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1 Introduction

It is well-known that CP (CP is a combination of charge conjugation symmetry and parity

symmetry) is not an exact symmetry of the nature. CP violation in the quark sector has

been firmly established in oscillations and decays of K and B mesons [1]. In the lepton

sector, the precise measurement of the reactor mixing angle θ13 [2, 3] opens the door to

measure the leptonic CP violation. Measurement of the Dirac CP-violating phase δCP

has become one of the primary physical goals of the next-generation neutrino oscillation

experiments. The origin of CP violation is a longstanding fundamental question in particle

physics. In the Standard Model, violation of CP occurs in the flavor sector. It is conceivable

that promoting CP to a symmetry at high energies which is then broken allows to impose

constraints on the neutrino and charged lepton mass matrices [4–8].

In the past years, non-abelian discrete groups have been widely used to explain the

structure of lepton mixing angles, please see refs. [9–12] for recent reviews. It seems natural

to combine the discrete family symmetry with the CP symmetry to predict both lepton

mixing angles and CP phases simultaneously. However, the interplay between family and

CP symmetries should be carefully treated [13–15]. In the presence of a family symmetry,

in many cases it is impossible to define CP in the naive way, i.e., φ → φ∗, but rather

a nontrivial transformation in flavor space is needed [13, 14]. A typical example is the
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so-called µ − τ reflection symmetry [16–22], which interchanges a muon (tau) neutrino

with a tau (muon) antineutrino in the charged lepton mass basis. In order to consistently

define CP transformations in the context of non-abelian discrete family groups, certain

consistency conditions must be satisfied [4–8, 13, 14]. In fact, it has been established that

all generalized CP symmetries are outer automorphisms of the symmetry group [8, 14].

Combining family symmetry with generalised CP symmetry, one can obtain lepton

mixing angles compatible with the current experimental data and in the meantime predict

CP-violating phases. This interesting idea has been explored to some extent in the past.

The generalised CP symmetry has been implemented within S4 [23–26] , A4 [27], and

T ′ [28] family symmetries, and some concrete models have also been constructed. In these

models, the full symmetry is generally spontaneously broken down to a cyclic subgroup in

the charged lepton sector and to Z2×Hν
CP in the neutrino sector. The surviving symmetries

constrain the neutrino mass matrix and charged lepton mass matrix, leading to predictions

for CP-violating phases as well as constraints on mixing angles. Typically, the Dirac CP-

violating phase is predicted to take simple values such as 0, π, or ±π/2. A comprehensive

analysis of the generalised CP within ∆(96) family symmetry is recently performed in

the semi-direct approach [29], and some new interesting mixing patterns are found. The

generalised CP has also been investigated for an infinite series of finite groups ∆(6n2) [30],

where the full Klein symmetry is assumed to be preserved in the neutrino sector such that

the Dirac CP phase can only be 0 or π. There are also other approaches in which family

symmetries and CP violation appear together [31–43].

In our recent paper [44], we propose to use ∆(48) as the family symmetry and extend

it to include the generalized CP symmetry. As we shall see later, the group ∆(48), which

has been overlooked in the literature, has a large automorphism group of order 384. Hence

∆(48) provides us more choices for generalised CP transformations than some popular

family symmetries A4, S4, etc. As a consequence, we find a new interesting mixing pattern,

which is denoted as patter D in [44], is admissible by neutrino oscillation experiments.

This mixing texture can fit the experimental data quit well and predict the Dirac-type CP

violation neither vanishing nor maximal, i.e., δCP 6= 0, π, ±π/2.

This paper is devoted to a comprehensive analysis of lepton flavor mixing within the

context of the ∆(48) family symmetry combined with generalized CP symmetry. In sec-

tion 2, we discuss the structure of the automorphism group of ∆(48) and present the

generalized CP transformations consistent with the ∆(48) family symmetry. In section 3,

we perform a systematic scan of lepton mixing within the framework of ∆(48)oHCP by an-

alyzing all possible residual symmetries in the neutrino and the charged lepton sectors. We

find 10 different cases, and subsequently we investigate the corresponding phenomenologi-

cal predictions for the lepton mixing parameters which depend on one single free parameter

θ. In particular, a new interesting mixing pattern (pattern D in ref. [44]) is found. Both

mixing angles and CP phases are nontrivial functions of θ, and three leptonic mixing angles

in the experimentally preferred range can be achieved for certain values of the parameter

θ. In section 4, we construct a supersymmetric model with both ∆(48) family symme-

try and generalised CP symmetry. This model gives rise to the new mixing pattern we

mentioned above, and its phenomenological predictions are discussed. In addition, the
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required vacuum alignment is justified. We summarize the main results of our paper in

section 5. Some details of the group theory of ∆(48) are contained in appendix A, and

the Clebsch-Gordan coefficients in the chosen basis are reported. Appendix B lists the

vacuum alignment invariant under the remnant family and CP symmetries in cases II, IV,

VI and VIII.

2 Generalized CP transformations consistent with ∆(48)

In this section, we are going to discuss all the possible generalized CP transformations which

are consistent with ∆(48). Before that, we give a brief review of the consistent definition

of the generalized CP transformation in the context of discrete family symmetries. It is

nontrivial to impose the generalized CP symmetry on a theory in the presence of a family

symmetry Gf . For a field multiplet

Φ = (φR, φP , φ
∗
P , φC , φ

∗
C)T , (2.1)

where the subscript R, P and C denote that the fields φ are in the real, pseudo-real and

complex representations of Gf , respectively. Under the action of the family symmetry, the

field Φ transforms as

Φ
g−→ ρ(g)Φ, g ∈ Gf , (2.2)

where ρ is a representation of the group element g. Depending on the component fields

φR, φP , φ∗P , φC and φ∗C , the representation ρ is generally reducible with

ρ(g) =


ρR(g)

ρP (g)

ρ∗P (g)

ρC(g)

ρ∗C(g)

 . (2.3)

The generalized CP symmetry acts on φ as

Φ(x)
CP−→ XΦ∗(xP ) , (2.4)

where xP = (t,−x). Here we have omitted the action of CP on spinor indices for the

case that φ is a spinor. X is a unitary matrix which represents a generalized CP trans-

formation, and it is referred to as the generalized CP transformation matrix. In contrast

with conventional CP transformation, X is not necessarily block-diagonal, and it generally

interchanges different representations. In order to combine the generalized CP symmetry

and the family symmetry, one has to satisfy the so-called consistency equation [8, 13, 14]

Xρ∗(g)X−1 = ρ(g′), g, g′ ∈ Gf , (2.5)

which implies that the generalized CP transformation X maps the group element g into

another element g′, and it is remarkable that the family group structure is preserved under

this mapping [14, 23]. Since X is unitary and invertible, the kernel of this mapping is

– 3 –



J
H
E
P
0
6
(
2
0
1
4
)
0
2
3

identity, and therefore the generalized CP transformation matrix X corresponds to an

automorphism of Gf .

Now we turn to the concerned ∆(48) family symmetry group. From the multiplication

rule listed in eq. (A.1), we know that only the identity element commutes with all other

elements of ∆(48). Hence ∆(48) has a trivial center Z(∆(48)) ∼= Z1, and therefore the

inner automorphism group Inn(∆(48)) is isomorphic to ∆(48) itself. The automorphism

group of ∆(48) is quite involved, it is of order 384, and its structure can be summarized

as follows:

Z(∆(48)) ∼= Z1, Aut(∆(48)) ∼= ((((Z4 × Z4) o Z3) o Z4) o Z2) ,

Inn(∆(48)) ∼= ∆(48), Out(∆(48)) ∼= D8 ,
(2.6)

where Aut(∆(48)) denotes the automorphism group of ∆(48), and Out(∆(48)) is the outer

automorphism group of ∆(48) with Out(∆(48)) ≡ Aut(∆(48))/Inn(∆(48)). We find that

Out(∆(48)) is isomorphic to the dihedral group of order eight, which is the group of all

symmetries of the square, and it can be generated by two generators u1 and u2 with{
a

u1−→ a2

c
u1−→ cd2

,

{
a

u2−→ a

c
u2−→ cd2

. (2.7)

It is straightforward to check that they satisfy the following relations

u4
1 = u2

2 = (u1u2)2 = id , (2.8)

where id denotes the trivial map id(g) = g, ∀g ∈ ∆(48). All the automorphisms of ∆(48)

can be generated from the generators u1, u2 and inner automorphisms

g = conjk(a)conjm(c)conjn(d)uµ1u
ν
2 , g ∈ Aut(∆(48)) , (2.9)

where k = 0, 1, 2, m,n, µ = 0, 1, 2, 3 and ν = 0, 1, conj(h) denotes the group conjugation

with an element h, i.e. conj(h) : g → hgh−1.

The outer automorphism u1 acts on the irreducible representations of ∆(48) as

1′
u1←→ 1′′, 3

u1−→ 3′
u1−→ 3

u1−→ 3
′ u1−→ 3, 3̃

u1−→ 3̃ , (2.10)

where 3
u1−→ 3′ is to be read as ρ3′ = ρ3 ◦ u1 etc. The outer automorphism u2 acts as

1′
u2−→ 1′, 1′′

u2−→ 1′′, 3
u2←→ 3′, 3

u2←→ 3
′
, 3̃

u2−→ 3̃ . (2.11)

A nontrivial CP transformation is in fact a representation of the corresponding automor-

phism in the sense of eq. (2.5). For the one-dimensional representations, it can be easily

fixed. Furthermore, eq. (2.10) and eq. (2.11) imply that the CP transformations for the au-

tomorphism u1,2 can be defined consistently only if all the complex triplet representations 3,

3, 3′ and 3
′

are present. Hence the generalized CP transformations X(u1,2) corresponding

to the generators u1 and u2 of the outer automorphism group act on the vector

Φ =


φ3
φ∗3
φ3′

φ∗3′

 , (2.12)
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and they are uniquely determined by the following consistency equations up to an over-

all phase,{
X(u1)ρ∗(a)X−1(u1) = ρ(u1(a)) = ρ(a2)

X(u1)ρ∗(c)X−1(u1) = ρ(u1(c)) = ρ(cd2)
,

{
X(u2)ρ∗(a)X−1(u2) = ρ(u2(a)) = ρ(a)

X(u2)ρ∗(c)X−1(u2) = ρ(u2(c)) = ρ(cd2)
.

(2.13)

The solutions to these equations are

X(u1) =


0 0 0 P23

0 0 P23 0

13 0 0 0

0 13 0 0

 , X(u2) =


0 0 0 13

0 0 13 0

0 13 0 0

13 0 0 0

 , (2.14)

up to an overall phase, where 13 denotes a 3×3 unit matrix, and P23 is a permutation matrix

P23 =

 1 0 0

0 0 1

0 1 0

 . (2.15)

For the remaining three-dimensional representation 3̃, we find the associated CP transfor-

mation matrices

X3̃(u1) = 13, X3̃(u2) = P23 , (2.16)

which represent the automorphism u1,2 via X3̃(ui)ρ
∗
3̃
(g)X−1

3̃
(ui) = ρ3̃(ui(g)) with i = 1, 2.

Moreover, given two automorphisms g1 and g2 of ∆(48) and the associated CP transfor-

mationsX(g1) andX(g2), the product g2g1 is also an automorphism, and the corresponding

generalized CP transformation matrix is given by [14]1

X (g2g1) = X(g2)WX(g1) , (2.17)

where W exchanges the complex conjugate components of the vector Φ with Φ∗ = WΦ

which implies ρ(g) = Wρ∗(g)W−1. For the reducible Φ ∼ 3⊕3⊕3′⊕3
′
shown in eq. (2.12),

the W matrix is of the form

W =


0 13 0 0

13 0 0 0

0 0 0 13

0 0 13 0

 . (2.18)

Furthermore, the CP transformation for the inner automorphism conj(h) is given by

X (conj(h)) = ρ(h)W . (2.19)

As a result, all the generalized CP transformation matrix X(g) with g ∈ Aut (∆(48))

can be straightforwardly obtained with the help of the general relations in eq. (2.17) and

1Since we have ρ (g2 (g1 (g))) = X(g2)ρ∗ (g1 (g))X−1(g2) = X(g2)Wρ (g1 (g))W−1X−1(g2) =

X(g2)WX(g1)ρ∗ (g)X−1(g1)W−1X−1(g2), therefore the CP transformation for the automorphism prod-

uct g2g1 is X(g2g1) = X(g2)WX(g1).
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eq. (2.19). A complete classification of possible CP transformations which can be consis-

tently implemented within ∆(48) family symmetry is achieved.

The 8 outer automorphisms generated by u1 and u2 lead to different CP transforma-

tions and should have distinct physical implications. It is remarkable to note that most

of the generalized CP transformations (for example X(u1) and X(u2) in eq. (2.14)) only

exchange different representations rather than map each irreducible representation into its

complex conjugate representation as conventional CP. This comment is generally true for

the generalized CP framework in particular the case that the order of the outer automor-

phism group is large than 2. In the present work, we minimally extend the ∆(48) family

symmetry to include only those nontrivial CP transformations which map one irreducible

representation into its complex conjugate, the corresponding outer automorphism should

be of order 2, and we find that there are three such kinds of outer automorphisms: h1 = u2
1,

h2 = u1u2 and h3 = u3
1u2. For h1 = u2

1, its actions on the ∆(48) generators a and c are

a
h1−→ a, c

h1−→ c3 . (2.20)

It interchanges 3(3′) with 3(3
′
), and it is represented by

X3(3)(h1) = X
3′(3

′
)
(h1) = P23 . (2.21)

For h2 = u1u2, the generators a and c transform as

a
h2−→ a2, c

h2−→ c3 . (2.22)

h2 maps 3′ and 3
′

into each other, and the corresponding CP transformation is given by

X
3′(3

′
)
(h2) = 13 . (2.23)

Finally for h3 = u3
1u2, it acts on a and c as

a
h3−→ a2, c

h3−→ c . (2.24)

The irreducible representations 3 and 3 are exchanged under h3, and the associated CP

transformation is

X3(3)(h3) = 13 . (2.25)

3 Model-independent analysis of mixing patterns within ∆(48) oHCP

3.1 The basic framework

First of all, we briefly review the setup which we will use to predict the mixing matrices from

remnant symmetries. The basic formalism has already been stated clearly in ref. [23]. In the

paradigm of the family symmetry Gf combined with the generalised CP symmetry HCP,

both Gf and HCP are generally broken into some remnant symmetries in the neutrino and

the charged lepton sectors respectively at leading order (LO), and the mismatch between

the residual symmetries generates the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing
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f CP
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l

l CPG H¯ CPG H
ν
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lΦ νΦ

PMNSU

†

l lm m mν

Figure 1. Leptonic flavor mixing from the mismatch of the remnant symmetries in the neutrino

and the charged lepton sectors of the theory. When Gν is chosen to be Z2, GνoHν
CP can be reduced

to Z2 ×Hν
CP.

matrix. In this approach, remnant symmetries of the symmetry group Gf o HCP are

assumed and we do not consider how to dynamically achieve the remnant symmetries here.

Notice that there are generally more than one vacuum alignment preserving the remnant

symmetry, yet they all lead to the same PMNS matrix. A concrete model realizing the

general results would be built in section 4.

