESK *‘;‘P@:)

(5.29)
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The solution of the leading log equation (5.23) is :

2Pt

ﬁcs)('t): e (5.30)

The non-singlet evolution functions are therefore given by the formulas :

:P(O)t
E@:)('_t) 1:4+21 {P" _PLO) (@2)} e {5.31}

For moments, we get :

- Wt
Eeem =Ta+ 2 (T;a £y )‘2"26)@ )Te

(5.32)
and the solution in the x variable reads :
)
o ﬁ Pro0 - 2 A Blot
4 — X
@:)Gc %)= B X)+ 2 ( &) B ))]@’e (5.33)
where
),
E% Gq't © 2
e V= BQ(-K)—@EVQ&)JC + i%.f?[x)@i%?(x) +....
2! (5.34)
In the singlet case, Eq. (5.28) is less trivial since the commutator
]ﬁ,P(O)_] does not vanish in general.

Usually, one solves Eq. {5.28) by going to the frame where the matrix P(O)
is diagoral. It appears, however, that it is then rather &ifficult to write the
final solution in a compact matrix form. As a consequence, the fornmulae are quite

19)

complicated 9 . BHere we present a rather simple matrix solution of Eq. {5.21)

in the singlet case. From now on, all the calculations are done only for moments.

Let us denote by Al’ A2 the eigenvalues of the matrix P(O)

?\4‘1 2, [?("1-2(0 1/@0) P(d 4_:!?(0) %(ol ]

(5.35)
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Tt is convenient to introduce the projecting matrices el, e, ¢

=

= 1 © - _po)
e = o [F0 %] eam 2 IF +hd ]

(5.36)
AA"A:
where 'ﬂik = 5ik is the unit 2x2 matrix. We have
2 2
er-e, , =€, , 00, =0 ,0,+C, =4 (5.37)
£(°)=/>\4 e, tA€, (5.38)
The solution of the leading log equaticn (5.22) can now be written as
(0 i@t ’)‘&‘t }‘zt
E )= € ‘e,t'ef + ;€ (5.39)
as follows from (5.37)-(5.38).
In order to solve Eg. (5.38), let us note that, since e +e, = 1, we have
an obvious ldentity
U = Q’A UQ,‘ -+ eAUQZ + %Ue.( -t QZ.UGZ (5.40)

Inserting the decomposition (5.38) into Eq. (5.28), we can project out
{using matrices ei) all terms in (5.39)}. We get

VU=-2TgRe+@Re ]+ &RG |, eR& (5.41)
(50 KJ‘“AZ “% ]?’o )2."}4 _% ﬁc ’

The final solution for E(t} reads @

B = %€4+ o [

At
_2 eARQ,‘ +’ 82?94 -] A
an - e

e+
7‘4“%2_ ‘“%

+ {e;, + %T["%’OQIRGZ-{- CuRC __[}Q?‘lt

y (5.42)
A.’l"?‘d - 7 ﬁo
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The direct inversion of the expressions (5.41), (5.42) to the x space
is rather complicated since the inverse Mellin transform of the eigenvalues )
A2

ing trick : using an obvious identity

l?
is guite non-trivial. We can, however, solve the problen by making the follow-

00 -
A -
A *LO{'T © (5.43)
we write Eq. (5.41) as follows :
w0 _for (Ag=22 )T 22M) T
U = =1 47T & Z ]:eA'RQ,f +ez?el_+ e t %_Re4+ e,( 2 éiRe?_ (5.44)

©

AT

Now the eigenvalues Ai enter only through the exponential factors e and we

can try to express the right-hand side of Eq. (5.44) by E(O)(tr). Indeed, we get

o _Rer
U= -Jdre? 89198 RE 8 B9, x)

(5.45)

(Q)

The leading log evolution matrix & (t,x) is given by the series

POt

B4 = e = 3ax4 + £P%) « g#@m@?("@._.

(5.46)
Another derivation of Eq. (5.45) can be obtained by using the experience

we have got from quantum mechanics. Identifying t in Eq. (5.21) with an

(imaginary) time we reduce the problem to sclving the time-dependent Schrddinger

equation

“0%5 [’L{)@:)>S= HE) [(P@")/?S (5.47)
where

HW= HY+ v o
and

) -—&O%
HO . PO ; V@) = g#ez R +0&*)
2

(5.49)

Since we are going to treat the time-dependent "potential® Vit) perturbatively,

it is natural to ge to the interaction picture :
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._EEGQ{;
(> = e () >, (5.50)

ad% \‘\{J(t) Sy = Ve () l\{J(ﬂ% (5.51)

where _® E(b)
V& = TV e % TN EYR)

{5.52)
The evolution operator in the interaction picture has the well-known form :
t
o § AT VL&)
_ —
B = € (5.53)

where T is the chronological operator. Expanding the exponent in Eq. (5.,53) in

powers of V and going back to the Schrddinger picture we getb

E.@) - 90 E @)=

£ —Be
= @) do 2 () (°J~
£ L£)+2Trjare EYRE®

~vo

Now it is only a matter of changing the integration variable T + t+7 in order
to write Eg. (5.54) in the form (5.27) with U{x} given by Eq. (5.45). [} similar
method, without making explicit reference to standard methods of quantup mechanics

has been used in Ref. 197].

