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Abstract

In this paper, the Linear Exponential Quadratic Gaussian
with Loop Transfer Recovery (LEQG/LTR) methodology
is employed for the design of high performance induction
motor servo systems. In addition, we design a speed sen-
sorless induction motor vector controlled driver with both
the extended Kalman filter and the LEQG/LTR algorithm.
The experimental realization of an induction servo system
is given. Compared with the traditional PI and LQG/LTR
methods, it can be seen that the system output sensitivity
for parameter variations and the rising time for larger com-
mand input of the proposed method can be significantly
reduced.

1 Introduction

Because of the intensive advances of microelectronics and
power electronics, the vector controlled induction motor
servo drives have become dominant in many applications
where fast and precision operations are required[1, 2]. Due
to the rapid development in automation technology, the de-
mand for high performance electrical servos has increased.
Thus, it is necessary to develop a controller that overcomes
the effects of parameter variations, plant uncertainties, and
load disturbances.

The Linear Quadratic Gaussian (LQG) method with
state feedback technique can provide some guaranteed ro-
bustness properties[3]. Also, the adoption of Loop Trans-
fer Recovery (LTR) process can enhance the robustness of
system with state observer[4, 5]. Thus, it was extensively
applied in the design of motor drive systems[6, 7, 8, 9].
On the other hand, some papers[10, 11, 12, 13] concluded
that the optimal control systems obtained by the Linear
Exponential Quadratic Gaussian and Loop Transfer Re-

covery (LEQG/LTR) methods were insensitive to the load
disturbances and sensor noises. This is due to that the
LEQG/LTR method can take the covariances of both sys-
tem and measurement noises into consideration. So far, the
LEQG/LTR technique has not been applied to the design of
induction motors yet, this paper is the first one.

We can see that applying the proposed method to
the design of an induction motor servos with speed sen-
sor, the loop transfer functions can be shaped, so that
the closed-loop systems will yield better performances
than those obtained by the PI and LQG/LTR methods[9]
in command following, output disturbance rejection, and
robustness to noises and unmodeled system dynamics.
Aside, a speed sensorless vector controlled induction mo-
tor drive[14, 15] by using the extended Kalman filter[16]
and the LEQG/LTR algorithm is derived. The experimen-
tal results illustrate that the system output sensitivity for
load and command amplitude, and the rising time for larger
command can be reduced while comparing to the PI and
LQG/LTR controllers.

The rests of this paper are organized as follow. In Sec-
tion 2, the proposed method is formulated and applied for
an induction motor servo drive system design. In Section 3,
the experiment results are given to demonstrate the effec-
tiveness of the proposed method. Finally, brief conclusions
are drawn in Section 4.

2 Problem and Methodology Formulation

2.1 Induction Motor Formulation

Consider an induction motor servo, the state equation in the
rotating reference frame is[8, 9]
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where Ξ = �
Rs
σLs

�
Rr(1�σ)

σLr
, (iγs,iδs) are the stator currents,

(φγr,φδr) are the rotor fluxes, (vγs,vδs) are the stator voltages
respectively in the γ- and δ-axis, ω is the operating angular
frequency of AC, ωre is the electrical angular velocity of
rotor, σ = 1� M2

LsLr
is total leakage factor, and Rs, Rr, Ls,

Lr, and M are the stator, rotor resistances, stator, rotor, and
mutual inductances.
If one let

ω�ωre
4

= ωse =
MRriδs

Lrφγr
; (2)

where ωse is the slip rate, and let φδr = 0, then we have,
from the last row of Eq.(1),

Te = p
M
Lr

φγriδs; (3)

φ̇γr = �

Rr

Lr
φγr +

MRr

Lr
iγs; (4)

where p is the number of poles.
By Eqs.(3) and (4), Eq.(1) can be rewritten as2
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where

vγs = v0γs �ωσLsiδs; (6)

vδs = v0δs +ω(σLsiδs +
M
Lr

φγr); (7)

and v0γs, v0δs mean the current controller outputs of iγs and
iδs, respectively.
if one let φ̇γr = 0 , then i?δs = iδs and the torque can be con-
trolled by the δ-axis stator current i?δs, then we have, by Eq.
(5),

φγr = Miγs; (8)

(σLs +Rs)i
?