As illustrated in figure 1, the residual family symmetries in the neutrino and charged

lepton sectors are denoted as Gν and Gl, respectively and the residual CP symmetries are

represented by Hν
CP and H l

CP, respectively. The misalignment between Gν o Hν
CP and

Gl o H l
CP leads to specific forms for the PMNS matrix and the resulting lepton mixing

parameters. Without loss of generality, the three generations of the left-handed lepton

doublets l are assumed to be embedded into a faithful three-dimensional irreducible rep-

resentation 3 of Gf . The invariance under the residual family symmetries Gν and Gl
constrains the neutrino mass matrix mν and the charged lepton mass matrix ml as follows

ρT3 (gνi)mνρ3(gνi) = mν , gνi ∈ Gν ,

ρ†3(gli)m
†
lmlρ3(gli) = m†lml, gli ∈ Gl . (3.1)

where the charged lepton mass matrix ml is given in the convention in which the left-handed

(right-handed) fields are on the right-hand (left-hand) side of ml, ρ3(g) is the representation

matrix for the group element g in the representation 3. Meanwhile, the neutrino and the

charged lepton mass matrices are also constrained by residual CP symmetries as

XT
ν3mνXν3 = m∗ν , Xν3 ∈ Hν

CP,

X†l3m
†
lmlXl3 = (m†lml)

∗, Xl3 ∈ H l
CP . (3.2)

– 7 –
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where Xν3 and Xl3 denote the remnant CP symmetries in the neutrino and the charged

lepton sectors, respectively. Since there are both remnant family and CP symmetries, the

corresponding consistency equation similar to eq. (2.5) has to be satisfied. That is to say

the elements Xν of Hν
CP and Xl of H l

CP should fulfill the following conditions:

Xνρ
∗(gνi)X

−1
ν = ρ(gνj ), gνi , gνj ∈ Gν ,

Xlρ
∗(gli)X

−1
l = ρ(glj ), gli , glj ∈ Gl . (3.3)

From the invariance conditions of eqs. (3.1) and (3.2), we can reconstruct the mass matrices

mν and ml, and predict the lepton mixing matrix UPMNS.

What’s more, if the remnant family symmetries are chosen to be G′ν and G′l which are

conjugate to Gν and Gl under the element h ∈ Gf as G′ν = hGνh
−1, G′l = hGlh

−1, the

same result for UPMNS would be obtained [27]. As a consequence, we only need to analyze

the independent pairs of Gν and Gl which are not related by group conjugation.

3.2 Remnant symmetries of ∆(48) oHCP

We require that the theory respect the full symmetry ∆(48) oHCP at high energy. Since

most CP transformations defined by outer automorphisms interchange different irreducible

representations rather than map one representation into its complex conjugate (i.e. trans-

forming a particle to its anti-particle), in the present work we would like to implement

the minimal set of CP transformations which map one irreducible representation into its

complex conjugation instead of the whole generalised CP transformations associated with

the outer automorphism group of ∆(48).2 Namely HCP is chosen to be the generalized CP

transformations given by the outer automorphism h1, h2 or h3 up to inner automorphisms

in the present work. Note that each outer automorphism corresponds to 48 automorphism

elements once the inner automorphism is taken into account.

In the following section, we will perform a model-independent study of admissible

lepton mixing within ∆(48)oHCP by a scan of all the possible remnant symmetries GνCP
∼=

Gν oHν
CP and GlCP

∼= GloH l
CP, as shown in figure 1. The three generations of the lepton

doublet fields are assigned to a triplet 3 of ∆(48), the results for embedding into other

faithful triplets 3, 3′ and 3
′

are also presented thereafter. The residual family symmetry

Gl in the charged lepton sector is chosen to be an abelian cyclic subgroup Gl ∼= Zm with

m ≥ 3.3 Moreover, we assume that the light neutrinos are Majorana particles such that

the group Gν must be restricted to the Klein subgroup K4 or a Z2 subgroup of ∆(48).

From appendix A, we see that the cyclic subgroups of ∆(48) can only be Z2, Z3 or Z4.

Firstly, we consider the case of Gν = K4 and Gl = Z3, where Z3 denotes any Z3 subgroup

2In ref. [15], the authors claimed that only these generalized CP transformations sending each representa-

tion to its complex conjugate are physical otherwise one could introduce a special subset of representations.

Hence the physical generalised CP symmetry is imposed in the present work.
3For the case Gl = Z2 whose eigenvalues are completely or partially degenerate, the three generations

of charged leptons can not be distinguished by this Gl at low energy. As a consequence, the lepton mixing

matrix can not be fixed uniquely in this case.
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Z
(x,y)
3 (x, y = 0, 1, 2, 3), we find a unique mixing pattern:

||UPMNS|| =
1√
3

 1 1 1

1 1 1

1 1 1

 , (3.4)

which implies maximal solar and atmospheric mixing angles, and the reactor angle is pre-

dicted to fulfill sin2 θ13 = 1/3. Obviously this scenario is not compatible with the current

experimental data [45–47]. Then, we consider the case of Gν = K4 and Gl = Z4, the

resulting PMNS matrix is a trivial unit matrix up to permutations of rows and columns.

This case is not phenomenologically viable as well. Consequently, we proceed to degrade

the remnant symmetry group Gν from K4 to Z2, and Gl is still Z3 or Z4. In this scenario,

the lepton mixing angles and CP phases are predicted in terms of a single real parame-

ter. For the case Gν = Z2 and Gl = Z4, one column of the PMNS matrix is determined

to be (1, 0, 0)T up to permutations. The experimental data can not be accommodated.

Finally, we concentrate on the residual family symmetries Gν = Z2 and Gl = Z3. There

are 3× 16 = 48 possible combinations, but we find that all of them are conjugate to each

other, as shown in eq. (A.4) and eq. (A.6). As a result, it is sufficient to consider only

Gν = Zc
2

2 = {1, c2} and Gl = Z
(0,0)
3 = {1, a, a2} without loss of generality.

We begin the study of constraints on the charged lepton sector. The invariance under

the residual flavor symmetry Gl = Z
(0,0)
3 = {1, a, a2} requires that

ρ†3(a)m†lmlρ3(a) = m†lml . (3.5)

In the chosen basis where the representation matrix of the element a is diagonal for different

irreducible representations, as shown in table 10, we can straightforwardly obtain that the

hermitian combination m†lml is diagonal. The phasing and permutation freedom of the

column vectors can be used to bring it into the form diag(m2
e,m

2
µ,m

2
τ ), where me, mµ and

mτ represent the electron, muon and tau masses, respectively. Hence the unitary matrix

Ul, which diagonalizes m†lml as U †l m
†
lmlUl = diag(m2

e,m
2
µ,m

2
τ ), is determined to be

Ul = PlKl , (3.6)

where Kl is a diagonal phase matrix, Pl is a permutation matrix which can be one of the

following six values:

P123 =

 1 0 0

0 1 0

0 0 1

 , P231 =

 0 1 0

0 0 1

1 0 0

 , P312 =

 0 0 1

1 0 0

0 1 0

 ,

P213 =

 0 1 0

1 0 0

0 0 1

 , P321 =

 0 0 1

0 1 0

1 0 0

 , P132 =

 1 0 0

0 0 1

0 1 0

 . (3.7)

Since charged leptons are Dirac particles, the diagonal phase matrix Kl can be rotated

away by redefining the phases of right-handed charged leptons and thus Kl is unphysical.
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The underlying symmetry ∆(48) oHCP is broken down to GνCP
∼= Zc

2

2 ×Hν
CP in the

neutrino sector. Notice that the semidirect product between the flavor and generalized CP

symmetries is reduced to direct product, and this is generally true for the remnant flavor

symmetry being Z2 [23, 27]. The remnant CP symmetry Hν
CP has to be compatible with

the remnant Zc
2

2 =
{

1, c2
}

family symmetry. This is to say the automorphism g associated

with Hν
CP should map the element c2 into c2, i.e. g(c2) = c2. This leads to

g = conjm(c)conjn(d)hi, i = 1, 2, 3 , (3.8)

with m,n = 0, 1, 2, 3. Therefore only 16 of the 48 generalized CP transformations are

consistent with the residual Zc
2

2 flavor symmetry no matter which one of the generalized CP

symmetries hi(i = 1, 2, 3) is imposed on the theory. The corresponding CP transformation

matrix takes the form

X(g) = X (conjm(c))WX (conjn(d))WX(hi) = ρm(c)ρn(d)X(hi) = ρ(cmdn)X(hi) . (3.9)

It is straightforward to check that the consistency equation is really satisfied, i.e.

X(g)ρ∗(c2)X−1(g) = ρ(c2) . (3.10)

Hence nontrivial CP transformations of Hν
CP could be the following unitary matrices:

Xν = ρ(cmdn)X(hi), m, n = 0, 1, 2, 3 . (3.11)

We can construct the light neutrino mass matrix mν by demanding that it respects both

the residual flavour symmetry Zc
2

2 and the generalised CP symmetry Hν
CP:

ρT3 (c2)mνρ3(c2) = mν , (3.12)

XT
ν3mνXν3 = m∗ν , (3.13)

The most general neutrino mass matrix mν which satisfies eq. (3.12) can be expressed as

mν = α

 2 −1 −1

−1 2 −1

−1 −1 2

+ β

 1 0 0

0 0 1

0 1 0

+ γ

 0 1 1

1 1 0

1 0 1

+ ε

 0 1 −1

1 −1 0

−1 0 1

 , (3.14)

where α, β, γ and ε are complex parameters, and they are further constrained by the

remnant CP invariant condition in eq. (3.13). The different constraints on α, β, γ and ε

for all the consistent residual CP symmetries are summarized in table 1. The scenarios

(e.g., Xν = ρ(c)X(h3)) which predict degenerate light neutrino masses are not viable, and

hence are not included in this table. It is interesting to note that the invariance under the

residual CP transformation Xν = ρ(cmdn)X(hi) reads

[ρ(cmdn)X(hi)]
T mν [ρ(cmdn)X(hi)] = m∗ν . (3.15)

Taking into account the invariance condition of eq. (3.12) under Zc
2

2 , we have[
ρ(cm+2dn)X(hi)

]T
mν

[
ρ(cm+2dn)X(hi)

]
= m∗ν . (3.16)
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l Hν
CP

Constraints on
Ω

α, β, γ, ε

I

3 X(h1), ρ(c2)Xr(h1)

αIm = βIm = 0,

γIm = εRe = 0

 1 0 0

0 1 0

0 0 i

3′ X(h1), ρ(c2)X(h1)

3 X(h1), ρ(c2)X(h1)

3
′

X(h1), ρ(c2)X(h1)

II

3 ρ(d)X(h1), ρ(c2d)X(h1) αIm = −αRe,

βRe = −2γRe,

βIm = γIm +
√

3 εRe,

εIm = −
√

3 γRe

 e
5iπ
8 sin π

8 0 e
iπ
8 cos π8

0 e
iπ
4 0

−e
5iπ
8 cos π8 0 e

iπ
8 sin π

8

3′ ρ(d3)X(h1), ρ(c2d3)X(h1),

3 ρ(cd3)X(h1), ρ(c3d3)X(h1)

3
′

ρ(cd3)X(h1), ρ(c3d3)X(h1)

III

3 ρ(d2)X(h1), ρ(c2d2)X(h1)

αRe = βIm = 0,

γIm = εRe = 0
1√
2

 e
iπ
4 0 −e−

iπ
4

0
√

2 0

−e
iπ
4 0 −e−

iπ
4

3′ ρ(d2)X(h1), ρ(c2d2)X(h1)

3 ρ(d2)X(h1), ρ(c2d2)X(h1)

3
′

ρ(d2)X(h1), ρ(c2d2)X(h1)

IV

3 ρ(d3)X(h1), ρ(c2d3)X(h1) αIm = αRe,

βRe = −2γRe,

βIm = γIm +
√

3 εRe,

εIm = −
√

3 γRe

−e
3iπ
8 cos π8 0 e−

iπ
8 sin π

8

0 e−
iπ
4 0

e
3iπ
8 sin π

8 0 e−
iπ
8 cos π8

3′ ρ(d)X(h1), ρ(c2d)X(h1)

3 ρ(cd)X(h1), ρ(c3d)X(h1)

3
′

ρ(cd)X(h1), ρ(c3d)X(h1)

V

3 ρ(c)X(h1), ρ(c3)X(h1) αIm = 0,

βRe = γRe,

βIm = −2γIm,

εIm = 0

1√
2

 1 0 i

0
√

2 0

−1 0 i

3′ ρ(cd2)X(h1), ρ(c3d2)X(h1)

3 ρ(c)X(h1), ρ(c3)X(h1)

3
′

ρ(cd2)X(h1), ρ(c3d2)X(h1)

VI

3 ρ(cd)X(h1), ρ(c3d)X(h1) αIm = −αRe,

βRe = −2γRe,

βIm = γIm −
√

3 εRe,

εIm =
√

3 γRe

 e
5iπ
8 cos π8 0 e

iπ
8 sin π

8

0 e
iπ
4 0

−e
5iπ
8 sin π

8 0 e
iπ
8 cos π8

3′ ρ(cd)X(h1), ρ(c3d)X(h1)

3 ρ(d3)X(h1), ρ(c2d3)X(h1)

3
′

ρ(d)X(h1), ρ(c2d)X(h1)

VII

3 ρ(cd2)Xr(h1), ρ(c3d2)Xr(h1) αRe = 0,

βRe = γRe,

βIm = −2γIm,

εIm = 0

 e
iπ
4 0 0

0 1 0

0 0 e
3iπ
4

3′ ρ(c)X(h1), ρ(c3)X(h1)

3 ρ(cd2)X(h1), ρ(c3d2)X(h1)

3
′

ρ(c)X(h1), ρ(c3)X(h1)

VIII

3 ρ(cd3)X(h1), ρ(c3d3)X(h1) αIm = αRe,

βRe = −2γRe,

βIm = γIm −
√

3 εRe,

εIm =
√

3 γRe

−e
3iπ
8 sin π

8 0 e−
iπ
8 cos π8

0 e−
iπ
4 0

e
3iπ
8 cos π8 0 e−

iπ
8 sin π

8

3′ ρ(cd3)X(h1), ρ(c3d3)X(h1)

3 ρ(d)X(h1), ρ(c2d)X(h1)

3
′

ρ(d3)X(h1), ρ(c2d3)X(h1)

IX

3 X(h3), ρ(c2)X(h3)

αIm = βIm = 0,

γIm = εIm = 0

 1 0 0

0 1 0

0 0 1

3′ X(h2), ρ(c2)X(h2)

3 X(h3), ρ(c2)X(h3)

3
′

X(h2), ρ(c2)X(h2)

X

3 ρ(cd2)X(h3), ρ(c3d2)X(h3) αRe = 0,

βRe = γRe,

εRe = 0,

βIm = −2γIm

 e
iπ
4 0 0

0 1 0

0 0 e
iπ
4

3′ ρ(c)X(h2), ρ(c3)X(h2),

3 ρ(cd2)X(h3), ρ(c3d2)X(h3)

3
′

ρ(c)X(h2), ρ(c3)X(h2)

Table 1. The generalised CP transformations consistent with a residual Zc
2

2 family symmetry in the

neutrino sector and the resulting constraints on the parameters α, β, γ and ε in the neutrino mass

matrix of eq. (3.14). The second column stands for the ∆(48) triplet to which the lepton doublet l

is assigned. The subscripts “Re” and “Im” denote the real and imaginary parts, respectively.

– 11 –



J
H
E
P
0
6
(
2
0
1
4
)
0
2
3

This implies that Xν = ρ(cmdn)X(hi) and Xν = ρ(cm+2dn)X(hi) impose the same con-

straint on the light neutrino mass matrix.