The deccmposition of the evolution matrix into singlet and noen-singlet
pieces is very useful in the analysis of the deep inelastic leptoproduction and in
inclusive e'e” annihilation, where it enables one to substantially reduce the
number of independent input distributions., In more complicated hard processes,
like inclusive leptoproduction or the Drell-Yan process, it may be more useful to
work directly with the full evolution matrix, describing the tpransitions between
any two types of partons. We end this section with the presentation of the expli-

cit expressions for the full evolution matrix. We have :

B (o) = L E( AERL FaPCX)

f?}(ﬁ}ﬁﬁ) g;_{i(ﬂﬁ (x QY G){r (x) (5.55)

i
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where the elements Epp, of the full evelution matrix are given by the following
linear combinations of the singlet and non-singlet (spacelike or timelike) evolution

functions :

E‘h%j i Eﬁ'ﬁj ) % l:EC+)+ Ec-318£j +2ig [£44 - ch)]

m
]

el e e

E- = - = 1
6 e 1p B

2

Baqi " Sqq.” o
aq £ (5.56)

Let us present the following important comment. The next-to-leading part
of the evolution functions considered above has been determined by the parametri-

zation (5.27) or, equivalently, by the asymptotic condition

E (£) — E€®) (5.57)

£ »0a

Since the evolution equation (5.21) is homogeneous, there is a freedom in fixing
the normalization of the evolution functions. For example, inatead of Eq. (5.57)

we can impose the initial condition

E (8 =1

(b (5.58)
Solving Eq. (5.21) in the "interaction picture” as before, we get
_ O s £ @ O (A2
Ed)= 7@ T )+ Olag) (5.59)
where
£ £
@ - 2 ©,, . ©)
BY6) = Jdve * E%-m)REYD) e

P HELTAR AR AR 00U UGN PR BN 18BN 1l 1RSI G U0 e w1 b ] (e s TP U0 a0 U 100 000D EFl ML 000 1 oS s =5 s e e v v
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In the non-singlet case, the integral in Eq. (5.60) can be performed in a trivial

way and we get, e.g., for q(")(t}
) ) ¢ =), | YED 0 Ao
) = T4 L OOTEY%) g% = [E9%)+ Xe T LE
LW = T+ 20OTEW® G [E96)+ X t9]q

- [4 +(d Uul @) QU - 61)

As one can ses, the solutions with the boundary conditlons {5.57) and (5.58) differ
only by a ¢t independent part which can be reabsorbed by z redefinition of the

input :

Wy 56 = e 1TE 1)
Q> " =1+ 20U 14

{5.62)

In other words, any cholce of the normalizaticn of the evelution functions
correspends to some particular definition of the input distributions whereas the

t dependence of the physical quantities does not depend on this choice.

The same remains true in the singlet case. Technically, however, the si-
tuation is slightly more complicated. We discuss the singlet case in the last
section, devoted to the detailed analysis of all the typical ambiguities appearing
at the subleading level.

Here we report only the following formal rule : in order to switch to any

other definition of the input, one should perform the replacement

(o) =)
%UE. (£) —> %ﬂ; [’E.()G:)Y@Jr g@ G:)] (5.63)

(1}

where Y is an arbitrary 2x2 matrix and EKI)(t) is given by Eg. {5.60).

The new parton densities are

q/("i-\ 5 )
(Ci )2{ ) [4 N 050 CU_ X())] (5.64)

In particular, the parametrization (5.27) of the evolution matrix used in this

section {(hereafter called the U scheme) corresponds to the cheice Y{l)

= U
|one can easily verify by shifting the integration variables in Egs. {5.45) and

(5.60) that the replacement (5.63) 1s an identity in this casé]
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As seen from Eq. (5.63), the U scheme provides the simplest possible para-

metrization of the evolution : for any X(l) # U one has to deal with the compli-

cated integral E(l)

(t). Therefore, for notational simplicity, we use the U scheme
throughout this paper., Nevertheless, the U matrix representation has serious prac-

tical shortcomings : U(x) turns out o be very singular for x -+ 0. We discuss

thigs point in Section 10, where the reader interested in numerical applications is

referred to.

&. - DEEP INELASTIC LEPTOPRCDUCTION

In this section we present the QCD prediction for the inclusive cross-

section ch

°h in the deep inelastic lepton-hadron scattering.

The standard variables for this process are :

_ ! ‘2____ '2._ / =@2' :Zg =
cl-,@—@ , ¥=-47= 28¢ X Q_ﬁ—q/}%‘ z“gjg’fs 2qe (6.1)

The basic formula (2.1) takes the form

d%w,@) Slitde B0 rop oo
Axdy "j"x dde% i G AIGER)

Since the variable y does not change after replacing hadron by parton momenta

{y = hg/ht = § = pa/pLl, Eq. {6.2) is diagonzl in ¥y. The y dependence of do
and df is entirely determined by the 3pin structure of a current. 1In particular,
for a vector (or an axial vector) current both dg and d5 are second order poly-
nomials in y. TI% follows directly from the standard decomposition of the hadronic

tensor

ef
Wy (ﬁf@)]gf

54 (CM <MI W@ =
[“ﬂrw m& ey + [h "’—“‘%][ ““““ﬂﬁ- (rat)

f
- A é—fwa)& C{,P ?}i 3(%,62‘)
hg, !
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It is therefore convenient to isolate explicitly the ¥ dependence as

follows :
ddg G _ & (se A 2
/ O‘ €} ZY
PQ BT‘(%J Byt’ ffgCFQ)
A (6.4
A4
where YB 1ﬂ(y), r = 1,2,3 are three linearly independent second order polynecmials
H
in y. The subscript B (= vector boson) indicates the type of a current :
B = v for the electromagnetic current, B = Wt or W for the weak charged
current, B = ZO for the neutral current.
The numbers pr r stand for the vector boson-parton coupling constants.
¥
The functlon C {i,QE) describes the non-trivial part of the short-distance

F,r
interaction and is given in QCD by a power series in a(QZ)

e R = CBa0 A ey (1) .

