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It is well known that Leptospira vaccine prevents the disease. However specificity for serovars limits the 

efficacy of killed whole cell vaccines. Leptospiral antigens that induce cross-protective immunity to the various 

serovars are sought as new vaccine candidates. In this paper, we have summarized both past and current 

findings about leptospiral antigens that are conserved among pathogenic leptospires and that induce protective 

immunity in animal models. The full-length genome sequences of two Leptospira strains have been published 

and reverse vaccinology has been used to identify leptospiral vaccine candidates. Although humoral immunity 

is thought to be dominant in protection from leptospiral infection, a role for cell-mediated immunity is now 

being explored. 
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L eptospirosis is an important zoonotic disease that is 
distributed worldwide.[1-3] In mammals, leptospirosis 

is transmitted either by direct contact with infected animals 
or by exposure to water or soil contaminated by the urine of 
infected animals. The efficacy of vaccine for preventing lept­
ospirosis was shown soon after Leptospira was proven to be a 
causative agent of Weil’s disease in Japan. The heat-killed 
whole cell vaccine made from leptospiral cultures dramatically 
protected coal miners from Weil’s disease in the Kyushu area 
where Weil’s disease was endemic.[4] The development of killed 
whole cell vaccine against leptospirosis in the middle of the 
last century has been reviewed,[5] and subsequently results of 
vaccine trials were published.[1,6-8] 

Killed whole cell vaccine 

Killed whole cell leptospiral vaccines for humans are available 
in some countries, including Japan. The Japanese leptospiral 
vaccine consists of formalin-killed leptospires. The concentra­
tions and serovars are 250 million/ml each of Australis, 
Autumnalis, and Hebdomadis and 500 million/ml of 
Copenhageni. The leptospires are grown in media containing 
rabbit serum and/or bovine serum albumin, inactivated with 
formalin, and washed by centrifugation. The standard proce­
dures for production and verification of the vaccine were es­
tablished in 1952.[9] The vaccine is administered initially us­
ing two subcutaneous injections of 1.0 ml given at a 7-day in­
terval. The booster injection is 1.0 ml of vaccine injected sub­
cutaneously and given within 5 years after the second initial 
dose. The antibody titres (MAT titres) after vaccination were 
significantly lower than those developed after natural infec­
tion and seroconversion occurred with low frequency (about 

20-60%).[10-13] However, protection was reported to be high in 
such populations and efficacy rates of whole cell vaccines were 
about 60-100%.[6-8,14] The effectiveness of the killed vaccine is 
serovar-specific. The studies done in the Izena-jima Island in 
Okinawa prefecture showed that people who were inoculated 
with a serovar Pyrogenes monovalent vaccine were protected 
from the infection with serovar Pyrogenes, but not from infec­
tion with serovars Autumnalis and Hebdomadis. However, 
polyvalent vaccine, consisting of serovars Autumnalis, 
Hebdomadis and Pyrogenes, prevented infection with the three 
leptospiral serovars strains for at least for 7 years after immu­
nization.[14] The serovar-specific protection of killed leptospi­
ral vaccine has also been documented in other studies.[6,15] 

There are more than 230 serovars among the pathogenic 
leptospires. The local variability in serovars of endemic lept­
ospiral strains complicates the development of a vaccine that 
can be used worldwide.[1,16] The study done in the Izenajma 
Island also demonstrated that the killed vaccine induced long­
term immunity, although the prevalence of leptospirosis among 
the unvaccinated population after the introduction of the vac­
cine dramatically decreased from those rates previously docu­
mented. However, one study has reported that the duration of 
immunity induced by killed vaccine ranges between 6 months 
to a 1 year at the longest and a second study reported a dura­
tion of at least 3 years.[5,6] Persistence of immunity in dogs is 
also controversial.[17,18] The side effects of the whole cell 
vaccines were reported, which included both systemic and lo­
cal reactions at a various frequency. To reduce side effects as­
cribable to serum in cultures, a vaccine that consisted of 
leptospires grown in the protein-free medium was devel­
oped.[11,19,20] A Japanese research group, however, reported that 
there was no difference in the frequency of side-effects be­
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tween the vaccines derived from either cultures in Korthof’s 
or protein-free medium.[21] In addition to side-effects, the whole 
cell vaccine may induce autoimmune diseases, such as uvei­
tis.[22] 

There is a report on the outer envelope vaccine for leptospiro­
sis which was studied in China.[23] The results of the study 
showed the good protection with less side effects and higher 
agglutinating titre than those in a whole cell vaccine. Vaccina­
tion using the outer envelope vaccine also reduced the number 
of the patients with vaccine-unrelated serogroup strains. 