Performing a tri-bimaximal transformation UTB [48–50] on the neutrino mass matrix

mν of eq. (3.14), we obtain

m′ν = UTTBmνUTB =

 3α+ β − γ 0 −
√

3ε

0 β + 2γ 0

−
√

3ε 0 3α− β + γ

 , (3.17)

where

UTB =


√

2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2

 . (3.18)

Furthermore, m′ν can be diagonalized by a unitary matrix U ′ν as

U ′Tν m
′
νU
′
ν = diag(m1,m2,m3) . (3.19)

For all the cases listed in table 1, we find that U ′ν can be factorized into the form

U ′ν = ΩR(θ)PνKν , (3.20)

where Ω is a constant unitary matrix to make ΩTm′νΩ real, and the explicit forms of Ω for

different remnant CP symmetries are summarized in table 1. R(θ) is a rotation matrix with

R(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

 . (3.21)

Being analogous to the charged lepton sector, Pν is a permutation matrix, and it can

also take the six possible forms shown in eq. (3.7). Because light neutrino masses are

unconstrained in the present framework, the contribution from the neutrino sector to the

lepton mixing is fixed up to permutations of columns. This is exactly the reason why Pν
appears in eq. (3.19). Kν is a diagonal matrix with non-vanishing entries being ±1 or ±i
to ensure the neutrino masses m1,2,3 are positive. Combining the result for the charged

lepton unitary matrix Ul in eq. (3.6), we find that the PMNS matrix is predicted to be

UPMNS = K†l P
†
l UTBΩR(θ)PνKν , (3.22)

Notice that the phase matrix Kl can always be absorbed into the charged lepton fields,

and therefore would be omitted henceforth. Since the contribution from the matrix Kν is

only possibly shifting the Majorana phases by π, the factor Kν will be neglected as well

in the following of this section. It is necessary to emphasize again that the lepton mixing

matrix UPMNS is only determined up to permutations of rows and columns here (i.e. Pl and

Pν), because both the charged lepton masses and the neutrino masses are not constrained

within the current framework. In the PDG convention [1], the PMNS matrix is cast into

the form

UPMNS = V diag(1, ei
α21
2 , ei

α31
2 ), (3.23)
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with

V =

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 . (3.24)

where cij = cos θij and sij = sin θij , δCP denotes the Dirac CP phase, and α21 and α31 are

the Majorana CP phases if neutrinos are Majorana particles.

3.3 Possible mixing patterns

We find 10 cases corresponding to different remnant symmetries listed in table 1. Phe-

nomenological predictions for lepton mixing parameters have been reported in our previ-

ous work [44], where the results are just presented without details. In the following, we

will demonstrate how to derive these interesting results, and what’s more, predictions for

the PMNS matrix and light neutrino masses are listed for each case. These results are

also useful for the phenomenological analysis of the constructed model in section 4. For

each symmetry breaking pattern, all possible permutation matrices Pl and Pν would be

considered. Among all possible permutations, the one which could be compatible with the

observed lepton mixing angles with θ23 in the first octant4 will be shown in the following.

By switching the second and the third rows, θ23 in the second octant can be accommodated.

Now we begin to study the ten cases one by one.

I. Hν
CP =

{
X(h1), ρ(c2)X(h1)

}
. In this case, we have αIm = βIm = γIm = εRe = 0,

where the subscripts “Re” and “Im” denote the real and imaginary parts, respectively. The

unitary matrix Ω that we choose is

Ω =

 1 0 0

0 1 0

0 0 i

 . (3.25)

Taking into account the different values of permutations Pl and Pν in eq. (3.22), we obtain

the PMNS matrix which is compatible with experimental data as follows

UPMNS = UTBΩR(θ) =
1√
6

 2 cos θ
√

2 2 sin θ

− cos θ + i
√

3 sin θ
√

2 − sin θ − i
√

3 cos θ

− cos θ − i
√

3 sin θ
√

2 − sin θ + i
√

3 cos θ

 , (3.26)

where the phase matrices Kl and Kν have been omitted, and for simplicity they would be

omitted as well in the following cases. The rotation angle θ is determined by

tan 2θ = − εIm√
3 αRe

. (3.27)

The corresponding predictions for the lepton mixing parameters are presented in table 2.

Note that which quadrants all the CP phases lie in cannot be determined in the present

4sin2 θ23 has two best-fit values sin2 θ23 = 0.413 and sin2 θ23 = 0.594 [46]. The octant of the atmospheric

mixing angle θ23 has not been fixed so far.
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framework, and thus we only list the absolute values of tangents or sines of the CP phases.

The lepton mixing angles in particularly the sizable θ13 compatible with the experimental

observations can be achieved. For the value of θ = 0.184, we have sin2 θ13 ' 0.0222,

sin2 θ12 ' 0.341 and sin2 θ23 = 1/2, which are in excellent agreement with the present

data [45–47]. Moreover, the Dirac CP violation is predicted to be maximal δCP = ±π/2,

while the Majorana CP phases α21 and α31 are trivial. Finally mass eigenvalues of light

neutrinos are

m1 =

∣∣∣∣βRe − γRe + sign (αRe cos 2θ)
√

3ε2Im + 9α2
Re

∣∣∣∣ ,
m2 = |βRe + 2γRe| ,

m3 =

∣∣∣∣βRe − γRe − sign (αRe cos 2θ)
√

3ε2Im + 9α2
Re

∣∣∣∣ , (3.28)

where four parameters αRe, βRe, γRe and εIm are involved in these expressions. Therefore,

the measured neutrino mass-squared differences ∆m2
ij (for ij = 21, 31, 32) can be easily

accommodated. No constraints on light neutrino masses are imposed in the present context,

and hence the neutrino mass spectrum can be either normal ordering (NO) or inverted

ordering (IO) in this case.

II. Hν
CP =

{
ρ(d)X(h1), ρ(c2d)X(h1)

}
. The residual CP symmetry constrains the

parameters as: αIm = −αRe, βRe = −2γRe, βIm = γIm +
√

3 εRe and εIm = −
√

3 γRe. The

unitary transformation Ω is expressed as

Ω =


e

5iπ
8 sin π

8 0 e
iπ
8 cos π8

0 e
iπ
4 0

−e
5iπ
8 cos π8 0 e

iπ
8 sin π

8

 . (3.29)

Using the freedom of permutations of rows and columns, the phenomenologically interesting

PMNS matrix reads

UPMNS = P321UTBΩR(θ)

=
1√
3

−e
3iπ
8 cos

(
θ + π

24

)
− e

7iπ
8 cos

(
θ − π

24

)
e
iπ
4 −e

3iπ
8 sin

(
θ + π

24

)
− e

7iπ
8 sin

(
θ − π

24

)
e

3iπ
8 sin

(
θ + 5π

24

)
− e

7iπ
8 sin

(
θ − 5π

24

)
e
iπ
4 −e

3iπ
8 cos

(
θ + 5π

24

)
+ e

7iπ
8 cos

(
θ − 5π

24

)
− cos

(
θ − π

4

)
+ e

iπ
4 cos

(
θ + π

4

)
e
iπ
4 cos

(
θ + π

4

)
+ e

iπ
4 cos

(
θ − π

4

)
 ,

(3.30)

where the angle θ is

tan 2θ =

√
3 γRe − εRe√

6 αRe

. (3.31)
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All the mixing angles and CP-violating phases are expressed in terms of the parameter θ,

as shown in table 3. Light neutrino masses in this case are shown as

m1 =

∣∣∣∣∣3γRe +
√

3 εRe + sign (αRe cos 2θ)

√
18α2

Re +
(

3γRe −
√

3 εRe

)2
∣∣∣∣∣ ,

m2 =
∣∣∣3γIm +

√
3 εRe

∣∣∣ ,
m3 =

∣∣∣∣∣3γRe +
√

3 εRe − sign (αRe cos 2θ)

√
18α2

Re +
(

3γRe −
√

3 εRe

)2
∣∣∣∣∣ . (3.32)

Following analogous arguments as before, we see that light neutrino masses remain uncon-

strained in this case as well.

III. Hν
CP =

{
ρ(d2)X(h1), ρ(c2d2)X(h1)

}
. The parameters α, β, γ and ε are con-

strained to satisfy αRe = βIm = γIm = εRe = 0. We find the unitary matrix

Ω =
1√
2

 e
iπ
4 0 −e−

iπ
4

0
√

2 0

−e
iπ
4 0 −e−

iπ
4

 . (3.33)

The PMNS matrix takes the form

UPMNS = P312UTBΩR(θ) =
1

2
√

3


−e

iπ
4

(
e−iθ +

√
3eiθ

)
2 e−

iπ
4

(
e−iθ −

√
3eiθ

)
2e−i(θ−

π
4 ) 2 −2e−i(θ+

π
4 )

−e
iπ
4

(
e−iθ −

√
3eiθ

)
2 e−

iπ
4

(
e−iθ +

√
3eiθ

)
 ,

(3.34)

with

tan 2θ =
γRe − βRe

3αIm
. (3.35)

Predictions for lepton mixing angles and CP-violating phases are collected in table 3. Light

neutrino masses are given by

m1 =

∣∣∣∣√3 εIm + sign (αIm cos 2θ)
√

9α2
Im + (βRe − γRe)2

∣∣∣∣ ,
m2 = |βRe + 2γRe| ,

m3 =

∣∣∣∣√3 εIm − sign (αIm cos 2θ)
√

9α2
Im + (βRe − γRe)2

∣∣∣∣ . (3.36)

IV. Hν
CP =

{
ρ(d3)X(h1), ρ(c2d3)X(h1)

}
. This residual CP symmetry implies αIm =

αRe, βRe = −2γRe, βIm = γIm +
√

3 εRe and εIm = −
√

3 γRe. The unitary transformation

Ω takes the form

Ω =


−e

3iπ
8 cos π8 0 e−

iπ
8 sin π

8

0 e−
iπ
4 0

e
3iπ
8 sin π

8 0 e−
iπ
8 cos π8

 . (3.37)
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The PMNS matrix takes the following form

UPMNS = P231UTBΩR(θ)P321

=
1√
3

−e
− 3iπ

8 cos
(
θ − π

24

)
− e

iπ
8 cos

(
θ + π

24

)
e−

iπ
4 e−

3iπ
8 sin

(
θ − π

24

)
+ e

iπ
8 sin

(
θ + π

24

)
−e−

3iπ
8 sin

(
θ − 5π

24

)
+ e

iπ
8 sin

(
θ + 5π

24

)
e−

iπ
4 −e−

3iπ
8 cos

(
θ − 5π

24

)
+ e

iπ
8 cos

(
θ + 5π

24

)
−i cos

(
θ − π

4

)
+ e

iπ
4 cos

(
θ + π

4

)
e−

iπ
4 −i cos

(
θ + π

4

)
− e

iπ
4 cos

(
θ − π

4

)
 ,

(3.38)

with

tan 2θ =

√
3 γRe + εRe√

6 αRe

. (3.39)

Up to a factor of π for the Majorana phase α21, the PMNS matrix in this case is the

complex conjugate of the PMNS matrix of eq. (3.30) in case II. Given that the quadrants

of the CP phases are unpredictable, we obatin the same mixing parameters as those of case

II, as shown in table 3. However, light neutrino masses take different values as follows

m1 =

∣∣∣∣∣3γRe −
√

3 εRe + sign (αRe cos 2θ)

√
18α2

Re +
(

3γRe +
√

3 εRe

)2
∣∣∣∣∣ ,

m2 =
∣∣∣3γIm +

√
3 εRe

∣∣∣ ,
m3 =

∣∣∣∣∣3γRe −
√

3 εRe − sign (αRe cos 2θ)

√
18α2

Re +
(

3γRe +
√

3 εRe

)2
∣∣∣∣∣ . (3.40)

V. Hν
CP =

{
ρ(c)X(h1), ρ(c3)X(h1)

}
. Invariance under this remnant CP leads to

αIm = εIm = 0, βRe = γRe and βIm = −2γIm. The unitary transformation Ω turns out to be

Ω =
1√
2

 1 0 i

0
√

2 0

−1 0 i

 . (3.41)

The “best” PMNS matrix reads

UPMNS = P312UTBΩR(θ) =
1

2
√

3


−e−iθ −

√
3eiθ 2 −ie−iθ + i

√
3eiθ

2e−iθ 2 2ie−iθ

−e−iθ +
√

3eiθ 2 −ie−iθ − i
√

3eiθ

 , (3.42)

where the rotation angle θ is

tan 2θ = − γIm

αRe
. (3.43)

The results for the mixing parameters are the same as those of case III except the Majorana

phase α21, as shown in table 3. The light neutrino masses are given by

m1 =

∣∣∣∣√3 εRe + 3sign (αRe cos 2θ)
√
α2

Re + γ2
Im

∣∣∣∣ ,
m2 = 3 |γRe| ,

m3 =

∣∣∣∣√3 εRe − 3sign (αRe cos 2θ)
√
α2

Re + γ2
Im

∣∣∣∣ . (3.44)

– 16 –



J
H
E
P
0
6
(
2
0
1
4
)
0
2
3

VI. Hν
CP =

{
ρ(cd)X(h1), ρ(c3d)X(h1)

}
. The constraints on the parameters α, β, γ

and ε are αIm = −αRe, βRe = −2γRe, βIm = γIm −
√

3 εRe and εIm =
√

3 γRe. The unitary

transformation Ω is

Ω =

 e
5iπ
8 cos π8 0 e

iπ
8 sin π

8

0 e
iπ
4 0

−e
5iπ
8 sin π

8 0 e
iπ
8 cos π8

 . (3.45)

The phenomenologically interesting PMNS matrix takes the form

UPMNS = P231UTBΩR(θ)P321

=
1√
3

−e
3iπ
8 cos

(
θ − π

24

)
+ e

7iπ
8 cos

(
θ + π

24

)
e
iπ
4 e

3iπ
8 sin

(
θ − π

24

)
− e

7iπ
8 sin

(
θ + π

24

)
−e

3iπ
8 sin

(
θ − 5π

24

)
− e

7iπ
8 sin

(
θ + 5π

24

)
e
iπ
4 −e

3iπ
8 cos

(
θ − 5π

24

)
− e

7iπ
8 cos

(
θ + 5π

24

)
i cos

(
θ − π

4

)
− e

3iπ
4 cos

(
θ + π

4

)
e
iπ
4 i cos

(
θ + π

4

)
+ e

3iπ
4 cos

(
θ − π

4

)
 .