δs = v0δs; (9)

where i?δs is the command input of torque current.
By Eqs.(2) and (5), we have

ωse =
Rr

Lriγr
i?δs; (10)

v0δs = vδs �ωreΛiγs �
Rr

Lr
Λi?δs; (11)

Fig. 1 Block diagram of a decoupling current-
controlled induction servo drive system

where Λ = (σLs +
M2

Lr
), we hence have

v0δs = vδs � pωrmLsiγs �
RrLs

Lr
i?δs; (12)

where ωrm is the mechanical angular velocity of rotor. If
the effects of windage viscousity and bearing friction are
negligible, the block diagram of the decoupling current-
controlled servo drive is shown in Figure 1, where KI is
the equivalent current loop gain.

Define

LsRr

Lr
= KF ; pLsiγs = KE ;

pM2

Lr
iγs = KT : (13)

Then the equivalent model of the vector controlled induc-
tion motor drive can be approximated as[9]

Gp(s) =
(KI �KF)KT

(σLsJm)s2 +(Rs +KI)Jms+KEKT

=
K0

(sτe +1)(sτm +1)
; (14)

where KI is the equivalent dc gain, and τe, τm are the
equivalent electrical and mechanical time constants, re-
spectively.

2.2 Standard LEQG/LTR Design

Consider a Linear Time-Invariant (LTI), controllable and
observable stochastic system

ẋ(t) = Ax(t)+Bu(t)+Γw(t);

y(t) = Cx(t)+ v(t); (15)

where x(t), u(t), and y(t) are the state, control, and mea-
surement vectors, and w(t) and v(t) are the uncorrelated
Gaussian white noises with zero-mean and covariances

Efw(t)wT
(τ)g = Wδ(t � τ); W > 0 (16)

Efv(t)vT
(τ)g = V δ(t � τ); V > 0 (17)

Efv(t)wT
(τ)g = 0; (18)

respectively, where Ef�g is an expectation function opera-
tor. The problem is then to derive a feedback-control law
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which minimizes the following quadratic cost function:

J = αE
n

e[α
R T

0 (ZT (t)QZ(t)+uT (t)Ru(t)dt)]
o
; (19)

where e[�] is an exponential function operator, Z = Nx is a
linear combination of the states, Q is a semi-positive def-
inite weighting matrix, R is a positive definite weighting
matrix, and α is a dimensionless weighting factor.

The solution to the LEQG problem is described by the
separation principle, which states that the optimal result is
achieved by two steps[4, 5]. First, obtain an optimal esti-
mate x̂ of the state x, and then use this estimated state as
if it were an exact measurement of the state, to solve the
Linear Exponential Quadratic Regulator (LEQR) problem.
Namely, the solution to the first step is given by Kalman-
filter theory. The second step is to find the optimal control
input of a LEQR problem to minimize the performance
cost. The block diagram of the system with the LEQG-
based controller is referred to Figure 2. The robustness

Fig. 2 The block diagram of the system with the
LEQG-based compensator

and performance properties at the input of the plant are de-
termined by the return ratio at the point marked 1 in Figure
2, whereas the return ratio (�Kc(sI�A)�1B), which is the
one we would like to have, is the return ratio at the point
marked 2. It is often desired to design the return ratio at the
output of the plant rather than the input. In this case we can
follow the procedures,

S1: Design a Kalman filter by manipulating the covari-
ance matrices W and V until a return ratio �C(sI�
A)�1Kf is obtained which would be satisfactory at
the plant output.

S2: Synthesize an optimal state-feedback regulator by set-
ting M = C, Q = Q0 + qI and R = I (or Q = I and
R = ρI), and increase q (or reduce ρ) until the re-
turn ratio at the output of the compensated plant has
converged sufficiently closely to �C( jωI�A)�1Kf

over a sufficiently large range of frequencies.

The standard form of the LEQG-based controller is given
by

˙̂x(t) = Acx̂(t)+Kf e(t); (20)

u(t) = �Kcx̂(t); (21)

where

Ac = A�BKc�KfC; (22)

Kf = PfCV�1
; (23)

Kc = R�1BT Pc; (24)

by Pf and Pc satisfied with the algebraic Riccati equations,

0 = Pf AT
+APf +ΓWΓT

�PfC
TV�1CPf ; (25)

0 = PcA+AT Pc +Q

�Pc(BR�1BT
�αKfVKT

f )Pc: (26)

2.3 Speed Estimation Method

Let the discrete induction motor system be

X(k+1) = Ad(k)X(k)+Bd(k)U(k)