Lipopolysaccharides 

The variations in the carbohydrate composition of lipopoly­
saccharide (LPS) reflect the antigenic diversity among patho­
genic leptospires. The protective immunity conferred by lept­
ospiral LPS as an immunogen is generally serovar specific.[16] 

Sera from patients with leptospirosis cross-reacted with anti­
gens from non-pathogenic (saprophytic) L. biflexa serovar Patoc 
(strain Patoc I).[24,25] The cross-reactivity is the basis for the 
development of LEPTO dipstick assay for the diagnosis of lept­
ospirosis and uses the heat stable antigen (LPS) from L. biflexa 
Patoc I.[26,27] Matsuo et al extracted the antigenic components 
from L. biflexa Patoc I by the hot phenol–water method and 
obtained three immunoreactive fractions.[28] The fractions 
strongly reacted with not only anti-L. biflexa serum, but also 
with various antisera against pathogenic leptospires in ELISA 
assays, regardless of their serovars or serogroups. The ELISA 
reaction was specifically inhibited only by β -(1→4)­
mannobiose and not by any other monosaccharides or 
oligosaccharides that were tested. NMR studies demonstrated 
that the main structural part of the antigenic fractions had a 
repeating disaccharide of ’→)- β -D-Manp-(1→4)- β -D-Manp­
(1→. A direct binding between antisera and disaccharides of 
→3)- β -D-Manp-(1→4)- β -D-Manp-(1→ was not shown. 
However, β -(1→4)-mannobiose inhibited the reaction and af­
ter deacylation of one of the antigenic fractions with some of 
the fatty acyl groups immunoreactivity was the same as the 
intact preparation, suggesting that polysaccharides of →3)- β 
-D-Manp-(1→4)- β -D-Manp-(1→ are antigenic components 
of LPS. Furthermore, not only antisera against various patho­
genic leptospires, but also sera from patients with leptospiro­
sis, reacted with exocelluar mannans from Rhodotorula glutinis 
that have the same structural backbone with →3)- β -D-Manp­
(1→4)- β -D-Manp-(1→.[29,30] Administration of L. biflexa LPS 
preparation in hamsters was protective against a challenge with 
virulent L. interrogans serovar Manilae without any side ef­
fects.[31] Immunization protected hamsters from bacteremia 
and prevented a renal carrier state. Since protein-conjugated 
polysaccharide vaccines against Haemophilus influenzae type 
b, pneumococci and meningococci have been successful, simi­
lar conjugated polysaccharide vaccines for leptospirosis could 
be developed. 

Protein antigens 

The immunogenic proteins, especially the outer membrane 
surface proteins, of pathogenic Leptospira, may be effective as 

vaccinogens. The identification of proteins, which are con­
served among pathogenic leptospires and can generate cross­
protection against various serovars, has become a major focus 
of leptospirosis research.[32-54] Subunit vaccines may also have 
fewer side-effects than killed whole cell vaccine. Sera from 
patients with leptospirosis have antibodies against several pro­
tein antigens.[39] Protein extracts prepared from a pathogenic 
Leptospira can induce protective immunity against challenge 
with a heterologous serovar strain in an experimental animal 
model.[55] These data point to the potential use of leptospiral 
protein(s) as candidates for a new vaccine that could induce 
good protection against diverse serovars. 

Some leptospiral protein antigens have been shown to elicit 
protective immunity in animal models. These are described as 
follows: 