(3.46)

where

tan 2θ =

√
3 γRe + εRe√

6 αRe

. (3.47)

We see that the mixing matrix in eq. (3.46) is identical to the complex conjugate of the

corresponding one of case IV. Predictions for mixing parameters are listed in table 3, and

they are the same as those of cases II and IV. Light neutrino masses are determined to be

m1 =

∣∣∣∣∣3γRe −
√

3 εRe + sign (αRe cos 2θ)

√
18α2

Re +
(

3γRe +
√

3 εRe

)2
∣∣∣∣∣ ,

m2 =
∣∣∣3γIm −

√
3 εRe

∣∣∣ ,
m3 =

∣∣∣∣∣3γRe −
√

3 εRe − sign (αRe cos 2θ)

√
18α2

Re +
(

3γRe +
√

3 εRe

)2
∣∣∣∣∣ . (3.48)

VII. Hν
CP =

{
ρ(cd)X(h1), ρ(c3d)X(h1)

}
. We find the relations αRe = εIm = 0,

βRe = γRe and βIm = −2γIm satisfied, which leads to

Ω =

 e
iπ
4 0 0

0 1 0

0 0 e
3iπ
4

 . (3.49)

and the PMNS matrix

UPMNS = UTBΩR(θ) =
1√
6

 2e
iπ
4 cos θ

√
2 2e

iπ
4 sin θ

−e
iπ
4 cos θ +

√
3 e

3iπ
4 sin θ

√
2 −e

iπ
4 sin θ −

√
3 e

3iπ
4 cos θ

−e
iπ
4 cos θ −

√
3 e

3iπ
4 sin θ

√
2 −e

iπ
4 sin θ +

√
3 e

3iπ
4 cos θ

 ,
(3.50)

with

tan 2θ =
εRe√
3 αIm

. (3.51)
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The mixing parameters turn out to be the same as those of case I except that the Majorana

phase α21 is maximal instead of zero in this scenario, as can be found from table 3. The

light neutrino masses are

m1 =

∣∣∣∣3γIm − sign (αIm cos 2θ)
√

9α2
Im + 3ε2Re

∣∣∣∣ ,
m2 = 3 |γRe| ,

m3 =

∣∣∣∣3γIm + sign (αIm cos 2θ)
√

9α2
Im + 3ε2Re

∣∣∣∣ . (3.52)

VIII. Hν
CP =

{
ρ(cd3)X(h1), ρ(c3d3)X(h1)

}
. In this case, the residual CP symmetry

constrains the parameters as: αIm = αRe, βRe = −2γRe, βIm = γIm −
√

3 εRe and εIm =√
3 γRe. The unitary transformation Ω is

Ω =

−e
3iπ
8 sin π

8 0 e−
iπ
8 cos π8

0 e−
iπ
4 0

e
3iπ
8 cos π8 0 e−

iπ
8 sin π

8

 , (3.53)

and the desired PMNS matrix is given by

UPMNS = P321UTBΩR(θ)

=
1√
3

−e
− 3iπ

8 cos
(
θ + π

24

)
+ e

iπ
8 cos

(
θ − π

24

)
e−

iπ
4 −e−

3iπ
8 sin

(
θ + π

24

)
+ e

iπ
8 sin

(
θ − π

24

)
e−

3iπ
8 sin

(
θ + 5π

24

)
+ e

iπ
8 sin

(
θ − 5π

24

)
e−

iπ
4 −e−

3iπ
8 cos

(
θ + 5π

24

)
− e

iπ
8 cos

(
θ − 5π

24

)
− cos

(
θ − π

4

)
+ e−

iπ
4 cos

(
θ + π

4

)
e−

iπ
4 cos

(
θ + π

4

)
+ e−

iπ
4 cos

(
θ − π

4

)
 ,

(3.54)

where

tan 2θ =

√
3 γRe − εRe√

6 αRe

. (3.55)

Notice that the PMNS matrix in eq. (3.54) is precisely the complex conjugate of the

corresponding one of case II. Predictions for mixing parameters are presented in table 3, and

they are exactly the same as those of cases II, IV and VI. We have the light neutrino masses

m1 =

∣∣∣∣∣3γRe +
√

3 εRe + sign (αRe cos 2θ)

√
18α2

Re +
(

3γRe −
√

3 εRe

)2
∣∣∣∣∣ ,

m2 =
∣∣∣3γIm −

√
3 εRe

∣∣∣ ,
m3 =

∣∣∣∣∣3γRe +
√

3 εRe − sign (αRe cos 2θ)

√
18α2

Re +
(

3γRe −
√

3 εRe

)2
∣∣∣∣∣ . (3.56)

IX. Hν
CP =

{
X(h3), ρ(c2)X(h3)

}
. The neutrino mass matrix mν is constrained to be

real such that αIm = βIm = γIm = εIm = 0 arises. The unitary transformation Ω is trivial

Ω = 13 in this case, and we can straightforwardly obtain the corresponding PMNS matrix

as follows

UPMNS = P132UTBΩR(θ) =
1√
6

 2 cos θ
√

2 2 sin θ

− cos θ −
√

3 sin θ
√

2 − sin θ +
√

3 cos θ

− cos θ +
√

3 sin θ
√

2 − sin θ −
√

3 cos θ

 , (3.57)
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with the angle θ

tan 2θ =

√
3 εRe

βRe − γRe
. (3.58)

Expressions for lepton mixing parameters are shown in table 3, both Dirac and Majorana

CP phases are predicted to be trivial. The deviation of the atmospheric mixing from

maximal mixing is expected. The light neutrino masses are determined to be

m1 =

∣∣∣∣3αRe + sign ((βRe − γRe) cos 2θ)

√
(βRe − γRe)

2 + 3ε2Re

∣∣∣∣ ,
m2 = |βRe + 2γRe| ,

m3 =

∣∣∣∣3αRe − sign ((βRe − γRe) cos 2θ)

√
(βRe − γRe)

2 + 3ε2Re

∣∣∣∣ . (3.59)

X. Hν
CP =

{
ρ(cd2)X(h3), ρ(c3d2)X(h3)

}
. The residual CP symmetry leads to αRe =

εRe = 0, βRe = γRe and βIm = −2γIm. In this case, the unitary transformation Ω is of the

form

Ω =

 e
iπ
4 0 0

0 1 0

0 0 e
iπ
4

 . (3.60)

The resulting “best” PMNS matrix

UPMNS = P132UTBΩR(θ) =
1√
6

 2e
iπ
4 cos θ

√
2 2e

iπ
4 sin θ

e
iπ
4

(
− cos θ −

√
3 sin θ

) √
2 e

iπ
4

(
− sin θ +

√
3 cos θ

)
e
iπ
4

(
− cos θ +

√
3 sin θ

) √
2 e

iπ
4

(
− sin θ −

√
3 cos θ

)
 ,

(3.61)

is obtained, where

tan 2θ = − εIm√
3 γIm

. (3.62)

Predictions for mixing parameters are the same as those of case IX aside from the Majorana

phase α21. Finally we present analytical results for light neutrino masses

m1 =

∣∣∣∣3αIm − sign (γIm cos 2θ)
√

9γ2
Im + 3ε2Im

∣∣∣∣ ,
m2 = 3 |γRe| ,

m3 =

∣∣∣∣3αIm + sign (γIm cos 2θ)
√

9γ2
Im + 3ε2Im

∣∣∣∣ . (3.63)

For all the ten cases discussed above, we see that the residual Zc
2

2 flavor symmetry en-

forces the second column of the resulting PMNS matrix being proportional to (1, 1, 1)T /
√

3.

As a consequence, we have the relations

sin2 θ12 =
1

3 cos2 θ13
. (3.64)

The measured value of the reactor mixing angle sin2 θ13 ' 0.0227 leads to sin2 θ12 ' 0.341,

which are compatible with the experimentally allowed regions [45–47]. It is remarkable
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I VII IX X III V

sin2 θ13
2
3 sin2 θ 1

3 −
cos 2θ
2
√

3

sin2 θ12
1

2+cos 2θ
2

4+
√

3 cos 2θ

sin2 θ23
1
2

1
2 −

√
3 sin 2θ

4+2 cos 2θ
2

4+
√

3 cos 2θ

1
2 +

√
3 sin 2θ

4+2 cos 2θ
2+
√

3 cos 2θ
4+
√

3 cos 2θ

|JCP| 1
6
√

3
|sin 2θ| 0 1

6
√

3
|sin 2θ|

|tan δCP| +∞ 0
∣∣4+
√

3 cos 2θ
1+
√

3 cos 2θ
tan 2θ

∣∣
|tanα21| 0 +∞ 0 +∞

∣∣√3+2 cos 2θ
sin 2θ

∣∣ ∣∣ sin 2θ√
3+2 cos 2θ

∣∣
|tanα′31| 0

∣∣ 4√3 sin 2θ
1−3 cos 4θ

∣∣
Best Fits

θbf 0.184 0.182 0

χ2
min(θ23 < π/4) 14.527 9.548 110.741

χ2
min(θ23 > π/4) 27.254 9.303 111.559

sin2 θ13 0.0222 0.0218 0.0447

sin2 θ12 0.341 0.341 0.349

sin2 θ23 0.5
0.395 0.349

0.605 0.651

|JCP| 0.0346 0 0

|sin δCP| 1 0 0

|sinα21| 0 1 0 1 1 0

|sinα′31| 0 0

Table 2. Predictions for mixing parameters in cases I, III, V, VII, IX and X, where “ +∞” for

|tan δCP|, |tanα21| and |tanα′31| denotes that the absolute value of the corresponding CP phase is

π/2. The Majorana phase α′31 has been redefined to include the Dirac CP phase by α′31 = α31−2δCP.

Predictions for exchanging the second and the third rows of the PMNS matrix are shown below the

dashed line.

that all the mixing parameters depend on only one free parameter θ with period π in the

present context, and in particular the CP phases are nontrivial function of θ except cases

I, VII, IX and X.
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II, IV, VI and VIII

sin2 θ13
1
3 −

1+
√

3
6
√

2
cos 2θ

sin2 θ12
2
√

2
4
√

2+(1+
√

3) cos 2θ

sin2 θ23

2
√

2−(1−
√

3) cos 2θ

4
√

2+(1+
√

3) cos 2θ

2
√

2+2 cos 2θ
4
√

2+(1+
√

3) cos 2θ

|JCP| 1
6
√

3
|sin 2θ|

|tan δCP|
∣∣4√2+(1+

√
3) cos 2θ

1−
√

3−
√

2 cos 2θ
tan 2θ

∣∣
|tanα21|

∣∣1+
√

3+2
√

2 cos 2θ+(1−
√

3) sin 2θ

1+
√

3+2
√

2 cos 2θ−(1−
√

3) sin 2θ

∣∣
|tanα′31|

∣∣ 4 sin 2θ
2−3
√

3+(2+
√

3) cos 4θ

∣∣
Best Fits

θbf ±0.130

χ2
min(θ23 < π/4) 9.124

χ2
min(θ23 > π/4) 9.838

sin2 θ13 0.0222

sin2 θ12 0.341

sin2 θ23

0.426

0.574

|JCP| 0.0248

|sin δCP| 0.725

|sinα21| 0.682 or 0.731

|sinα′31| 0.9992

Table 3. Predictions for mixing parameters in cases II, IV, VI and VIII. The Majorana phase

α′31 has been redefined to include the Dirac CP phase by α′31 = α31 − 2δCP. The predictions for

exchanging the second and the third rows of the PMNS matrix are shown below the dashed line.
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Parameters sin2 θ12 sin2 θ23 sin2 θ13

Best-Fit ± 1σ values 0.302+0.013
−0.012 0.413+0.037

−0.025 ⊕ 0.594+0.021
−0.022 0.0227+0.0023

−0.0024

3σ values 0.267→ 0.344 0.342→ 0.667 0.0156→ 0.0299

Table 4. The best-fit, 1σ and 3σ values of neutrino mixing parameters are taken from ref. [46].

In order to measure quantitatively whether and how well the different mixing schemes

listed in table 2 and table 3 can explain the current experimental data, we perform a χ2

analysis and the χ2 function is constructed as usual

χ2(θ) =
∑

ij=12,13,23

[
sin2 θij(θ)−

(
sin2 θij

)ex]2
σ2
ij

, (3.65)

where sin2 θij depending on the parameter θ is the theoretical prediction of the present

work, as collected in table 2 and table 3.
(
sin2 θij

)ex
represents the experimentally measured

value of the mixing angle, and σij is the corresponding 1σ error. Their values are taken

from ref. [46] and are summarized in table 4. Since sin2 θ23 now has two best-fit values

sin2 θ23 = 0.413 and sin2 θ23 = 0.594 [46], two χ2 functions associated with these two

central values are constructed.

For each remnant CP symmetry, all the possible permutations of rows and columns of

the PMNS matrix are studied, and the corresponding minimal values of χ2 are calculated.

Then the arrangement of the PMNS matrix with the smallest χ2 minimal value is chosen,

and the analytical expressions for the mixing parameters and the best-fit results are pre-

sented in table 2 and table 3. We find that the PMNS matrix with the smallest χ2 for the

central value sin2 θ23 = 0.594 is related to the one with the smallest χ2 for sin2 θ23 = 0.413

by exchanging the second and the third rows, and the corresponding results for mixing

parameters and their best-fit values are shown below the dashed line. Because the sign of

tanα21 and tanα′31 depends on the CP parity of the neutrino states which is contained

in the matrix Kν , we present the absolute values |tanα21| and |tanα′31| in table 2 and

table 3. We see that, first of all, the measured three lepton mixing angles can be accommo-

dated very well for certain values of the parameter θ except cases III and V, which predict

sin2 θ12 = sin2 θ23 or sin2 θ12 = 1 − sin2 θ23. Furthermore, since mixing angles as well as

CP phases are predicted in terms of a single parameter θ, different mixing parameters are

strongly correlated with each other.

The correlations among mixing parameters for each cases are displayed in figures 2, 3, 4

and 5. Some comments based on these figures are presented in the following.

• In case I and case VII, the solar and reactor mixing angles are related by

3 sin2 θ12 cos2 θ13 = 1, and the atmospheric neutrino mixing is predicted to be max-

imal θ23 = π/4. Hence excellent agreement with the experimental data can be

achieved, as shown in figure 2. Moreover, the Dirac CP is maximally violated

δCP = ±π/2, while the Majorana CP phases sinα21 = sinα31 = 0 in case I and

cosα21 = sinα31 = 0 in case VII. Comparing with previous work on S4 family sym-

metry combined with the generalised CP [23], we see that the mixing pattern in case
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I can also be achieved within the context of S4 while the pattern in case VII can not

be obtained.

• In case IX and case X, θ12 and θ13 are predicted to be of the same form as those

of case I, whereas the atmospheric mixing angle θ23 deviates from maximal mixing.

The following correlations are found:

3 sin2 θ12 cos2 θ13 = 1, sin2 θ23 =
1

2
± sin θ13

√
2− 3 sin2 θ13

2 cos2 θ13
, (3.66)

which are plotted in figure 3. For the best-fit value of the reactor angle θ13 =

8.66◦ [46], the other two mixing angles are determined to be θ12 ' 35.73◦, θ23 ' 38.82◦

or θ23 ' 51.18◦, which are compatible with the preferred values from global fits. There

is no CP violation except that the Majorana phase α21 is maximal α21 = ±π/2 in

case X. The mixing texture of case IX is also admissible in S4 family symmetry with

generalised CP [23] although the one in case X is not achievable.

• Predictions for cases III and V are shown in figure 4. All the lepton mixing parameters

nontrivially depend on θ. Especially, we have θ23 = θ12 or θ23 = 90◦−θ12. The best-fit

value of θ is θbf = 0 for which sin2 θ13 is minimized with sin2 θ13 (θbf) =
(
2−
√

3
)
/6.

Hence in this scenario θ13 has a lower bound θ13 ≥ 12.2◦ which is beyond the 3σ

range of the experimental data. Furthermore, we have sin2 θ12 (θbf) =
(
8− 2

√
3
)
/13,

sin2 θ23 (θbf) =
(
8− 2

√
3
)
/13 or sin2 θ23 (θbf) =

(
5 + 2

√
3
)
/13, therefore the pre-

dicted mixing pattern reduces to Toorop-Feruglio-Hagedorn mixing [51–54] for θbf =

0. Note that imposing S4 family symmetry and generalised CP can lead to the mixing

pattern of case III but not that of case V [23].