The values of the coefficients 0;1; are given in Appendix I. If the actual

*
current JU(X} has the structure

|
—x
3
I
Moo
M*‘m
(Sb{

C")‘T' T'CL()

the function Cp r,(:T{,Qa) is derived for the current
b

F
Ju) = qﬂL ® T Qi)

and all the actuzl couplings are contained in ABp " As a consequence, CP is
H
flavour-independent. The meaning of the subscript P 1is the following : |3 F

no

when p=q, or p=g9d, and P =G if p=G. It follows from the above dis-
i i

cussion that :

CU’) - ) C(O) =0

A g K 7‘3@:,1-) (6.7)

BQ)P 2,? A=A

L]
The lepton-hadron cross-section dgih nhas the decomposition :
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Q’ L 3 2(
e 04,8 | & s Lo () & o 062

dxd% k=4 (6.8)
¥
The basis Y {yi will be chosen in such a way that the functions fR = f
B,r o fh,r Bh,r
will be related to the standard structure functions FRh r in Eg. (6.3) as
13
follows :
= 2F = _f_) =
’?4 A ) ;?l ‘i Fl 2 2 1“-_:3
X (6.9)

Inserting Egs. (6.4) and (6.8) into Eq. (6.2), we get the QCD formulae for the

structure functions fr

‘?Bﬂ. r()(,&") = (‘3 (7‘ &) ®§
/

A=A

Vg, o 66) 4z, o FG, )

Py xQ°) ® xBe;,r‘ FQIG(?‘IQZ)

(6.10;
In the following, we will neglect the x dependence so that all products
are either convolutions in the x variable or usual products of moments, in 2 si-

milar way as in Section 5. £1s0, we will use the evolution variable t [Eqs. {5.19),
(5.20[[. We then have

¥
i?s&fb(f)z Jc) Z iﬂ lr?q “ f}sq 'Fq"‘(f)}-;-

() Aﬁq,rﬁf({) (6.11)

Let us now introduce the singlet density

F%&)(%,K) = éligq"&,x) + Fg’-‘:(t,x)}

(6.12)

and two non-singlet densities

&) : q4
Voo (60> gcngq = M) [gjf*&,x)-gq*(wf{
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¢
VO () e 2 oy r g IFHG0+ i - £ Fa ()
A=A ¢ (6.13)

FEquation (6.11) can now be written as follows :

= 6 &
By 7 Ceelo Iy, 0V O]+ a1, (0 e

Bh,p

where

") &
Shm(’C) = Cer U‘)Eh (e) = CG::T&J FJA (¥) (6.15)

-+
(£) evolve according tc the non-singlet evolution equations

+) FG according to the singlet equation (5.11}.

The densities V
(5.12), (5.13) and the densities F; .

Combining Eqs. (5.27), (6.5) and (6.14) we get the final result for the QCh

prediction for any deep ineiastic structure function :
= U
ENOR [egw) + & (s Ugy) Ev @]V,
© @) HOYRN VD)
+ [E\:’&) + f’n (.CF,\“+ U‘H) Ee (ic)] VBh,\-
©) “) (0) ) ©) (+)
Moge |20 +2 (Cc+0,)8%) + () EDE
© oL @ ® @ @, \TEG
+ A BT [EA?-G:) ) 217 <C CFIY+ UM ) EA?.&) * @&)P+ qZ)Enﬁ))%iélé)

As seen in Eq. (6.16), the Ola) corrections to the partonic cross-sections and
to the evolution of parton densities always enter in the following combinations :

A) s @) @) @)
CFIPH)G) )Q +U(~) ) r+Q\4 )Cq,r+042 (6.17)

These functions are scheme independent, whereas the decomposition into a

C part and a U part depends on & particular factorization scheme.
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For any structure function there are in general two universal (current in-

dependent) input distributions ?é+)(x), ?g(x} related with the singlet part of
the structure functiocn and a set of non-singlet current dependent input distribu-
. m{t)
tions VBh,r(X)‘
Since all the experimentally relevant currents (B = Yy wi, z°) couple
only to charge or to weak isoapin, all non-singlet distributions Véi)P(t,x)
s
can be expressed in practice by the following three functions :
£
) s : h
W () = 2 Z TF TRl + 8% (0]
A=A 9‘ 9\
) QY 4 94
Hx) =2 2 T [E 0 - Elen]
v& (,/) A=A 3 %(/) ‘H (l)
€) : 4i a4
Ex= 2 }:F (£ x) — E M X)
HoY X & v PR
A=A {6.18)

where Igi is the third component of the weak isospin of a guark q;

.1 _ 75 _ - _1
cE g I =10 = s oL

Theref'ore, for any hadron we have five input distributions :

~ N N "\:+ N
F;' O F%( )(X) , F%OQ()} Vq()(x)) Vé)(x) (6.19)

In the fellowing, we present explicit formulae for the electromagnetic

%
current (B = y) and for the weak charged current (B = W°) )

a) electromagnetic current (r = 1,2)

A 2
GX (5,622) = 4T D(e.m. .S
g (@)

Yool 44* 5 Yaly)=1-y

Q\ML'T =/ b’zt_i,‘t‘ =€y (6.20)

*
) We neglect threshold problems for heavy quark production and full isoweak dou-

blets are supposed to be active in the currents.
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Gt AN, &)
Vi, 7 = G Vi

&)

Vux = O
5) charged weak current f{w =1 for W, w=-1 for W) :
2

A G
Sw (S,sz)= ﬁs
‘ 2 |
Yw, (‘j)zii 2 XW.QC'EQ”: 4’%7 |
o} ' ) 9& =
- A-20TH, Mgy = Ar 2050 T 1,2)

tualep- ol

Mg,
‘ 2
Mg 3 = 420157 Mg = ~4- 2073

. {6.21)
%W&,ﬂz %W&ﬁi: i, %WG,S'—' O

-

&) &) ) =4.2

VWh;fT =0 ) V‘Wh,d‘ = =6V (v=1, )
&) @) © )

th.3='®Vh+ , Vigh,3 =%y

Finally, we present the formulae for nuclecn and nuclear targets. The label A
instead of h denotes the nucleus with A/2[1-8] protons and as2[1+6] neutrons.