1. OmpL1 and LipL41 
OmpL1 is a transmembrane protein,[33,56] and LipL41 is an 
outer membrane lipoprotein.[34] Both proteins are surface-ex­
posed. OmpL1 and LipL41 act synergistically to induce 
immunoprotection in the hamster model of leptospirosis, al­
though neither of the individual proteins induces protective 
immunity.[37] Although the mechanism of this synergistic pro­
tection remains to be solved, a steric hindrance of OmpL1 by 
LipL41 has been proposed.[52] The results from this same study 
also indicated that immunization using the membrane-asso­
ciated OmpL1/LipL41 (also referred to as lipidated LipL41) 
was critical for inducing immunoprotection. The authors sug­
gested that conformational integrity of OmpL1/LipL41 
epitopes for antibody binding might require the association 
with membrane and/or lipid attached to LipL41 for 
immunogenicity. A similar condition for immunogenicity ex­
ists with Borrelia burgdorferi lipoprotein, OspA, in which 
immunogenicity and immunoprotective capacity were en­
hanced by lipidation of the protein.[57, 58] Southern and west­
ern blot analyses revealed that ompL1 gene product and LipL41 
protein were present in various pathogenic leptospiral serovars, 
but not in non-pathogenic leptospires.[33,34] Patients with lept­
ospirosis have antibodies against these proteins in their 
sera.[38,59] Whether or not these proteins will confer cross-pro­
tection against a heterologous challenge remains to be deter­
mined. 

2. LipL32/Hap-1 
LipL32 is one of the most abundant proteins in Leptospira.[38] 

LipL32 is an outer membrane lipoprotein that is conserved, 
both genetically and immunologically, in the various patho­
genic leptospires. LipL32 antigen induces antibodies in pa­
tients with leptospirosis. A recombinant LipL32 antigen has 
good sensitivity and specificity when used in an ELISA for 
human leptospirosis IgG.[59] LipL32 is also called haemolysis 
associated protein-1 (Hap-1) because E. coli harbouring the 
plasmid encoding this gene showed some haemolytic activity 
on sheep, but not on human erythrocytes.[60] LipL32 stimu­
lates the expression of both MCP-1 and iNOS mRNAs and 
augments the nuclear binding of NF-kB and AP-1 transcrip­
tion factors in cultured mouse proximal tubule cells.[61] Vacci­
nation using an adenovirus vector encoding the lipL32/hap-1 
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gene induced cross-protection in the gerbil model of leptospiro­
sis.[40] The lipL32/hap-1 gene derived from L. interrogans 
serovar Autumnalis conferred protective immunity against a 
challenge with a heterologous strain of L. interrogans serovar 
Canicola. In addition, OmpL1, either alone or in combination 
with LipL32/Hap-1, had no protective activity. This result is 
in contrast to the synergistic activity observed with OmpL1 
and LipL41. 

3. Leptospiral immunoglobulin-like proteins 
Leptospiral immunoglobulin-like (Lig) proteins are surface­
exposed outer membrane proteins punctuated by tandem re­
peats of about 90 amino acids of bacterial immunoglobulin 
(Ig) like domains.[45,49,51,62] LigA consists only of Ig-like domains, 
whereas LigB has an additional unique domain at the C ter­
minus. The bacterial immunoglobulin-like domains are found 
in various adhesion proteins of pathogenic bacteria; for exam­
ple, the intimin of E. coli,[63, 64] and the invasin of Y. pseudotu­
berculosis,[65] and may function as adhesion molecules. Both 
LigA and LigB contain an N-terminal lipobox and LigA was 
lipidated when expressed in E. coli.[51] Expression of Lig pro­
tein and lig mRNA was lost after attenuation by culture of L. 
kirshneri and L. interrogans, suggesting that Lig proteins are 
associated with virulence. Lig proteins were not detected in 
some virulent strains during in vitro culture, although specific 
mRNAs were transcribed.[45,62] We also failed to detect expres­
sion of LigA protein in fresh human isolates of serogroup 
Autumnalis and Hebdomadis.[66] Recent studies show that ex­
pression of Lig proteins, surface exposure of LigB and extra­
cellular release of LigA are all enhanced by physiological os­
molarity.[67] Sera from either rats immunized with extracts of 
in vitro cultured low-passage strain or sera from vaccinated 
dogs failed to react with Lig proteins in Western blot analysis, 
while sera from captured rat reservoirs or dogs infected with 
Leptospira gave a positive response.[49, 62] Therefore expression 
of Lig proteins is upregulated during infection of a mamma­
lian host. The lig genes are present among various pathogenic, 
but not non-pathogenic, leptospires.[49,51,62] Sera from human 
patients infected with different leptospiral serogroup strains 
reacted with Lig proteins.[51] Furthermore, in a mouse model 
of leptospirosis, the Lig proteins elicited protective immunity 
against challenges, not only with the homologous serovar 
Manilae infection,[51] but also the heterologous serovar 
Icterohaemorrhagiae.[66] These data suggest that Lig proteins 
could induce protective immunity against the challenge with 
strains of various leptospiral serovars. 