• Cases II, IV, VI, and VIII are most interesting. The resulting mixing pattern are

firstly proposed in ref. [44] (denoted as pattern D there). The mixing parameters are

predicted to be of the same form in all the four cases, and the correlations among them

are shown in figure 5. The following relations among the mixing angles are satisfied:

3 sin2 θ12 cos2 θ13 = 1,

sin2 θ23 = 2−
√

3− (3− 2
√

3) sin2 θ12, θ23 < π/4,

sin2 θ23 =
√

3− 1 + (3− 2
√

3) sin2 θ12, θ23 > π/4 . (3.67)

Notice that this mixing pattern can accommodate the three lepton mixing angles

very well. For the best-fit value θbf ' 0.130, we have sin2 θ13 (θbf) ' 0.0222,

sin2 θ12 (θbf) ' 0.341, sin2 θ23 (θbf) ' 0.426 or sin2 θ23 (θbf) ' 0.574 which are in

the experimentally favored ranges [45–47]. For the CP phases, the best-fit val-

ues are |sin δCP (θbf)| = 0.725, |sinα′31 (θbf)| = 0.999, |sinα21 (θbf)| = 0.682 or

|sinα21 (θbf)| = 0.731. Hence α′31 is approximately maximal with α′31 ' ±π/2 while

δCP and α21 don’t take simple values 0, π or ±π/2. This is a distinguishing new

feature of ∆(48) family symmetry compared with widely discussed A4, S4 family

symmetries. Moreover, we note that the predicted value of the Dirac CP phase δCP
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Figure 2. Relations of mixing angles (sin θ13, sin2 θ12) and the Jarlskog invariant JCP for cases

I and VII. The other mixing parameters θ23, δCP, α21 and α′31 are not shown here since they take

constant values. We mark the best-fit value θbf of the parameter θ with a red star, and also mark

θ = 0, π/6, π/4, π/3, π/2 with a cross on the curve. The 1σ and 3σ ranges for the mixing angles are

taken from table 4.
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Figure 3. Relations of mixing angles (sin θ13, sin2 θ12, sin2 θ23) for cases IX and X. CP-violating

phases are not shown here since they are predicted to be constant. We mark the best-fit value θbf
of the parameter θ with a red star, and also mark θ = 0, π/6, π/4, π/3, π/2 with a cross on the

curve. The 1σ and 3σ ranges for the mixing angles are taken from table 4.

is compatible with the current 1σ preferred range 0.9π ≤ δCP ≤ 2.0π from global

fits [46]. Future dedicated long-baseline neutrino oscillation experiments such as

LBNE [55, 56] and Hyper-Kamiokande [57, 58] can measure the Dirac phase with a

certain precision such that this mixing pattern could be tested. Although this mix-

ing pattern cannot be obtained from A4 and S4 family symmetry, it can be realized

in ∆(96) family symmetry with generalised CP [29]. However, the associated rem-

nant symmetries within ∆(48) and ∆(96) frameworks are different. From the model

building perspective, the ∆(48) family symmetry should be preferred over ∆(96) fam-

ily symmetry to produce this mixing pattern since the group structure of ∆(48) is

simpler than ∆(96).
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Figure 4. Correlations among mixing angles (sin θ13, sin2 θ12, sin2 θ23) and CP parameters (JCP,

sin2 α21, sin2 α′31) for cases III and V. On the top right panel, the solution for sin2 θ23 in the first

octant is shown in a solid line, and the solution for sin2 θ23 in the second octant is shown in a

dashed line. The results for sin2 α21 in case III and case V are shown in solid and dotted lines,

respectively. We mark the best-fit value θbf = 0 with a red star, and mark θ = π/6, π/4, π/3, π/2

with a cross on the curve. The 1σ and 3σ ranges for the mixing angles are taken from table 4.

4 Model with ∆(48) and generalised CP symmetries

Inspired by the general analysis in the previous section, we will construct a dynamical model

in this section, where the new mixing pattern in table 3 is realized. The model is based on
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Figure 5. Correlations between mixing angles (sin θ13, sin2 θ12, sin2 θ23) and CP parameters (JCP,

sin2 α21, sin2 α′31) for cases II, IV, VI and VIII. On the top right panel, the solution for sin2 θ23 in

the first octant is shown in a solid line, and the solution for sin2 θ23 in the second octant is shown

in a dashed line. We mark the best-fit value θbf of the parameter θ with a red star, and mark

θ = 0, π/6, π/4, π/3, π/2 with a cross on the red curve. The 1σ and 3σ ranges for the mixing angles

are taken from table 4.

∆(48) o HCP, which is supplemented by the auxiliary symmetry Z2 × Z5 × Z6. Z5 × Z6

distinguishes the flavons in the neutrino sector from those entering into the charged lepton

sector, and Z2 further distinguishes the flavons ϕ, ρ, χ from φ, ζ, σ. The three generations

of left-handed lepton doublets l and the right-handed neutrinos νc are embedded into ∆(48)
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Field l ec µc τ c νc hu,d φl ϕl ρl ϕ φ ξ ρ χ σ

∆(48) 3 1 1 1 3 1 3 3′ 3′ 3 3̃ 1 1 3′ 1

Z2 1 1 1 1 1 1 1 1 1 −1 1 1 −1 −1 1

Z5 1 ω3
5 1 ω2

5 1 1 ω3
5 ω2

5 ω5 1 1 1 1 1 1

Z6 1 ω5
6 ω6 ω3

6 1 1 ω3
6 ω2

6 ω6 ω2
6 ω4

6 ω4
6 ω4

6 ω4
6 ω2

6

U(1)R 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

Table 5. Matter and flavon fields and their transformation properties under the family symmetry

∆(48)×Z2 ×Z5 ×Z6 and U(1)R, where l = (lτ , lµ, le) is the left-handed lepton doublet fields with

ω5 = e2iπ/5 and ω6 = eiπ/3.

triplets 3 and 3 respectively, while the right-handed charged leptons ec, µc and τ c are all

invariant under ∆(48). The field content and their transformation properties are shown in

table 5.

4.1 Basic structure

Our model is formulated within the framework of supersymmetry, and the neutrino masses

are generated via type-I seesaw mechanism. The superpotential relevant to the charged

lepton and the neutrino masses are

w = weff
l + weff

ν , (4.1)

with

weff
l =

yτ
Λ

(lφl)1 τ
chd +

yµ
Λ2

(l (φlϕl)3)1 µ
chd +

ye1
Λ3

(
l
(
ρl (φlφl)3̃

)
3

)
1
echd

+
ye2
Λ3

(
l
(
φl (ϕlϕl)3′S

)
3

)
1
echd , (4.2)

weff
ν = y (lνc)1 hu +

x1

Λ

(
(νcνc)3S ϕ

)
1
ρ+

x2

Λ

(
(νcνc)3S (ϕχ)3

)
1

+
x3

Λ

(
(νcνc)3̃ (ϕχ)3̃

)
1

+
x4

Λ

(
(νcνc)3̃ φ

)
1
σ , (4.3)

where all the couplings are constrained to be real by the generalised CP symmetry. As we

shall show in section 4.2, at LO the flavons develop the following VEV configuration:

〈φl〉 =

 1

0

0

 vφl , 〈ϕl〉 =

 0

1

0

 vϕl , 〈ρl〉 =

 0

1

0

 vρl ,

〈ϕ〉 =

 1

1

1

 vϕ, 〈φ〉 =

 1

1

1

 vφ, 〈χ〉 =

 1

1

1

 vχ,

〈ξ〉 = vξ, 〈ρ〉 = vρ, 〈σ〉 = vσ . (4.4)
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With this vacuum configuration, we find that the charged lepton mass matrix is diago-

nal with

mτ = yτ
vφl
Λ
vd, mµ = ω2yµ

vφlvϕl
Λ2

vd, me = ye1
vρlv

2
φl

Λ3
vd + 2ω2ye2

vφlv
2
ϕl

Λ3
vd , (4.5)

where vd = 〈hd〉. It is remarkable that the mass hierarchy among charged leptons can be

correctly reproduced for

vφl ∼ λ
2Λ, vϕl ∼ λ

2Λ , (4.6)

where λ ' 0.23 is the Cabibbo angle. As a result, at LO there is no contribution to the

lepton mixing matrix from the charged lepton sector. For the neutrino sector, we can

straightforwardly read out the Dirac and the right-handed neutrino Majorana matrices as

mD = yvu

 0 0 1

0 1 0

1 0 0

 ,

mM = x1
vϕvρ

Λ

 2 −1 −1

−1 2 −1

−1 −1 2

+ 3x3
vϕvχ

Λ

 1 ω ω2

ω ω2 1

ω2 1 ω

+ x4
vφvσ

Λ

 1 1 1

1 1 1

1 1 1

 . (4.7)

Note that the x2 term in eq. (4.3) does not contribute to the mM . The reason is that the

contraction (ϕχ)3 vanishes for the alignment in eq. (4.4). The light neutrino mass matrix

is given by the see-saw relation:

mν = −mT
DmMmD . (4.8)

Therefore we have

m̃ν = P T321mνP321

= α

 2 −1 −1

−1 2 −1

−1 −1 2

+ β

 1 0 0

0 0 1

0 1 0

+ γ

 0 1 1

1 1 0

1 0 1

+ ε

 0 1 −1

1 −1 0

−1 0 1

 , (4.9)

where

α = −y
2v2
u

9

Λ

x1vϕvρ
, β = −y

2v2
u

9

[
Λ

x4vφvσ
− 3x3vχΛ

x2
1vϕv

2
ρ

]
,

γ = −y
2v2
u

9

[
Λ

x4vφvσ
+

3x3vχΛ

2x2
1vϕv

2
ρ

]
, ε = i

y2v2
u

2
√

3

x3vχΛ

x2
1vϕv

2
ρ

. (4.10)

Notice that m̃ν is of the same form as the neutrino mass matrix in eq. (3.14) which is

the most general Majorana neutrino mass matrix invariant under the action of the residual

flavor symmetry Zc
2

2 =
{

1, c2
}

. Imposing the generalised CP symmetry renders all coupling

constant real, and CP is spontaneously broken by the complex flavon VEVs. The phase
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structure of the VEVs depends on the driving potential. Anticipating the results of the

vacuum alignment in section 4.2, we see that the flavons can develop VEVs with phases

vϕ
|vϕ|

= ±e±i
π
4 ,

vχ
|vχ|

= ±e±i
π
4 ,

vφ
|vφ|

= ±i , (4.11)

where the signs depend on the undetermined real couplings of the driving potential. The

VEVs of the ∆(48) singlet flavons ξ, ρ and σ are real. Since the overall sign of the VEVs

can be absorbed by parameter redefinition, four scenarios arise in the present model.

(a).
vϕ
|vϕ| = ±ei

π
4 ,

vχ
|vχ| = ±ei

π
4 . Referring to the appendix B, we can see that the

vacuum of the flavons ϕ, χ and φ are invariant under ρ(d)X(h1) and ρ(c2d)X(h1). Hence

the generalised CP symmetry is broken to Hν
CP =

{
ρ(d)X(h1), ρ(c2d)X(h1)

}
in the neutrino

sector in this case. To facilitate the presentation, we define the parameters:

r = −y
2v2
u

9

Λ

x1vϕvρ
ei
π
4 , s = −iy

2v2
u

9

Λ

x4vφvσ
, t = −y

2v2
u

3

x3vχΛ

x2
1vϕv

2
ρ

. (4.12)

Obviously all the three parameters r, s and t are real, and we have

α = re−i
π
4 , β = −t− is, γ =

1

2
t− is, ε = −

√
3

2
it . (4.13)

It is straightforward to check that the following relations are satisfied

αIm = −αRe = − r√
2
, βRe = −2γRe = −t,

βIm = γIm +
√

3 εRe = −s, εIm = −
√

3 γRe = −
√

3

2
t . (4.14)

Hence this case is exactly case II of the general analysis in section 3. As a result, the

PMNS matrix is of the form shown in eq. (3.30), and the predictions for the lepton mixing

parameters can be found in table 3. The formulae for the light neutrino masses in eq. (3.32)

are simplified to

m1 =
3

2

∣∣∣t+ sign (r cos 2θ)
√
t2 + 4r2

∣∣∣ ,
m2 = 3 |s| , m3 =

3

2

∣∣∣t− sign (r cos 2θ)
√
t2 + 4r2

∣∣∣ , (4.15)

while the expression for θ is

tan 2θ =
t

2r
. (4.16)

Note that three real parameters r, s and t are involved in the light neutrino mass matrix.

They can be determined by experimental data of θ13 and mass-squared differences. 8

solutions are found when the best-fit values of sin2 θ13 = 0.0227, ∆m2
21 = 7.50× 10−5 eV2

and ∆m2
31 = 2.473 × 10−3 eV2 (∆m2

32 = −2.427 × 10−3 eV2) for NO(IO) [46] are taken.

The resulting predictions for the lepton mixing parameters and the light neutrino masses

are summarized in table 6. We see that the neutrino mass spectrum can be NO or IO

in the present model. The sum of neutrino masses is
∑

imi ' 133.713 meV for NO and
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∑
imi ' 154.891 meV for IO, which are well compatible with the latest results from the

Planck satellite:
∑

imi < 0.23 eV(95% CL; Planck+WMAP-pol+highL+BAO) [59].

Besides mixing angles, CP-violating phases and light neutrino masses, this model yields

definite predictions for the effective mass parameters mβ in beta decay experiments and

mββ in neutrinoless double-beta decay (0νββ) experiments, where mβ and mββ are de-

fined through

mβ =
[∑

i

|(UPMNS)ei|
2m2

i

]1/2
, mββ =

∣∣∣∑
i

(UPMNS)2
eimi

∣∣∣ , (4.17)

respectively. For the best-fit values of θ13 and ∆m2
ij shown above, we find that mβ is

predicted to be mβ ' 36.842 meV for NO and mβ ' 59.476 meV for IO. This is still below

the expected sensitivity of the KATRIN experiment [60], whereas the IO case could be

tested by the proposed next-generation experiments, such as Project 8 and PTOLEMY [61].

The effective mass mββ can be 32.285 meV, 17.962 meV for NO or 55.125 meV, 27.041 meV

for IO, depending on which quadrant the Majorana phase α21 lies in. The current best

upper bounds on mββ are given by EXO-200 [62, 63] and KamLAND-Zen [64], with a

combined result mββ < 120 − 250 meV [64]. With an uncertainty from nuclear physics,

the next generation experiments EXO-1000 [65, 66], CUORE [67, 68], GERDA III [69, 70],

KamLAND2-Zen [71] et al. are expected to push the mββ sensitivity to tens of meV, and

thus have the potential to rule out our model.

(b).
vϕ
|vϕ| = ±e−i

π
4 ,

vχ
|vχ| = ±ei

π
4 . The remnant CP symmetry in the neutrino sector

turns out to be Hν
CP =

{
ρ(cd3)X(h1), ρ(c3d3)X(h1)

}
in this case. This corresponds to

case VIII investigated in section 3. Similar to the previous case, we introduce the following

three real parameters:

r = −y
2v2
u

9

Λ

x1vϕvρ
e−i

π
4 , s = −iy

2v2
u

9

Λ

x4vφvσ
, t = −iy

2v2
u

3

x3vχΛ

x2
1vϕv

2
ρ

, (4.18)

which is related to the parameters α, β, γ and ε in eq. (4.9) as

α = rei
π
4 , β = i (t− s) , γ = −i

(
s+

t

2

)
, ε = −

√
3

2
t . (4.19)

As a consequence, the following relations are satisfied

αIm = αRe = r/
√

2, βRe = −2γRe = 0,

βIm = γIm −
√

3 εRe = t− s, εIm =
√

3 γRe = 0 . (4.20)

The constraints of case VIII are reproduced, as shown in table 1. Therefore predictions

for the PMNS matrix and light neutrino masses are given by eq. (3.54) and eq. (3.56)

respectively, and the resulting lepton mixing parameters are displayed in table 3. Similar

to the previous case, the light neutrino sector is also controlled by three real parameters

r, s and t, and hence the model is quite predictive. Imposing the measured values of

θ13 and ∆m2
ij [46], predictions for lepton mixing parameters, neutrino masses, and the
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 r

s

t

 ±

 15.590

12.253

−8.502

 ±

−15.590

12.253

8.502

 ±

 15.204

20.113

8.292

 ±

 15.204

−20.113

8.292


sin2 θ12 0.341

θ12/
◦ 35.734

sin2 θ23 0.426

θ23/
◦ 40.759

sin δCP 0.733 −0.733

δCP/
◦ 47.166 312.834

sinα21 0.732 −0.732 0.682 −0.682

α21/
◦ 47.020 227.020 42.980 222.980

sinα31 0.0938 −0.0938

α31/
◦ 5.383 354.617

sinα′31 −0.9998 0.9998

α′31/
◦ 271.051 88.949

m1 35.724 59.714

m2 36.759 60.339

m3 61.231 34.839

mass order NO IO

mβ 36.842 59.476

mββ 32.285 17.962 55.125 27.041

Table 6. Predictions for lepton mixing parameters, light neutrino masses and the effective masses

mβ of beta decay and mββ of the neutrinoless double-beta decay, where the unit of r, s, t and mass

is meV. The phases of the VEVs vϕ and vχ fulfill vϕ/ |vϕ| = ±ei
π
4 and vχ/ |vχ| = ±ei

π
4 .

effective mass parameters mβ, mββ are presented in table 7. Comparing with the results

of scenario (b) in table 6, we see that this scenario gives rise to nearly the same predictions

for lepton mixing parameters and neutrino masses as scenario (b), except the Majorana

phase α21. As a consequence, the predictions for mβ coincide while mββ takes different

values in the two scenarios.