We use the simplified notation for parton densities :

i

e ®_ FP, £P
P > , P7= 21-1:_2 5 e
i.e., all densities now refer to proton target. It is convenient to introduce

the following densities :
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U6 - O g

G I A YN
i = U0 4 A (6.22)
A - VE 5@ 0B @), t6 b®

= *)
Sf Cﬁi‘ 9= Céur S
We have then (r = 1,2) :
fszr = % Cra v ha] + 5 S
{zb‘N,f’f = Jg@ﬁfr ["’Um_a] +/~% S

{253*f¢' = "‘é?(EF;d-[:G}ﬁjéf)ﬁ—(Lilﬁf j%éé;ar

Pzt = Cra [-009] + 3, |
‘?WM,G‘ = C;;,r[ wq)(*)J £S5 (6.23)

T - Cr & [oo&-«n“)J+ Sy

'@WJ?;S = "1'.'.‘,3 [(Q(Q_rv(+))_h2(“) ‘
WQWN,:% = @ac,g [w(aﬁ-qﬂﬂ),-r.gcﬂ
'FUM,S = ('21:‘3 [oo(a+efﬁﬁ7)+2(—)

The Q2 dependence of the structure functions in Egs. (£.23)

is given by the
general formula (6.16), i.e.,

o) o) ¢l © 5
Se) = [0 +2 [CcHey, )EO ) « €+ U ELB]| 3O

© 2 o o)’ —~
+[ 0+ £ [@0 v, )T (€Y +U,) £ (t)ﬂ G

(6,24)

R L TL U NL IR L I ey
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N8 @ ® 5
C"‘-‘&mml (c . w @)(ﬂ]i f

’UHG:) B ) IS
AT e e

q,“’ @) q¢)

Thus any structure functlon on the nucleon or the nuclear target can be parametrized

by six input distributions : a(+), a(_), §(+), 5(_), a, G.

7. - INCLUSIVE e'e” ANNIHILATION

The basic formula (2.1) has the following form for the process efe” > h +

+ anything
AG o i &)
Moo ViYL Zjdxdx o Gstgr,&)F (2 ,6)
dxdy P AR ay (7.1}
where ’ a(x xz)

q,= /QﬁQ?-)Q 14, Xhakq’ ’% && i[" £OSE, _.] (7.2)

As in the case of deep inelastic leptoproduction, Eq. (7.1) is diagonal in ¥y and

the y dependence of both do and d5 is trivial. We will use the decomposition

d@-ev (x %,Q) N M’f&:m E3 f\;(lx,Q") - 3%@*%)%?1(’“&1)1 :

axaqg, 7.3)

and the corresponding one for the partonic cross-section

dodie B, 4:8)  adom, A8 [2 CF (588)-3y - y)CE ]
A% d«d, 1ok

(7.4)
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In Egs. (7.3)-(7.5) N is the number of colours, g, = (Qﬁa2/3Q2) is the total

cross-section for Bhabha scattering, P = F if p = qi or p o= ai and P = @
if p = G. The couplings A$ are :

G4 . AG _
? Ague . j‘zr’é

A8 (7.5)

The structure functions fi " in Eq. (7.3) are related to the standard structure
]
functions in the hadronic tensor wuv as follows :

S ,
[W/A\;]@Q_ *%<Olj/}(0)f)</h><><,l1]:)’V(o) o> =

) ] | h
21\4{[ 3w+ ﬂ'gzijgflf é{'/[l};‘ %-jq//a][hw“g‘?’q"] 52 i

(7.6)

From Egs. (7.1)=(7.4) we get

W 5y - P —~h
o K1) = 2 @@ AR (6)

(7.7)
4s usual, the functions ci’ are series in a(@%)
T x6t)= B + 48D F Wy
CGY[X,QT):: 0(2(8;. 6[(4)( )+ (7.8)

The values of the coefficients are contained in Appendix II. The decomposition of
Eq. {7.7) into valence and singlet parts is the same as in the electroproduction.

Using the simplified notation introduced in Section 6, we have

h h ¥ h 4
P =20 W T[T OF )« 5,0 B )]

¥ir {(7.9)

where

o (= 2 2130 [ 00 B ]- (Tl )l o o

Wy s reh
Fs () = /% (F,H{P‘)

da A4 (7.10)
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The Q2 dependence of the structure function f$ - is the following :

)

! 2 ) F
for ()= ST+ (eL% Ue)] By O
o 4 ° ¢ °) =
LB e« ALY, )EQR) » (1% UR) Ex wl}h

{7.11)

(o) F@) ©) ge 0l =
*é [Eu (&) + ig(ﬁ [CC' \”( * U';" ) E»tz (JC) T (Cr- +U‘11> tzz (ﬂﬂ Z{Q\

8. ~ ONE-HADRCON INCLUSIVE LEPTCPRODUCTION

The general formalism for the single hadron inclusive leptoproduction is
very similar to the one presented in Section & for the totally inclusive case.

The cross-section is given by the expression

W
@9\_@(1‘6‘_&@.— Zjdidy'ixdx' 'EP@‘&Z) A@Zf G‘; /13') Qz).[: (%] é‘t)
d.xdx[dié_ PP‘ ct/x d\;( d%’
S (x-%g) B (H-X'%) (8.1)

where

2 % = AN

N - . g
CL-'JQ £ ] CQ"‘_{i ) K= 'ngi é;i !43 %Q. (8.2}

The structure functions are defined as follows :

Q@\'
foxlﬁﬁj(i) 6; 2? 7
cixdx d% - % S) IB r(/‘d’) /?5'“ "(x'x &) (8.