Exploration of the full-length leptospiral genome to 

detect genes encoding candidate vaccine proteins 

The ability to rapidly determine full-length genome sequences 
has opened a new approach to vaccine design that may be rel­
evant for the treatment of bacterial infections.[68] The strategy 
of ‘reverse vaccinology’, in which the full-length genome is 
“mined” by various computer algorithms, for genes that en­
code proteins with desired characteristics, has been applied to 
some bacteria and novel vaccine candidate sequences have 
been identified.[69,70] The full-length genome sequences of two 
strains of L. interrogans, serovar Lai 56601 and serovar 

Copenhageni Fiocruz L1-130 are published.[71-73] A full-length 
genome analysis of the strain Fiocruz L1-130 has been used to 
identify candidate antigens for leptospiral vaccine.[74] Genes 
that contained exportation signal peptides, transmembrane 
domains, lipoprotein signatures and homologies to known sur­
face proteins were selected by computer analysis. A total of 
206 genes had been predicted and 150 of them were expressed 
in E. coli, purified, and used for immunoblotting with lept­
ospirosis patient sera. A total of 16 proteins reacted with con­
valescent patient sera in immunoblotting. The 16 proteins 
identified in the study contained some previously identified 
antigens like LipL32 and Loa22, but LipL41 and OmpL1 were 
not detected, which points out a weakness of the “reverse 
vaccinology” for analysis of some proteins. There is ample room 
for improving the accuracy of screening. Four of the 10 pro­
teins tested were highly conserved among different pathogenic 
leptospires. However, the protective activity of these proteins 
remains to be determined. 

Cell-mediated immunity 

Although immunity against leptospiral infection was thought 
to be primarily humoral,[16] recent studies point to a role for 
cell-mediated immunity in protection from leptospirosis. Pe­
ripheral blood mononuclear cells (PBMCs) from cattle immu­
nized with a killed L. borgpetersenii serovar Hardjo vaccine 
proliferated and produced IFN-γ after in vitro stimulation with 
leptospiral antigens.[75] CD4+ cells were the main source of IFN, 
but CD8+ and gd T cells also produced it.[76] The PBMCs from 
Hardjo-vaccine immunized cattle also responded to stimula­
tion with serovar Grippotyphosa antigen preparation.[76] 

PBMCs from nonvaccinated cattle also responded to leptospi­
ral antigens, but the responses were lower than those of vacci­
nated cattle. The low cell-mediated immune response in un­
vaccinated cattle may be associated with lack of protection 
from chronic infection.[77] Thus, protective immunity against 
serovar Hardjo infection in cattle correlates with establishment 
of Th1 immunity. An uncharacterized leptospiral 
glycolipoprotein elicited in vitro production of TNF-α and IL­
10 and upregulated the expression of CD69 and HLA-DR on 
human PBMCs.[78] The heat-killed leptospires also induced the 
production of IFN-γ, IL-12 and TNF-α in human whole blood 
in vitro.[79] Naïve human PBMCs from healthy individuals pro­
liferated and produced IFN-γ, IL-12, and TNF-α in vitro after 
stimulation with L. interrogans.[80] High numbers of leptospires 
caused the expansion of gd T cells, while low numbers of 
leptospires induced ab T cells. In patients with acute leptospiro­
sis the number of peripheral blood gd T cells increased signifi­
cantly. The in vivo role of gd T cells in protection from lept­
ospiral disease remains to be elucidated. 

Concluding remarks 

Both the mechanisms of pathogenesis of Leptospira and na­
ture of protective immunity against leptospiral infection are 
poorly understood. The availability of full-length genome se­
quences of two Leptospira strains will be helpful for future 
studies. The development of the genetic analysis tools for 
pathogenic leptospires, which are currently available only for 

� 212 J Postgrad Med September 2005 Vol 51 Issue 3 



non-pathogenic leptospires,[81-83] will accelerate both the iden­
tification of virulence factors, as well as our understanding of 
the pathogenesis of leptospires. As new information evolves, 
insights will be gained into ways to improve existing, and de­
velop effective new, vaccines for leptospirosis. 
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