(c).
vϕ
|vϕ| = ±e−i

π
4 ,

vχ
|vχ| = ±e−i

π
4 . Comparing with the results of appendix B, we

see that the VEVs of the flavons ϕ and χ break the generalised CP symmetry to Hν
CP ={

ρ(cd3)X(h1), ρ(c3d3)X(h1)
}

in the neutrino sector. Hence this case is identical to the case

IV of the general analysis in section 3. It is straightforward to check that the neutrino mass

matrix m′ν is of the same form as the corresponding one of case IV. As a result, the lepton
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 r
s
t

 ±

 15.590
12.253
8.502

 ±

 15.590
−12.253

8.502

 ±

 15.204
20.113
−8.292

 ±

−15.204
20.113
8.292


sin2 θ12 0.341

θ12/
◦ 35.734

sin2 θ23 0.426

θ23/
◦ 40.759

sin δCP 0.733 −0.733

δCP/
◦ 47.166 312.834

sinα21 0.682 −0.682 0.732 −0.732

α21/
◦ 137.020 317.020 132.980 312.980

sinα31 0.0938 −0.0938

α31/
◦ 5.383 354.617

sinα′31 −0.9998 0.9998

α′31/
◦ 271.051 88.949

m1 35.724 59.714

m2 36.759 60.339

m3 61.231 34.839

mass order NO IO

mβ 36.842 59.476

mββ 15.696 33.445 29.211 54.006

Table 7. Predictions for lepton mixing parameters, light neutrino masses and the effective masses

mβ of beta decay and mββ of the neutrinoless double-beta decay, where the unit of a, b, c and mass

is meV. The phases of the VEVs vϕ and vχ are vϕ/ |vϕ| = ±e−i
π
4 and vχ/ |vχ| = ±ei

π
4 .

mixing matrix is

UPMNS = P321UTBΩR (θ)

=
1√
3

−e
− 3iπ

8 cos
(
θ − 5π

24

)
+ e

iπ
8 cos

(
θ + 5π

24

)
e−

iπ
4 −e−

3iπ
8 sin

(
θ − 5π

24

)
+ e

iπ
8 sin

(
θ + 5π

24

)
e−

3iπ
8 sin

(
θ − π

24

)
+ e

iπ
8 sin

(
θ + π

24

)
e−

iπ
4 −e−

3iπ
8 cos

(
θ − π

24

)
− e

iπ
8 cos

(
θ + π

24

)
−i cos

(
θ + π

4

)
− e

iπ
4 cos

(
θ − π

4

)
e−

iπ
4 −i cos

(
θ − π

4

)
+ e

iπ
4 cos

(
θ + π

4

)
 ,

where the unitary transformation Ω is of the form in eq. (3.37), and the angle θ satisfies

tan 2θ = −t/(2r). Therefore the reactor mixing angle θ13 is predicted to be5

sin2 θ13 =
1

3
+

√
2−
√

6

12
cos 2θ ≥ 1

3
+

√
2−
√

6

12
' 0.247. (4.21)

5We can reorder the first and the third light neutrino masses such that the first and the third column of

the above PMNS matrix is permutated. The resulting θ13 fulfills sin2 θ13 = 1
3

+
√
6−
√
2

12
cos 2θ ≥ 1

3
−
√
6−
√
2

12
'

0.247.
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Field D′0l D′′0l ϕ0
l φ0

l ϕ0 φ0 χ0 ∆0 ξ0 σ0
(
σ′0, σ′′0

)
∆(48) 1′ 1′′ 3′ 3 3 3̃ 3′ 3̃ 1 1

Z2 1 1 1 1 1 1 1 1 1 1

Z5 ω2
5 ω2

5 ω3
5 ω2

5 1 1 1 1 1 1

Z6 ω3
6 ω3

6 ω4
6 ω3

6 ω2
6 ω2

6 ω4
6 ω4

6 ω2
6 ω4

6

U(1)R 2 2 2 2 2 2 2 2 2 2

Table 8. Driving fields and their transformation properties under the family symmetry ∆(48) ×
Z2 × Z5 × Z6 and U(1)R.

Obviously the observed value of θ13 cannot be produced in this scenario. As has been

pointed out in section 3, one has to permute the rows of UPMNS as done in eq. (3.38) in order

to achieve agreement with the present data. This permutation corresponds to exchanging

the three charged lepton masses. However, the charged lepton masses are predicted to be

of different order of magnitude in the present model, so that this permutation is forbidden.

(d).
vϕ
|vϕ| = ±ei

π
4 ,

vχ
|vχ| = ±e−i

π
4 . The remnant CP symmetry in the neutrino sector

is Hν
CP =

{
ρ(cd)X(h1), ρ(c3d)X(h1)

}
. The constraints αIm = −αRe, βRe = −2γRe, βIm =

γIm−
√

3 εRe and εIm =
√

3 γRe are met for this phase structure. Hence this is exactly case

VI discussed in section 3. The PMNS matrix is of the form

UPMNS = P321UTBΩ

=
1√
3

−e
3iπ
8 cos

(
θ − 5π

24

)
− e

7iπ
8 cos

(
θ + 5π

24

)
e
iπ
4 −e

3iπ
8 sin

(
θ − 5π

24

)
− e

7iπ
8 sin

(
θ + 5π

24

)
e

3iπ
8 sin

(
θ − π

24

)
− e

7iπ
8 sin

(
θ + π

24

)
e
iπ
4 −e

3iπ
8 cos

(
θ − π

24

)
+ e

7iπ
8 cos

(
θ + π

24

)
i cos

(
θ + π

4

)
+ e

3iπ
4 cos

(
θ − π

4

)
e
iπ
4 i cos

(
θ − π

4

)
− e

3iπ
4 cos

(
θ + π

4

)
 ,

where the unitary matrix Ω is the one in eq. (3.45) and the rotation angle θ is given by

tan 2θ = −t/(2r). As a consequence, the reactor mixing angle is6

sin2 θ13 =
1

3
−
√

6−
√

2

12
cos 2θ ≥ 1

3
−
√

6−
√

2

12
' 0.247 , (4.22)

which doesn’t match with the experimental data.

4.2 Vacuum alignment

We exploit the supersymmetric driving field method to solve the vacuum alignment prob-

lem [72]. This approach generally introduces a continuous U(1)R symmetry under which

matter superfields carry charge +1, the Higgs and flavon fields are uncharged and the

so-called driving fields indicated with the superscript “0” carry charges +2. In the limit

of unbroken supersymmetry, the F−terms of the driving fields should vanish such that

vacuums of flavons get aligned. The driving field content and transformation properties of

6If we exchange the first and the third columns of this PMNS matrix, θ13 would be given by sin2 θ13 =
1
3

+
√
6−
√

2
12

cos 2θ ≥ 1
3
−
√
6−
√
2

12
.
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these fields are shown in table 8. The most general driving superpotential invariant under

the family symmetry ∆(48)× Z2 × Z5 × Z6 is given by

wd = wld + wνd , (4.23)

with

wld = g1D
′0
l (ρlϕl)1′′ + g2D

′′0
l (ρlϕl)1′ +Mϕl

(
ϕ0
l ϕl
)
1

+ g3

(
ϕ0
l (ρlρl)3′S

)
1

+Mφl

(
φ0
l φl
)
1

+ g4

(
φ0
l (ρlϕl)3

)
1
, (4.24)

wνd = f1

(
ϕ0(ϕϕ)3S

)
1

+Mφ

(
φ0φ

)
1

+ f2

(
φ0 (ϕϕ)3̃

)
1

+ f3

(
χ0 (χχ)3′S

)
1

+h1

(
∆0 (φφ)3̃S

)
1

+ h2

(
∆0φ

)
1
ξ + h3

(
∆0 (χχ)3̃

)
1

+Mξξ
0ξ + kξ0σ2

+Mσσ
0σ + k1σ

0ξ2 + k2σ
0ρ2 + k3σ

0(φφ)1 +M ′σσ
′0σ + k′1σ

′0ξ2 + k′2σ
′0ρ2

+k′3σ
′0(φφ)1 +M ′′σσ

′′0σ + k′′1σ
′′0ξ2 + k′′2σ

′′0ρ2 + k′′3σ
′′0(φφ)1 . (4.25)

Here all the coupling constants and mass parameters are real due to the imposed generalised

CP symmetry. The vacuum alignment associated to the charged lepton sector is determined

by the F−term conditions of the driving fields D′0l , D′′0l , ϕ0
l and φ0

l , i.e.,

∂wld
∂D′0l

= g1 (ρl,1ϕl,2 + ρl,2ϕl,3 + ρl,3ϕl,1) = 0 ,

∂wld
∂D′′0l

= g2 (ρl,1ϕl,3 + ρl,2ϕl,1 + ρl,3ϕl,2) = 0 ,

∂wld
∂ϕ0

l,1

= Mϕlϕl,1 + 2g3

(
ρ2
l,1 − ρl,2ρl,3

)
= 0 ,

∂wld
∂ϕ0

l,2

= Mϕlϕl,2 + 2g3

(
ρ2
l,2 − ρl,1ρl,3

)
= 0 ,

∂wld
∂ϕ0

l,3

= Mϕlϕl,3 + 2g3

(
ρ2
l,3 − ρl,1ρl,2

)
= 0 ,

∂wld
∂φ0

l,1

= Mφlφl,1 + g4

(
ρl,1ϕl,1 + ωρl,3ϕl,3 + ω2ρl,2ϕl,2

)
= 0 ,

∂wld
∂φ0

l,2

= Mφlφl,2 + g4

(
ρl,2ϕl,3 + ωρl,1ϕl,2 + ω2ρl,3ϕl,1

)
= 0 ,

∂wld
∂φ0

l,3

= Mφlφl,3 + g4

(
ρl,3ϕl,2 + ωρl,2ϕl,1 + ω2ρl,1ϕl,3

)
= 0 . (4.26)

The solution to the above equation is given by

〈φl〉 =

 1

0

0

 vφl , 〈ϕl〉 =

 0

1

0

 vϕl , 〈ρl〉 =

 0

1

0

 vρl . (4.27)

The VEVs vφl , vϕl and vρl are related by

vϕl = −2g3

v2
ρl

Mϕl

, vφl = 2ω2g3g4

v3
ρl

MϕlMφl

. (4.28)
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In the neutrino sector, the vacuum alignment problem is more complicated, since we need

to realize not only the desired Z2 residual family symmetry but also the residual CP

symmetry after symmetry breaking. In other words, we have to handle the phases of the

VEVs very carefully. In the following, we will solve this problem step by step from the

driving superpotential wνd . The F−term conditions of the driving fields ϕ0 and φ0 take the

following form

∂wνd
∂ϕ0

1

= 2f1

(
ϕ2

1 − ϕ2ϕ3

)
= 0 ,

∂wνd
∂ϕ0

2

= 2f1

(
ϕ2

2 − ϕ3ϕ1

)
= 0 ,

∂wνd
∂ϕ0

3

= 2f1

(
ϕ2

3 − ϕ1ϕ2

)
= 0 ,

∂wνd
∂φ0

1

= Mφφ1 + f2

(
ϕ2

1 + 2ϕ2ϕ3

)
= 0,

∂wνd
∂φ0

2

= Mφφ3 + f2

(
ϕ2

3 + 2ϕ1ϕ2

)
= 0,

∂wνd
∂φ0

3

= Mφφ2 + f2

(
ϕ2

2 + 2ϕ1ϕ3

)
= 0 . (4.29)

we can straightforwardly get vacuums of ϕ and φ as

〈ϕ〉 =

 1

1

1

 vϕ, 〈φ〉 =

 1

1

1

 vφ , (4.30)

where

v2
ϕ = −

Mφvφ
3f2

. (4.31)

Furthermore, the vacuum of χ is determined by

∂wνd
∂χ0

1

= 2f3

(
χ2

1 − χ2χ3

)
= 0,

∂wνd
∂χ0

2

= 2f3

(
χ2

2 − χ1χ3

)
= 0,

∂wνd
∂χ0

3

= 2f3

(
χ2

3 − χ1χ2

)
= 0,

∂wνd
∂∆0

1

= 2h1

(
φ2

1 − φ2φ3

)
+ h2φ1ξ + h3

(
χ2

1 + 2χ2χ3

)
= 0,

∂wνd
∂∆0

2

= 2h1

(
φ2

2 − φ1φ3

)
+ h2φ3ξ + h3

(
χ2

2 + 2χ1χ3

)
= 0,

∂wνd
∂∆0

3

= 2h1

(
φ2

3 − φ1φ2

)
+ h2φ2ξ + h3

(
χ2

3 + 2χ1χ2

)
= 0 . (4.32)

Given the alignment of φ in eq. (4.30), the vacuum of the flavon χ is derived as

〈χ〉 =

 1

1

1

 vχ , (4.33)
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with

v2
χ = − h2

3h3
vφvξ . (4.34)

Finally, the F−term conditions obtained from the singlet driving fields ξ0, σ0, σ′0 and σ′′0

are of the form

∂wνd
∂ξ0

= Mξξ + kσ2 = 0 ,

∂wνd
∂σ0

= Mσ + k1ξ
2 + k2ρ

2 + k3

(
φ2

1 + 2φ2φ3

)
= 0 ,

∂wνd
∂σ′0

= M ′σ + k′1ξ
2 + k′2ρ

2 + k′3
(
φ2

1 + 2φ2φ3

)
= 0 ,

∂wνd
∂σ′′0

= M ′′σ + k′′1ξ
2 + k′′2ρ

2 + k′′3
(
φ2

1 + 2φ2φ3

)
= 0 . (4.35)

The solution to this equation is

vσ =

(
M2
ξM1

k2

) 1
3

, vξ = ±

(
M2
ξM

4
1

k2

) 1
6

, v2
ρ = M2vσ, 3v2

φ = M3vσ , (4.36)

where vξ = 〈ξ〉, vσ = 〈σ〉, vρ = 〈ρ〉, and the mass parameters M1,2,3 are defined as

M1 ≡
(k′3k

′′
2 − k′2k′′3)Mσ + (k2k

′′
3 − k3k

′′
2)M ′σ + (k3k

′
2 − k2k

′
3)M ′′σ

k1 (k′2k
′′
3 − k′3k′′2) + k2 (k′3k

′′
1 − k′1k′′3) + k3 (k′1k

′′
2 − k′2k′′1)

,

M2 ≡
(k′1k

′′
3 − k′3k′′1)Mσ + (k3k

′′
1 − k1k

′′
3)M ′σ + (k1k

′
3 − k3k

′
1)M ′′σ

k1 (k′2k
′′
3 − k′3k′′2) + k2 (k′3k

′′
1 − k′1k′′3) + k3 (k′1k

′′
2 − k′2k′′1)

,

M3 ≡
(k′2k

′′
1 − k′1k′′2)Mσ + (k1k

′′
2 − k2k

′′
1)M ′σ + (k2k

′
1 − k1k

′
2)M ′′σ

k1 (k′2k
′′
3 − k′3k′′2) + k2 (k′3k

′′
1 − k′1k′′3) + k3 (k′1k

′′
2 − k′2k′′1)

. (4.37)

For the case M1M2 > 0 and M1M3 < 0, we have

vρ = ±

(
M2
ξM1M

3
2

k2

) 1
6

, vφ = ±i

(
−
M2
ξM1M

3
3

k2

) 1
6

. (4.38)

For the opposite case M1M2 < 0 and M1M3 > 0, the VEVs vρ and vφ would become

purely imaginary and real, respectively. However, we do not consider this option in this

paper. Taking into account the relations among the different VEVs shown in eq. (4.31)

and eq. (4.34), we have

vϕ = ±

(
M6
φM

2
ξM1M

3
3

39f6
2k

2

) 1
12

e±i
π
4 , vχ = ±

(
h6

2M
4
ξM

5
1M

3
3

39h6
3k

4

) 1
12

e±i
π
4 . (4.39)

Thus we have elaborated that the desired vacuums in eqs. (4.4) and (4.11) can be achieved.