3]
—r

[

AS%Q‘.LL 6,6s )7— Yo (4) '/\" Kra?)
dx dx' dy
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where the functions YB r‘(y) and the cross-sections GB are the same as in
b

L
Section 6. The couplings Agp p are as follows (r = 1,2)
b

. - - = ' ‘A = _ B o
ygar ar 4 SRR 7 T S T
LT AZH - )& § 2
o‘mr ¥45  Tgqivr 9‘3@;; =€
AL A ¢ 3
A = - = = = l z =
W*d,,\" Aw'*u,r‘ ?lw*slr W+€r*‘ Aosec (r= 4,2)
A 4 c S z
Aw*d,a AT ;\msﬁ: —;\N+€,3 = A £0SC (8.5)
As in the Preceding sections, the indices P, P' = F or @ indicate whether the

corresponding parton (p,p') is fermion or giuon. The expansion of the functions

C in powers of o has the form

2o EJC) | ?) » B
o = - - (N !
Qflr(x,x,@) Qgﬂé(’f x) & x)+7.%{ )C’ja,r X))+

(8.6)
where
) G (o) E( (0)
C’;S# 1 QFJ‘: Ce‘,:): Ce?p -0
CZ’(:‘ (xx')=0 (8.7)
The functions Cgfi){x,x‘), Cgfi)(x,x'), Cgfi)(x,x') are given in Appendix III.

The QCD formula for the structure functions £ reads :

%‘ AN g2 5% BP0 ?’ z . Al R | Q).
QBh’b(x,x‘,Q) ‘?%, xdz dxdx"ré. (Y ABP,PQE,\“O('X /Q)'F'F (£,8")
. 5 (x-fc\;) 6(2&‘—3\(‘1’) (8.8)

The convolutions in Eg. (8.8) factorize after taking double moments :

W P P& W
‘Qsﬂ,b(ﬂ‘,m)az): 5’; T o) AgP,rCJ%r(“rmJ@:z) {?' ;&) s.0)
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where

A(fnlfm) ESSAX AM_U:% %mnﬁk(x,%) ; Aln)= J;dx Am-}\(x)

{8.10)

for any function A{x,y), 4(x). Thersfore we will use as before the simplified
notation

?“' P )P ‘
)?8%!\\ (JC) = {>ZF| —F(;\ (©) 7‘Bpt‘r‘c 2,0 )F?: HJ)

so that Eq. (8.11) can be interpreted either as = double convclution rEq. (8,8{[ or

{8.11)

as a product of moments \Eﬂ. (8‘9i]. Thne general expression for the t dependencs
of the structure tunctions can be written down in terms of the evolution matrices

(S} (T)
p

B 7 (t), E__,{t}, presented in Section 5.
p pp!

W ¥ a (o) ?!
° QXS
25“;“(0 dd ABPJ aa [{- @G E o)

(8.12)

& (2O 2@ 0 @, 2 9 g(,) 4.1) e\,.nu
*&W@WHQWEMW+E;% @HU Eoa® €, cﬂ

After some algebra, one can decompose the sums over the types of partons in
Egs. (8.12} (p,p',a,a'} into the singlet and non-singlet pieces, in a similar

way as in the preceding sections.

Finally, let us make a comment about the "factorization breaking" in the
inclusive leptoproduction. At the leading log level, Eq. {8.12) for f(x,x';@z)

factorizes in the variables x and x'

PReson ZReOA,, 76

(8.13)

This type of factorization is apparently broken at the subleading level, since

¥
the functions Cg il)(x,x') do rot factorize. In fact, however, as seen from
?
the formulae in Appendix ILI, they.can be written in the form of the sum of

products

ED) 2w 9@
CI’: Cox)= E_ ‘”3“() “"’P"C ¥) (8.14)
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so that the following "generalized factorization" of the structure functions f

is valid :
,gv‘ (xiX; 68 = Z ﬁ (x,Q"‘J?\P f ,( /&)
(8.15)
where
i
p 2 @)
Fng&®)~ T (¢, @)+ A0 £ (xa) @ Ay T (x)
2T /
e\l \ 2 2 6\1 2 {
1 d® ' @ @
oy (x@ =Fo (X at) }LrF)F?' K& B@) <) e
9. - DRELL-~YAN PROCESS
The standard variables in the Drell-Yan process
h4+ hg_ —->},[§/*— 4 anything
are : |
2 2
€= (82, 3= (heh) | T~ &
(9.1)

The cross-section is given by the expression :

Kj;? i A 5 F?F t&
Wb OO _ 5 (1 d, 42 Rl e, %ﬁa)a(@%g@

AT Ge
(9.2)
where + W _
A .
doﬁf‘(t @) mro(e,,, Coz, 4 @ aett, _ 4T, ?:F@c)
AR AT 3@ 'k

Cop, (8@ = Cop 8024 4 (2 .
o (9.3)
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and
(o (O] (©) @l
C = A Qc' =C7 = C(O) = =
FE I Coe® ©
The functions Cé%)(T), Céé)(T) and Céé)( ) are given in Appendix IV.

The couplings AplpZ are the following :

— 2 —_ e
?‘4;% Agiqg= 5%%4 Aqig; = 04,4, = © 9.4)

_ 2
;\4& = qﬂ;a =2Ggq: = 167 = &

The convolution in Eq. (9.2) factorizes after taking T moments :

thh/:[m @f‘)—* PPlFf(th’“)sz(m Q")Q( et (324?( oL R

The t dependence of the function f is the following :

pt \* ~
Tou o, [ ©) (o) (o)
g h k Z A PeP2 Z Fh*‘ -Fi ['t_ 4% H:) ® Pz.a(‘:C) 63422-‘_

S ﬁ“j ®) E“’) I8 (E("'S’ca E(°’ ) + E‘°’a»,) £ “%) C;’?]]
A A z A 4

(G.6)

10. - AMBIGUITIES AT THE NEXT-TO-LEADING LEVEL

Various ingredients of the QCD formulze including non-leading COTTQ?E%?Q%

contain a certain amount of ambiguity.

In this section we discuss systematically all the ambiguities appearing at

the next-to-leading level. They have three sources :
a) renormalization prescripticn dependence ;
b) factorization scheme dependence ;

¢) freedom in the definition of the input parten densities.
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10.a. - Rencrmalization prescription dependence

There is a well-known freedom in the definition of the set of renormaliza-
tion conditions fixing the cut-off independent part of the counterterms which make
the perturbative expansion finite. We call this the rencrmalization scheme (pre-
scription) dependence. Any result expressed as a truncated expansion in aS(Qe) is
affected, beyond leading order, by a change of such a definition, which we assume

here universal for all processes.