4.3 Ultraviolet completion

Having completed the model construction and its phenomenological implication analysis

at LO, the question of the higher order corrections arises. At the purely effective level,
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Field Θ1 Θc
1 Θ2 Θc

2 Θ3 Θc
3 Σ1 Σc

1 Σ2 Σc
2

∆(48) 3 3 3 3 3 3 3 3 3 3

Z2 1 1 1 1 1 1 −1 −1 1 1

Z5 1 1 ω3
5 ω2

5 ω5 ω4
5 1 1 1 1

Z6 1 1 ω4
6 ω2

6 ω2
6 ω4

6 ω4
6 ω2

6 ω2
6 ω4

6

U(1)R 1 1 1 1 1 1 1 1 1 1

Table 9. Messenger fields and their transformation rules under the family symmetry ∆(48)×Z2×
Z5 × Z6 and U(1)R.

all the higher dimensional (non-renormalisable) operators compatible with the imposed

symmetries should be taken into account. As a consequence, the successful LO results

generally tend to be erased partly by the large numbers of higher order contributions.

Thus a purely effective formulation would leave room for different physical predictions.

In order to remove any such ambiguity within our model, we would like to formulate an

ultraviolet (UV) completion of the above effective model. In such UV-completed model,

the non-renormalisable terms of the effective theory arise by integrating out the heavy

messenger fields.

The driving superpotential wd in eq. (4.25) which produces the required vacuum align-

ment is already fully renormalisable, and its existence is not subject to the presence

of the messenger fields. As a result, the vacuum alignments of flavon fields shown in

eqs. (4.27), (4.30), and (4.33) remain intact. We come to the non-renormalisable super-

potential weff
l in eq. (4.2) which is responsible for the charged lepton masses. To generate

these terms, we add three pairs of heavy fields Θi and Θc
i with i = 1, 2, 3. Notice that

these messenger fields are chiral superfields with non-vanishing hypercharge: 2 (+2) for

Θi (Θc
i ). Similar to the lepton fields, they carry a charge +1 under the U(1)R symmetry.

Their transformation properties under the family symmetry ∆(48)× Z2 × Z5 × Z6 can be

found from table 9. With the particle content and charge assignments collected in table 5

and table 9, the renormalisable superpotential for the charged lepton sector reads

wl = z1 (lΘ1)1 hd + z2 (Θc
1φl)1 τ

c + z3 ((Θc
1Θ2)3′ ϕl)1 + z4 (Θc

2φl)1 µ
c + z5 ((Θc

2Θ3)3′ ϕl)1

+z6 (Θc
3φl)1 e

c +MΘ1 (Θ1Θc
1)1 +MΘ2 (Θ2Θc

2)1 +MΘ3 (Θ3Θc
3)1 , (4.40)

where the generalised CP invariance again implies that all the coupling constants zi (i =

1 . . . 6) and the messenger masses MΘi (i = 1, 2, 3) are real. This superpotential gives rise

to the Feynman diagrams shown in figure 6. After integrating out the messenger pairs Θi

and Θc
i , we obtain the following effective operators:

weff
l = − z1z2

MΘ1

(lφl)1 τ
chd +

z1z3z4

MΘ1MΘ2

(l (φlϕl)3)1 µ
chd

− z1z3z5z6

2MΘ1MΘ2MΘ3

(
l
(
φl (ϕlϕl)3′S

)
3

)
1
echd . (4.41)

Note that the term
(
l
(
ρl (φlφl)3̃

)
3

)
1
echd in eq. (4.2) is not generated. The reason is
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hd φl

l τ c
Θ1 Θc

1
l µc

hd ϕl φl

Θ1 Θc
1 Θ2 Θc

2

hd ϕl ϕl φl

l ec
Θ1 Θc

1 Θ2 Θc
2 Θ3 Θc

3

Figure 6. Diagrams which generate the effective operators for the charged lepton masses, where

a cross denotes the mass insertion of a fermion.

that here we consider the minimal UV completion which has the least number of extra

messenger fields and the fewest number of associated (renormalisable) couplings, and there

is no messenger field to mediate this non-renormalisable term. However, this doesn’t affect

the low-energy observables, as all the entries are produced at the same order as in the

original effective theory. Inserting the flavon VEVs 〈φl〉 = (vφl , 0, 0) and 〈ϕl〉 = (0, vϕl , 0)

in eq. (4.27), a diagonal charged lepton mass matrix is obtained with

mτ = −z1z2
vφl
MΘ1

vd, mµ = ω2z1z3z4
vφlvϕl

MΘ1MΘ2

vd, me = −ω2z1z3z5z6

vφlv
2
ϕl

MΘ1MΘ2MΘ3

vd .

(4.42)

For the effective neutrino superpotential weff
ν in eq. (4.3), the neutrino Dirac coupling term

(lνc)1 hu is already renormalisable. The Majorana mass terms for right-handed neutrinos

couple with two flavons, and they can be generated by introducing two new pairs of mes-

sengers: Σi and Σc
i (i = 1, 2) which are chiral superfields with vanishing hypercharges.

The renormalisable neutrino superpotential of the minimal completion giving rise to the

effective potential weff
ν is

wν = y (lνc)1 hu + q1

(
(ϕνc)3S Σ1

)
1

+ q2

(
(ϕνc)3A Σ1

)
1

+ q3 (νcΣc
1)1 ρ+ q4 ((νcχ)3 Σc

1)1

+q5 ((νcφ)3 Σ2)1 + q6 (νcΣc
2)1 σ +MΣ1 (Σ1Σc

1)1 +MΣ2 (Σ2Σc
2)1 . (4.43)

With this superpotential, the Feynman diagrams shown in figure 7 can be constructed.

Integrating out the messengers, we obtain

weff
ν = − q1q3

MΣ1

(
(νcνc)3S ϕ

)
1
ρ−

(√
3 q1 − iq2

)
q4

2
√

3 MΣ1

(
(νcνc)3S (ϕχ)3

)
1

−
(√

3 q1 + iq2

)
q4√

3 MΣ1

(
(νcνc)3̃ (ϕχ)3̃

)
1
− q5q6

MΣ2

(
(νcνc)3̃ φ

)
1
σ . (4.44)

We see that all the non-renormalisable terms in eq. (4.3) are reproduced here. We note

that there are additional terms which also appear at the renormalisable level involving the

messengers

p1

(
(Σ1Σ1)3̃ φ

)
1

+ p2 (Σ1Σc
2)1 ρ+ p3

(
(Σ1Σc

2)
3
′ χ
)
1

+ p4

(
(Σc

2Σc
2)3̃ φ

)
1
. (4.45)
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νc νc
Σ2 Σc

2

φ σϕ ρ, χ

νc νc
Σ1 Σc

1

Figure 7. Diagrams for generating the effective operators of the right-handed neutrino masses,

where a cross indicates a fermionic mass insertion.

These terms can also be taken into account when the heavy fields are integrated out. They

give rise to subleading contributions of the form
(
νcνcΦ3

ν

)
1
/M2

Σ, where Φν = {ϕ, φ, χ, ρ, σ}
and MΣ denote the generic messenger mass MΣ1 or MΣ2 . Since these subleading operators

are not contaminated by the charged lepton flavons φl, ϕl and ρl, the results for the mixing

parameters remain unchanged, whereas the light neutrino masses acquire corrections which

are suppressed by 〈Φν〉/MΣ.

5 Conclusions

In this work, we perform a comprehensive analysis of the ∆(48) family symmetry combined

with the generalized CP symmetry HCP. The generalized CP transformation is a necessary

extension of the canonical CP transformation φ → φ∗ in the presence of a non-abelian

discrete family symmetry. It has been established that each generalised CP transformation

corresponds to an automorphism of the family group. The automorphism group of ∆(48)

is somewhat complex: Aut(∆(48)) ∼= ((((Z4 × Z4) o Z3) o Z4) o Z2), and its order is 384.

Hence ∆(48) family symmetry provides much more choices for admissible generalised CP

transformations than some popular family groups such as A4, S4 etc. As a consequence,

different results for mixing angles and CP phases arise.

We have performed a systematic and model-independent analysis of lepton mixing

within ∆(48) oHCP, where neutrinos are taken to be Majorana particles, and the gener-

alized CP and family symmetries are assumed to be broken to different subgroups in the

charged lepton and neutrino sectors, respectively. Totally, we have found 10 cases, as shown

in table 2 and table 3. The predictions for neutrino masses and lepton mixing parameters

are presented in detail for each case. All mixing angles and CP phases are determined in

terms of a single real parameter θ. In order to assess to what extent the experimental data

can be explained, a χ2 analysis is performed. The measured lepton mixing angles can be

accommodated rather well for certain values of the parameter θ except cases III and V

which predict a slightly large θ13. In particular, we find a new mixing pattern in which all

CP phases are nontrivial functions of the parameter θ, as shown in table 3. The excellent

agreement with the experimental data can be achieved by a proper choice of θ, and the

Dirac-type CP violation is neither maximal nor vanishing. This mixing pattern can be

tested in future long-baseline neutrino oscillation experiments.

Motivated by the general analysis, we construct an effective supersymmetric model

based on ∆(48) family symmetry and generalised CP symmetry, and the auxiliary sym-

metry Z2 × Z5 × Z6 is introduced to eliminated dangerous operators. In our model, the
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observed charged lepton mass hierarchy is reproduced, since the tau, muon and electron

mass terms involve one flavon, two flavons and three flavons, respectively. The symmetry

∆(48) oHCP is spontaneously broken down to Zc
2

2 × CP in the neutrino sector, and the

new interesting mixing pattern in table 3 is naturally realized. At leading order, the light

neutrino mass matrix depends on three parameters which can be fixed by the measured

mass-squared differences ∆m2
12, ∆m2

31 for NO (or ∆m2
32 for IO ), and the mixing angle

θ13. Therefore our model have definite predictions for mixing angles, CP phases and the

absolute neutrino mass scale. In addition, we have shown that the desired vacuum align-

ment can be achieved in the driving field approach. Furthermore, the UV completion of the

model is formulated in order to remove the ambiguity caused by higher dimensional opera-

tors allowed by the symmetry, in which non-renormalisable operators arise from integrating

out the heavy messenger fields.

One of the major physical goals of the future experimental neutrino physics is to

measure the CP violation. Combining family symmetry with generalized CP symmetry

may shed new light on the origin of lepton mixing and CP violation in the lepton sector.

Most models based on this idea usually predict that the Dirac CP phase δCP takes some

specific values δCP = 0, π or ±π/2. However, as what happened in the quark sector,

the Dirac CP-violating phase in the lepton sector might not be such regular values. If

that is the case, ∆(48) family symmetry and the associated generalised CP could be a

useful alternative.
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A Group theory of ∆(48)

∆(48) is a non-Abelian finite subgroup of SU(3) of order 48, and it belongs to the well-

known ∆(3n2) series with n = 4. The group theory of ∆(3n2) has been extensively dis-

cussed in ref. [73]. ∆(48) is isomorphic to (Z4×Z4)oZ3, and it can be generated by three

generators a, c and d satisfying the following multiplication rules:

a3 = c4 = d4 = 1, cd = dc,

aca−1 = c−1d−1, ada−1 = c (A.1)

where a generates Z3 and c and d are generators of Z4 × Z4. Since d can be expressed as

d = a−1ca, only two generators a and c are independent. Any group element g of ∆(48)

can be written as a product of powers of a, c and d

g = akcmdn (A.2)

where k = 0, 1, 2 and m, n = 0, 1, 2, 3. The structure of the ∆(48) group is somewhat

complex. It has three Z2 subgroups, sixteen Z3 subgroups, six Z4 subgroups and one
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K4
∼= Z2 × Z2 subgroup, which can be expressed in terms of the generators a, c and d

as follows:

• Z2 subgroups

Zc
2

2 =
{

1, c2
}
, Zd

2

2 =
{

1, d2
}
, Zc

2d2

2 =
{

1, c2d2
}
. (A.3)

All the three Z3 subgroups are conjugate to each other as follows

aZc
2

2 a
−1 = Zc

2d2

2 , a2Zc
2

2 a
−2 = Zd

2

2 . (A.4)

• Z3 subgroups

Z
(x,y)
3 =

{
1, acxdy, a2cx−ydx

}
, x, y = 0, 1, 2, 3 . (A.5)

All these Z3 subgroups are related to each other by group conjugation:[
c2x−ydx+y

]
Z

(0,0)
3

[
c2x−ydx+y

]−1
= Z

(x,y)
3 ,[

ac−x−ydx−2y
]
Z

(0,0)
3

[
ac−x−ydx−2y

]−1
= Z

(x,y)
3 ,[

a2c−x+2yd−2x+y
]
Z

(0,0)
3

[
a2c−x+2yd−2x+y

]−1
= Z

(x,y)
3 . (A.6)

• Z4 subgroups

Zc4 =
{

1, c, c2, c3
}
, Zd4 =

{
1, d, d2, d3

}
, Zcd4 =

{
1, cd, c2d2, c3d3

}
Zcd

2

4 =
{

1, cd2, c2, c3d2
}
, Zc

2d
4 =

{
1, c2d, d2, c2d3

}
, Zcd

3

4 =
{

1, cd3, c2d2, c3d
}
.

(A.7)

The first three Z4 subgroups are conjugate to each other via

aZc4a
−1 = Zcd4 , a2Zc4a

−2 = Zd4 . (A.8)

The last three Z4 subgroups are conjugate to each other as well

aZcd
2

4 a−1 = Zcd
3

4 , a2Zcd
2

4 a−2 = Zc
2d

4 . (A.9)

• K4 subgroup

K4 =
{

1, c2, d2, c2d2
}
. (A.10)

∆(48) has 8 conjugacy classes as follows:

1C1 = {1},
3C2 = {c2, d2, c2d2},
3C4 = {c, d, c3d3},
3C ′4 = {c3, d3, cd},
3C ′′4 = {cd2, cd3, c2d3},
3C ′′′4 = {c2d, c3d, c3d2},
16C3 = {acxdy|x, y = 0, 1, 2, 3},
16C ′3 = {a2cxdy|x, y = 0, 1, 2, 3}, (A.11)
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The number of irreducible representations of a group is equal to the number of its con-

jugacy class, therefore ∆(48) has eight irreducible representations: three one-dimensional

representations 1, 1′ and 1′′, five three-dimensional representation 3, 3, 3′, 3
′

and 3̃. The

representation matrices for the generators a and c in different irreducible representations

are listed in table 10. The character table of ∆(48) follows immediately as shown in ta-

ble 11. From this character table, the Kronecker products between different irreducible

representations can be easily obtained:

1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′, 1′ ⊗ 1′′ = 1,

1′ ⊗ 3m = 3m, 1′ ⊗ 3m = 3m, 1′ ⊗ 3̃ = 3̃,

1′′ ⊗ 3m = 3m, 1′′ ⊗ 3m = 3m, 1′′ ⊗ 3̃ = 3̃,

3m ⊗ 3m = 3mS ⊕ 3mA ⊕ 3̃, 3m ⊗ 3m = 3mS ⊕ 3mA ⊕ 3̃,

3m ⊗ 3m = 1⊕ 1′ ⊕ 1′′ ⊕ 3n ⊕ 3n,

3m ⊗ 3n = 3m ⊕ 3n ⊕ 3̃, 3m ⊗ 3n = 3m ⊕ 3n ⊕ 3̃,

3m ⊗ 3n = 3m ⊕ 3n ⊕ 3̃,

3m ⊗ 3̃ = 3m ⊕ 3n ⊕ 3n, 3m ⊗ 3̃ = 3m ⊕ 3n ⊕ 3n,

3̃⊗ 3̃ = 1⊕ 1′ ⊕ 1′′ ⊕ 3̃S ⊕ 3̃A (A.12)

where the superscript m,n = 0, 1 (m 6= n) count the number of primes

on their corresponding representation, and the subscript S(A) denotes symmetric

(antisymmetric) combinations.

Starting from the representation matrix shown in table 10, we can straightforwardly

calculate the Clebsch-Gordan (CG) coefficients of ∆(48) even though it is somewhat

lengthy. In tables 12 and 13, we present the complete set of CG coefficients of the ∆(48)

group, and we use αi to denote the elements of the first representation and βj to indicate

those of the second representation of the product.

B Vacuum invariant under the remnant symmetries

The mixing pattern predicted in cases II, IV, VI, and VIII is a very interesting new mixing

texture. Its predictions for the lepton mixing angles and CP violation phases are displayed

in table 3. Excellent agreement with the present experimental data can be achieved, and in

particular the lepton CP phases do not take regular values such as 0, ±π/2 or π anymore.

The best-fit value of the Dirac CP phase δCP is given by |sin δCP(θbf)| = 0.725 which is

compatible with the present 1σ preferred range 0.9π ≤ δCP ≤ 2.0π [46]. In the charged

lepton diagonal basis, this mixing pattern is dictated by the remnant symmetry Gν ∼=
Zc

2

2 ×Hν
CP in the neutrino sector. We would like to spontaneously break the full symmetry

group ∆(48)oHCP down to Gν in the neutrino sector in order to derive this mixing pattern.

Hence it is convenient to list the most general form of the VEVs that flavon fields in different

representations of ∆(48) can take and which leave Gν invariant. As shown in table 1, the

concrete value of the remnant CP symmetry Hν
CP depends on which ∆(48) triplets (3, 3′,

3 or 3
′
) the three generations of the left-handed lepton doublets l are embedded into. Here
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a c

1 1 1

1′ ω 1

1′′ ω2 1

3

 1 0 0

0 ω 0

0 0 ω2

 1

3

 1 1−
√

3 1 +
√

3

1 +
√

3 1 1−
√

3

1−
√

3 1 +
√

3 1


3

 1 0 0

0 ω2 0

0 0 ω

 1

3

 1 1−
√

3 1 +
√

3

1 +
√

3 1 1−
√

3

1−
√

3 1 +
√

3 1


3′

 1 0 0

0 ω 0

0 0 ω2

 1

3

−1 + 2i −1− i −1− i
−1− i −1 + 2i −1− i
−1− i −1− i −1 + 2i


3
′

 1 0 0

0 ω2 0

0 0 ω

 1

3

−1− 2i −1 + i −1 + i

−1 + i −1− 2i −1 + i

−1 + i −1 + i −1− 2i


3̃

 1 0 0

0 ω 0

0 0 ω2

 1

3

−1 2 2

2 −1 2

2 2 −1


Table 10. The representation matrices for the ∆(48) generators a and c in our chosen basis, where

ω is the cube root of unit ω = e2πi/3, and the representation matrix of d is given by d = a−1ca.

1C1 3C2 3C4 3C ′4 3C ′′4 3C ′′′4 16C3 16C ′3

G 1 c2 c c3 cd2 c2d a a2

1 1 1 1 1 1 1 1 1

1′ 1 1 1 1 1 1 ω ω2

1′′ 1 1 1 1 1 1 ω2 ω

3 3 −1 1 1 −1 + 2i −1− 2i 0 0

3 3 −1 1 1 −1− 2i −1 + 2i 0 0

3′ 3 −1 −1 + 2i −1− 2i 1 1 0 0

3
′

3 −1 −1− 2i −1 + 2i 1 1 0 0

3̃ 3 3 −1 −1 −1 −1 0 0

Table 11. Character table of ∆(48), where c1Cc2 denotes a conjugacy class with c1 elements which

have order c2, and G is a representative element of the c1Cc2 class.
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• 1′ ⊗ 1′ = 1′′, 1′′ ⊗ 1′′ = 1′, 1′ ⊗ 1′′ = 1

1′′, 1′, 1 ∼ α1β1

• 1′ ⊗ 3m = 3m, 1′′ ⊗ 3m = 3m, 1′ ⊗ 3̃ = 3̃ • 1′′ ⊗ 3m = 3m, 1′ ⊗ 3m = 3m, 1′′ ⊗ 3̃ = 3̃

3m, 3m, 3̃ ∼

α1β3

α1β1

α1β2

 3m, 3m, 3̃ ∼

α1β2

α1β3

α1β1


• 3⊗ 3 = 3S ⊕ 3A ⊕ 3̃ • 3′ ⊗ 3′ = 3′S ⊕ 3′A ⊕ 3̃

3S ∼

 2α1β1 − α2β3 − α3β2

2α2β2 − α1β3 − α3β1

2α3β3 − α1β2 − α2β1


3A ∼

α2β3 − α3β2

α3β1 − α1β3

α1β2 − α2β1


3̃ ∼

α1β1 + α2β3 + α3β2

α3β3 + α1β2 + α2β1

α2β2 + α1β3 + α3β1



3′S ∼

 2α1β1 − α2β3 − α3β2

2α2β2 − α1β3 − α3β1

2α3β3 − α1β2 − α2β1


3′A ∼

α2β3 − α3β2

α3β1 − α1β3

α1β2 − α2β1


3̃ ∼

α1β1 + α2β3 + α3β2

α3β3 + α1β2 + α2β1

α2β2 + α1β3 + α3β1


• 3⊗ 3 = 3S ⊕ 3A ⊕ 3̃ • 3′ ⊗ 3′ = 3′S ⊕ 3′A ⊕ 3̃

3S ∼

 2α1β1 − α2β3 − α3β2

2α2β2 − α1β3 − α3β1

2α3β3 − α1β2 − α2β1


3A ∼

α2β3 − α3β2

α3β1 − α1β3

α1β2 − α2β1


3̃ ∼

α1β1 + α2β3 + α3β2

α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1



3′S ∼

 2α1β1 − α2β3 − α3β2

2α2β2 − α1β3 − α3β1

2α3β3 − α1β2 − α2β1


3′A ∼

α2β3 − α3β2

α3β1 − α1β3

α1β2 − α2β1


3̃ ∼

α1β1 + α2β3 + α3β2

α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1


• 3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3′ ⊕ 3′,3′ ⊗ 3′ =

1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3

• 3̃⊗ 3̃ = 1⊕ 1′ ⊕ 1′′ ⊕ 3̃S ⊕ 3̃A

1 ∼ α1β1 + α2β2 + α3β3

1′ ∼ α1β3 + α2β1 + α3β2

1′′ ∼ α1β2 + α2β3 + α3β1

3′,3 ∼

α1β1 + ωα2β2 + ω2α3β3

α3β2 + ωα1β3 + ω2α2β1

α2β3 + ωα3β1 + ω2α1β2


3′,3 ∼

α1β1 + ωα3β3 + ω2α2β2

α2β3 + ωα1β2 + ω2α3β1

α3β2 + ωα2β1 + ω2α1β3



1 ∼ α1β1 + α2β3 + α3β2

1′ ∼ α3β3 + α1β2 + α2β1

1′′ ∼ α2β2 + α1β3 + α3β1

3̃S ∼

 2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1


3̃A ∼

α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3


Table 12. Clebsch-Gordan coefficients of ∆(48) in our basis: part I.
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• 3⊗ 3′ = 3⊕ 3′ ⊕ 3̃ • 3⊗ 3′ = 3⊕ 3′ ⊕ 3̃

3 ∼

α1β1 + ωα2β3 + ω2α3β2

α3β3 + ωα1β2 + ω2α2β1

α2β2 + ωα3β1 + ω2α1β3


3′ ∼

α1β1 + ωα3β2 + ω2α2β3

α3β3 + ωα2β1 + ω2α1β2

α2β2 + ωα1β3 + ω2α3β1


3̃ ∼

 α1β1 + α2β3 + α3β2

ω2(α1β2 + α2β1 + α3β3)

ω(α1β3 + α2β2 + α3β1)



3 ∼

α1β1 + ωα3β3 + ω2α2β2

α3β2 + ωα2β1 + ω2α1β3

α2β3 + ωα1β2 + ω2α3β1


3′ ∼

α1β1 + ωα2β2 + ω2α3β3

α2β3 + ωα3β1 + ω2α1β2

α3β2 + ωα1β3 + ω2α2β1


3̃ ∼

 α1β1 + α2β2 + α3β3

ω(α1β3 + α2β1 + α3β2)

ω2(α1β2 + α2β3 + α3β1)


• 3⊗ 3′ = 3⊕ 3′ ⊕ 3̃ • 3⊗ 3′ = 3⊕ 3′ ⊕ 3̃

3 ∼

α1β1 + ωα3β2 + ω2α2β3

α3β3 + ωα2β1 + ω2α1β2

α2β2 + ωα1β3 + ω2α3β1


3′ ∼

α1β1 + ωα2β3 + ω2α3β2

α3β3 + ωα1β2 + ω2α2β1

α2β2 + ωα3β1 + ω2α1β3


3̃ ∼

 α1β1 + α2β3 + α3β2

ω2(α2β2 + α1β3 + α3β1)

ω(α3β3 + α1β2 + α2β1)



3 ∼

α1β1 + ωα2β2 + ω2α3β3

α3β2 + ωα1β3 + ω2α2β1

α2β3 + ωα3β1 + ω2α1β2


3′ ∼

α1β1 + ωα3β3 + ω2α2β2

α2β3 + ωα1β2 + ω2α3β1

α3β2 + ωα2β1 + ω2α1β3


3̃ ∼

 α1β1 + α2β2 + α3β3

ω(α1β2 + α2β3 + α3β1)

ω2(α1β3 + α2β1 + α3β2)


• 3⊗ 3̃ = 3⊕ 3′ ⊕ 3′ • 3′ ⊗ 3̃ = 3⊕ 3⊕ 3′

3 ∼

α1β1 + α2β3 + α3β2

α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1


3′ ∼

α1β1 + ωα2β3 + ω2α3β2

α2β1 + ωα3β3 + ω2α1β2

α3β1 + ωα1β3 + ω2α2β2


3′ ∼

α1β1 + ωα3β2 + ω2α2β3

α3β1 + ωα2β2 + ω2α1β3

α2β1 + ωα1β2 + ω2α3β3



3 ∼

α1β1 + ωα2β3 + ω2α3β2

α2β1 + ωα3β3 + ω2α1β2

α3β1 + ωα1β3 + ω2α2β2


3 ∼

α1β1 + ωα3β2 + ω2α2β3

α3β1 + ωα2β2 + ω2α1β3

α2β1 + ωα1β2 + ω2α3β3


3′ ∼

α1β1 + α2β3 + α3β2

α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1


• 3⊗ 3̃ = 3⊕ 3′ ⊕ 3′ • 3′ ⊗ 3̃ = 3⊕ 3⊕ 3′

3 ∼

α1β1 + α2β2 + α3β3

α1β2 + α2β3 + α3β1

α1β3 + α2β1 + α3β2


3′ ∼

α1β1 + ωα2β2 + ω2α3β3

α3β1 + ωα1β2 + ω2α2β3

α2β1 + ωα3β2 + ω2α1β3


3′ ∼

α1β1 + ωα3β3 + ω2α2β2

α2β1 + ωα1β3 + ω2α3β2

α3β1 + ωα2β3 + ω2α1β2



3 ∼

α1β1 + ωα2β2 + ω2α3β3

α3β1 + ωα1β2 + ω2α2β3

α2β1 + ωα3β2 + ω2α1β3


3 ∼

α1β1 + ωα3β3 + ω2α2β2

α2β1 + ωα1β3 + ω2α3β2

α3β1 + ωα2β3 + ω2α1β2


3′ ∼

α1β1 + α2β2 + α3β3

α1β2 + α2β3 + α3β1

α1β3 + α2β1 + α3β2


Table 13. Clebsch-Gordan coefficients of ∆(48) in our basis: part II.
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we assign l to be a triplet 3 without loss of generality. The vacuum invariant under the

residual symmetry in the relevant four cases II, IV, VI and VIII are of the following forms.

• Case II: Hν
CP =

{
ρ(d)X(h1), ρ(c2d)X(h1)

}

ϕν ∼ 3 or ϕν ∼ 3
′
: 〈ϕν〉 = e−i

π
4

 1

1

1

 v, v ∈ R,

ϕν ∼ 3′ or ϕν ∼ 3 : 〈ϕν〉 = ei
π
4

 1

1

1

 v′, v′ ∈ R,

ϕν ∼ 3̃ : 〈ϕν〉 =

 u+ iṽ

w + i
(√

3 w + ṽ
)

−u− w + i
(√

3 u+
√

3 w + ṽ
)
 ,

u ∈ R, ṽ ∈ R, w ∈ R .

(B.1)

Note that here v, v′, ṽ, u and w are arbitrary real parameters. For the special values

u = w = 0, the VEV of ϕν ∼ 3̃ reduces to

〈ϕν〉 =

 i

i

i

 ṽ, ṽ ∈ R . (B.2)

• Case IV: Hν
CP =

{
ρ(d3)X(h1), ρ(c2d3)X(h1)

}

ϕν ∼ 3 or ϕν ∼ 3
′
: 〈ϕν〉 = ei

π
4

 1

1

1

 v, v ∈ R,

ϕν ∼ 3′ or ϕν ∼ 3 : 〈ϕν〉 = e−i
π
4

 1

1

1

 v′, v′ ∈ R,

ϕν ∼ 3̃ : 〈ϕν〉 =

 u+ iṽ

w + i
(√

3 w + ṽ
)

−u− w + i
(√

3 u+
√

3 w + ṽ
)
 ,

u ∈ R, ṽ ∈ R, w ∈ R .

(B.3)

Notice that the VEV of ϕν ∼ 3̃ takes the same form as the one of case II.
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• Case VI: Hν
CP =

{
ρ(cd)X(h1), ρ(c3d)X(h1)

}
ϕν ∼ 3 or ϕν ∼ 3′ : 〈ϕν〉 = e−i

π
4

 1

1

1

 v, v ∈ R,

ϕν ∼ 3 or ϕν ∼ 3
′
: 〈ϕν〉 = ei

π
4

 1

1

1

 v, v ∈ R,

ϕν ∼ 3̃ : 〈ϕν〉 =

 u+ iṽ

w + i
(
−
√

3 w + ṽ
)

−u− w + i
(
−
√

3 u−
√

3 w + ṽ
)
 ,

u ∈ R, ṽ ∈ R, w ∈ R .

(B.4)

For the case of u = w = 0, the VEV of ϕν ∼ 3̃ becomes

〈ϕν〉 =

 i

i

i

 ṽ, ṽ ∈ R . (B.5)

• Case VIII: Hν
CP =

{
ρ(cd3)X(h1), ρ(c3d3)X(h1)

}
ϕν ∼ 3 or ϕν ∼ 3′ : 〈ϕν〉 = ei

π
4

 1

1

1

 v, v ∈ R,

ϕν ∼ 3 or ϕν ∼ 3
′
: 〈ϕν〉 = e−i

π
4

 1

1

1

 v, v ∈ R,

ϕν ∼ 3̃ : 〈ϕν〉 =

 u+ iṽ

w + i
(
−
√

3 w + ṽ
)

−u− w + i
(
−
√

3 u−
√

3 w + ṽ
)
 ,

u ∈ R, ṽ ∈ R, w ∈ R ,

(B.6)

where the VEV of ϕν ∼ 3̃ is of the same form as that of case VI.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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