However, there is in addition an independent ambiguity arising when a para-
metric form of the running coupling constant is obtained by integrating Eq. {(2.11},
corresponding to different cheoices of the imposed boundary conditions. After re-

scaling Q2 in Egq. {(2.11) by A2 we get

d(Q%)* 2 +-C>(‘ 1 )

= . 10.1)
AT e, v 0 +(3_‘J&[Q{ 43o N 3 (
+ &fie, Q
@0(. /A ) Beol @)/ Qu' /}\z
where C 1is g constant, 1ntroduced durlng the integration of Egq. (2.11). The para-
metrization of a(Q ) in terms of A and € 1s obviously redundant - ¢ can
be reabsorbed by rescaling
z —C
2
A= A e
{10.2)

As a consequence, we can either keep explicitly the C dependence, which gives,

after expanding in powers of l/in(Qg/AE),

Y 2 4 oA (e 3 Ju o 4+ fe (00 g +O( A
2T P“QM@ZR[ Q“G%,( +Eoz (3 *%"ﬁ* 6}”{2) 0%36%)1] (10.3)

or rescale A as follows

p)
N=b Ae ° P (10.4)

which gives

@ _ 2 [1- Be ol Sz &z )j
&%

2T foo Q,QA Bs 3&6%\2

(10.5)

PR RN R TR ORI e W i g nen e e s e
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One can also fix the parameter "C" in Eg. (10.3} to normalize o (Qz) equal
2 > 2 20) 2-Loop

to al-loop(Q—) at some Q° = QO . At a two-loop level, any result expanded

up to second crder in al~loop(o2) = 2/(Bo£nQ2/A2) contains ambiguous terms in the

coefficient of the order yg, which both come from the renormalization scheme and from
input definition dependence. They can both be reabsorbed in this case by a rede-
finition of A. We will see in subsections 10Ob and 10c how the same kind of ambi-

guities arise also from the factorization procedure.

When physical processes are expressed in terms of other physical processes,
the above ambiguities drop, but still a last freedom is left : the choice of the
ncorrect” scale which enters in the running coupling constant ("scale definition”

dependence). The above freedom can also be seen as a process dependent renormal-

ization prescription, which does not drop when comparing different processes at a
given order of perturbation thecory ; its definition can be chosen to “"optimize" the
the convergence of the perturbative expansion by requiring, for example, a "minimal

*
sensitivity" to this choice of the results of the truncated perturbative expansion

The formulae we give in this paper are obtained in a universal factorizatién
scheme (the MS) and are parametrized by the full as(Qg) of Eq. (10.3). The
constant C can be arbitrarily chosen, provided 1t is kept fixed in the compari-
son of various processes, where input definiticn and universal scheme dependences
drop. The scale of the running coupling constant is arbitrarily identified with
the value of a "typlcal" large invariant of the process : further optimizations
are possible, bubt legitimate, in cur opinion, only if they remain at the level of
a =mall perturbation of the 0(@2) result. A warning must, in particular, be made
for large next-to-leading corrections which survive the comparison between differ-
ent processes : these are often of kinematical origin and require resummation tech-
niques (exponentiation) different from those implied by a suitable cholce of the

running scale.

e e e kA -

The generic QCD formula has the form
Ft) = C () ) (10.6)

where Fi{t) 1is the experimentally measured distribution, C(t) is the hard lepton-

2 s
parton cross-section and T{t) stands for the set of Q dependent parton densities.

*) In Ref. 21) the generalization of this freedcm beyond pextTto—leading ordgr is
extensively discussed by fully exploiting the renormalization group invariance

introduced in Ref. 1CJ.
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For simplicity, we will limit the discussion in this section to the deep
inelastic current, but all the remarks presented here remain valid for any hard

process.

A1l the formulae written below ars valid both for non-singlet and for singlet

parts. 1In the latter case, the matrix notation will be implicit. In the nen-singlet

case, Eq. (10.6) should be interpreted, e.g., as follows :
FO = £ - £, 8
cl)= £ Ce ¥
M) = v ®)

with r = 1,2 denoting the type of structure function considered, and in the

(10.7)

singlet case, e.g., as follows :

FO = foprlt) + %w (t)

¢ 4] J Cryr (e)} Q%)
C(t) = [Q(ﬁ) - [CGHY, (H ; P(t) - Cj('{f)

2
Fle)- e (o)) = 2 ¢ (o) I () o
In the following, we will mainly discuss the singlet case which is less trivial -
the corresponding non-singlet expressions can be obtained simply by replacing all
vectors and matrices by the corresponding scalar guantities.

2

The parton densities evolve with Q as fellows :

A T) = (B9« LRI ; &P B 0
at 2T 2R0 (

10.9)

and the cross-sections C(t) are given by power series in o -

CH) = CO+ & cWy (10.10)
20

1)

1 . .
The results for P( and C( ) presented in this paper correspond te one parti-

cular factorization scheme constructed in Refs. 71,9). Since, as discussed in

Section 3, the factorization of F into C and T parts is not unique, the
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)

functions P(l) and C\l are different in varicus factorization schemes. In

order to parametrize explicitly this ambiguity, we observe that, given the formula

(10.6), we can always redefine C(t) and TI(t) as follows
A -4
L — Cl= CE W
M) — F'(t)—-—*t Z (4) T () (10.11)

where

- )
)= 4+ 2 &

is a 2x2 matrix.

Yarious choices of Z(t) correspond to various factorization schemes. We

have now

é@) - @@) _ CC°),%(")

A
PW- PO, [2 @‘)/ PO %g Z@ (10.12)

(1} 1)

!
Equations (10.12) parametrize the ambiguity of C and P due to the freedom
in the choice of the factorization scheme. On the other hand, F(t) does nct

change, as seen from Egs. (10.11} :
A A
) -c@ ) =CEO T

The cancellation of the scheme dependence must taks place order-by-order in o.
Let us demonstrate how the Z(l} dependence cancels in the O(a) contribution

to Flt).

For this reason, we use the evclution matrix E{t) normalized as in

Eq. (5.58). We have now

FOY = CR E®TO = d I'0)
8w Ew o = BW ()

(10.13)
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where —?—‘it
@({):[‘1’*“7] %0+ do [ 926 =

¢, ¢
o (e e“% E9e- ) R EO))

o
A ~ ot —Rot
- COEOE) + e (WO e 2 L c@OzWEOY) o 2
dW=c9e Gc)+2—r—r{fi £ e Z0EC)
i c“”E(")(Jc)Z(“h-

+G(o)\j d,‘ke (tt Z‘)[R“‘ [Z(‘)I(OJ P &(‘J]‘E(o(t‘)}

(10.14)

Now we derive the following identity, which will be used many times in the section ;

integrating by parts the expression

T By
& dr e 2 -E(O)(‘t-t)f\ EOw) (10.15)
Lo}
where A 1is an arbitrary (t independent} 2x2 matrix, we get

Po
2 (0)@7) E(O)(t)f\*‘j A e&of’_@)(t ’t){[_'A '\D(O):{ ﬁok}E(OJ(

o
(10.16)
Using the above relation, we get immediately

A
@(ﬁ) = @&) {(10.17}

The function F(t) depends on two input functions :

M
Fozﬁ=( )
' ( ) [y (10.18)
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Again, we can redefine &(t) and I as follows :
D) = &, )= WY
—q
—d = {1¢.19)
™ Uﬁf Y I 10.19
where

_ oy, ol )
Y-— Y +3%Y + (10.20)

is an arbitrary non-singular 2x2 matrix. We have therefore :

Fy=0ar = & 10.21)

where

62\& ) - @?(*) + g-% @(:{J(%)i--v- (10.22)

The vector @Y(t} is independent of the factorization scheme but it contains the
ambiguity due to the freedom in the definition of the input densities., Equivalently,

we can say that we use the evelution matrix EY(t) = E(t)Y normalized as EY(O) = Y.

In what follows we discuss some particularly interesting choices for the

matrix Y.

a) S scheme
We take Y = 1, i.e., ¥ =1, X = 0 (i > 0). In this scheme, the

parton densities

® )
(t) - [G_Lqm - [290 < 200 1(0)

(10.23)

gsatisfy for any value cf 't the parton model sum rules : momentum conservation
for singlet, fermion number conservation for non-singlet. The input densities

®
T(0) are defined by the formal expressions (3.5} of our scheme )

e i e i o i o i o e e e ek Al i R P . i AR e A T T T T T o S e VM sk T T e

This iz the scheme we suggest to use : it can be obtained from the formulae
used in the paper by means of Egs. (5.63) and (5.64).
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b) U scheme
Taking Y(O) = 1 and using the identity {10.16) we can write the

expression for @él)(t) as follows :

. - Boy
@;’(k): e ? T CW « COYO T EG (Y

£ Bz
+j At ¢ E(O)@?'%){K+ IY®pe - B }_’(‘)} E@)(‘t) (10.24)
prd
0
Taking Y(l) = ~U we cancel the expression in the bracket {} in Eq. (10.24)

[see Eq. (5.287].

As a consequence, ¢Y(t) takes a particularly simple form in the U

scheme :

@Y(’Cﬁ [Qc0)+ %r (C(‘) £COTS ):[E@)GC)

(10.25)

In numerical calculations, however, the U scheme is not very useful. If R
contains a part which does not commute with P(O), the matrix U(n) has poles

on the Mellin plane for positive values of n > 1 [factors 1¢ﬂ31_12¢(30/2[] in
Eq. (5.41)]. It means that the matrix U(x) behaves like (1/%)% for x + O
where « > 1. For example, for four flavours we have @ = 3.8, These singular-
ities are completely spurious and should be cancelled by the corresponding zeros
of the input densities in the U scheme. However, it will never be the case when

we take only the O(ao) term in the perturbative expansions of both Y and Y_l.

Therefore, the elegant U scheme is unfortunately rather useless in

practice.

c) C scheme

We may try to define the parten densities by identifying them with the mea-
surable structure functions in some reference processes. However, in order to de-
fine both q(+) and G we have tc introduce some hypothetical current which
couples to order a°  to gluon and to order ai {i>0) to quark [}n a similar
way as the electromagnetic current couples to order ao to quark and to order

Vi

of (i >0) to gluo{]. For example, we can formally zdd a term ¢(F“ Fuv) to the

QCD Lagrangian.

B L LT L L T B T [IEOEIES
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Let us introduce the following notaticn :

6 (%)= (:;(:) ) = (2’;&) (10.26)

where FY and F are the singlet structure functions for vy and ¢ currents,

¢

respectively,

{
b
L

Nig
2
=

Cul)  Cp® Cor () Cyeo (&)
eorf2h 2058 3

Cu (k) Caz (£) CCPF[E) C% (t) (10.27)
where cij are the corresponding coefficient functicns. We have now
6= COHEW® r (o) (10.28)

The vector olt) satisfies the evolution equation

A e = Riok) (10.29)
4t
where
R~ PO+ 2R
Al
R = R+[¢®20]- ¥
We can now define the q(+) and G densities as being equal to o and Oss res-

pectively. In this way we can relate the singlet parton densities to some "measu-

rable” guantities.

The solution for the vy part reads :

AR ACIACRINO[AC)

(1C.30)

where

b= e (t)+ g_; {c@E@)ﬁ) _cYe0E)eY e pz'"g@),éo) (H} (10.31)



B R T L T PRt AU R

- 46 -

fin order to derive {10.31) we have used the identity (10.16)]. Comparing Egs.

(10.31} and (10.24) we see that the ¢ scheme corresponds to

7 . olo @
Y - /'ﬂ‘ﬂt;{_ﬂ' ¢ (10.31)

The C scheme is not very useful in practice - there is no point in deing
the explicit calculation of the spurious coefficient functions CBl’ C22 for the

¢ current which does not exist in the real world.

Nevertheless, it provides the physical interpretation of the ambiguity due
to the freedom of the choice of Y - in order to define the gluon distribution in
terms of some measurement, we get (at the subleading level) also the corrections

to this measurement contained in the second row of the matrix G{l).

Note alsc that, as seen from Eg. {10.29) there are no coefficient functions
in the ¢ scheme at all : the full physical structure function evolves like a
parton density. Therefore, from the point of view of the t dependence, we may
say that the C scheme corresponds to the change of the factorigation structure
scheme described by Z(%t) = C(t). Equation (10.31) then follows immediately from
(210.12) after substituting Z(l) = E(l).
d} D scheme

We can completzly eliminate the notion of gluon density by writing a
second order differential equation for F{t) = Fyft). Differentiating (10.30)

and eliminating 02(0) we get

F-mBFL+pOF®) 10.32)

where P{. B = ,(,(p)-i- £ @)-&-

AIC VA

(©)_ ©) o) ol D (o
T)" = EAR }?;4 - E»((fl Pz(z) = ~ det [‘P(O)-]

= 2+ 29 - T[]

22

RO (Ru~ frC) (39-29- o)+
o)1® ) ple 3 >
+ _"E&(z)RZJ( + ?24) R/[z_) - BO CZ.( )i)?j ) - 3?/5)/?4({)

Pﬁl@) = K +Rap - %o[&’ C4(4) +?4(°) [Q41+ Cg’ (ﬂg"ﬁ?" %’)ﬂ (10.33)
A2

LR UL R TR R O R T I AP A T NI T
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The functions pi(t) are now physical quantities : they are free from any ambiguity

discussed so far since they enter the differential equation for a physical

quantity. We can write the solution of Eq. (10.32) in the form (10,18) where

Fo1_ F(t)}
[1.1': }':(O)J: [Zto%:(t) L-o (10.34)

The matrix Y for the D scheme has the form

(o}
Y@= A [ 2 O]

'3?(9) :E 1 (10.38)
“) . )
*X? N -}z(q) Ei:(h
where
~
O (4) © 1) p®)
\'{4« - E CA :E
S N c@)
YA?. =
~ ©)
@ _ P )
24 Po 2, Kz —Raq *CG (B<Bed+
A2 {10.36)
() ) (v
+ (0) )
(1 [ 4>u» <;E; FS ;) :Eazfl
.
NON QNN (A) 2@ _pe
‘Y:Z:."_A"E(o)[ ( 0)]3)]
A2
Technically, the D scheme 1s rather complicated for the analysis of the data in

the x variable : the cperator l/Pig)(x) is a complicated object in x space.

The virtue of the D scheme is that one is dealing all the tinme with unambiguous

guantities since the input 1s defined in terms of (in principle) measurable
quantities F(0), F(0).

Once the vector FY nas been extracted from the data, one can derive the

gluon distribution according to zz)

o (q(ﬂ(o) ) '“=Y T'Y

(O) {10.37)
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CONCLUSION

The presence of next-to-leading corrections in any quantitative test of
QCD in hard lepton-hadron processes is essential. However, the freedem related to
the scale definition dependence of theoretical predictions survives the comparison
of physical processes in terms of physical processes and always makes it possible
to locally adjust, for a better fit, the choice of the scale at which = specific

hadron process is "resolved".

In this respect, the "best" theoretical predictions are those where, as
in the case of the total Drell-Yan cross-section normalized to totally inclusive
leptoproduction, the so-called "next-to-leading" corrections turn out to be as
large as the dominant term. A redefinition of the scale cannot mask in these
cases the size of the correction which then becomes a potential clearcut test of

the theory, provided a systematic resummation method of the large terms is found,

Apart from these peculiar cases, for the remaining ones where the cor-
rections stay perturbative, quantitative indicaticns can be obtained only by an
investigation of many processes at the same time, aiming to reach systematic over-
all agreement with predicted estimates. In order to perform such an analysis we
thought it useful to establish a common notation and to transform the existing
results for the next-to-leading corrections to hard lepton-hadron processes into

a unique renormalization-factorization scheme.

It is now up to the experimentalists to prove (or disprove) the validity

o’ the predictions ccllected in this paper.
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APPENDIX T
Coefficient functions for inclusive leptoproduction.
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APPENDIX II
coefficient functions for inclusive e+e_ annihilation.
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APPENDIY III

Coefficiant functions for one-particle inclusive leptoproduction.
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APPENDIX IV

Coefficient functions for Drell-Yan process.
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FIGURE CAPTIONS
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Figure 1  Modulus squared of the amplitude 2 + h + &' &+ anything.

Figure 2 The sguared amplitude, decomposed in a "generalized ladder"

o and K represent two-particle irreducible kerhels.

Figure 3 An incomplete factorized decomposition : the quantity F' contains

all the mass singularities of the squared amplitude.

Figure 4 The action of the projecter between neighbour kernels.

Figure § Representation

Figure 6 Representation

Figure 7 Representation

lation.

Figure 8 Representation

Figure ¢ The *valence"

transitions qi

probabilities,

of the factorized deep inelastic leptoproduction.
of the factorized one-particle inclusive leptoproduction.

. - . - + - Sy
of the factorized one-particle inclusive e e annihi-

of the factorized Drell-Yan process.

(PV) and "singlet" (PS) diagrams contributing to the
+ ay and a; > aj at two-log level in the evolution

The black blob denctes fully virtual corrections.
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