+w(k) (27)

Z(k) = H(k)X(k)+ v(k); (28)

where

X(k) =

�
iγs(k) iδs(k) φγr(k) φδr(k)

�T
; (29)

U(k) =

�
vγs(k) vδs(k)

�T
; (30)

Ad(k) = eA(k)Ts �= I +A(k)Ts; (31)

Bd(k) =

Z Ts

0
eA(k)τB(k)dτ �= B(k)Ts; (32)

H(k) =

�
1 0 0 0
0 1 0 0

�
; (33)

where Ts is the sampling period.
The nonlinear motor drive can be modified as[15]

X(k+1) = f (X(k);U(k))+w(k) (34)

Z(k) = h(X(k))+ v(k); (35)

where

X(k) =

�
ωre(k) Rr(k) iγs(k)

iδs(k) φγr(k) φδr(k)
�
; (36)

U(k) =

�
vγs(k) vδs(k)

�T
; (37)

x1(k+1) = x1(k)+w1(k); (38)

x2(k+1) = x2(k)+w2(k); (39)

x3(k+1) = χx3(k)+Tsωx4(k)

+ζx2(k)x5(k)+ηx1(k)x6(k)

+
Ts

σLs
v1(k)+w3(k); (40)

x4(k+1) = �Tsωx3(k)+χx4(k)

�ηx1(k)x5(k)+ ζx2(k)x6(k)

+
Ts

σLs
v2(k)+w4(k); (41)

x5(k+1) = κx3(k)+νx5(k)
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+εx6(k)+w5(k); (42)

x6(k+1) = κx4(k)�Tsεx5(k)

+νx6(k)+w6(k); (43)

z1(k) = iγs(k)+ v1(k); (44)

z2(k) = iδs(k)+ v2(k); (45)

w(k) = [w1(k) w2(k) w3(k)

w4(k) w5(k) w6(k)] ; (46)

v(k) = [v1(k) v2(k)]
T
; (47)

where χ = 1 � Ts

h
Rs
σLs

+
(1�σ)x2(k)

σLr

i
; η =

TsM
σLsL2

r
; ζ =

TsM
Lr

; κ =
TsMx2(k)

Lr
;ε=Ts(ω�x1(k)); and ν=

h
1� Tsx2(k)

Lr

i
:

The linearized system of Eqs.(34) and (35) can be writ-
ten as

X(k+1) = F(k)X(k)+w(k) (48)

Z(k) = ∆(k)X(k)+ v(k); (49)

where

F(k) =
∂ f (X(k);U(k))

∂X(k)
jX(k)=X̂(kjk) (50)

=

2
6666664

1 0 0
0 1 0

ζx6(k) Tsϑ χ
�ζx5(k) Tsι �Tsω
�Tsx6(k) ξ κ
Tsx5(k) ς 0

0 0 0
0 0 0

Tsω ηx2(k) ζx1(k)
χ �ζx1(k) ηx2(k)
0 ν ε
κ �ε ν

3
7777775
; (51)

∆(k) =
∂h(X(k))

∂X(k)
jX(k)=X̂(kjk)

=

�
0 0 1 0 0 0
0 0 0 1 0 0

�
; (52)

where ϑ = ρx3(k) + ηx5(k), ι = ρx4(k) + ηx6(k), ξ =

Ts

h
Mx3(k)

Lr
�

x5(k)
Lr

i
, ρ =

(1�σ)
σLr

and ς= Ts

h
Mx4(k)

Lr
�

x6(k)
Lr

i
.

Next, we use the fllowing Kalman filter to estimate
speed,

X̂(k j k�1) = f
�
X̂(k�1 j k�1);U(k�1)

�
(53)

P(k j k�1) = F(k)P(k�1 j k�1)FT
(k)

+Q(k�1); (54)

K(k) = P(k j k�1)∆T
[∆(k)P(k j k�1)

∆T
(k)+R(k)

�
�1

; (55)

X̂(k j k) = X̂(k j k�1)+K(k)[Z(k)

�H(k)X̂(k j k�1)]; (56)

P(k j k) = [I�K(k)H(k)]P(k j k�1); (57)

where K is the Kalman-filter gain, X̂ is the estimated state,
and Q is a 6�6 constant matrix.

3 Experimental Results

This model is taken from the catalog of TECO 3-phase in-
duction motor ( TYPE : AEEF ) with four poles, the pa-
rameters are shown in Table 1. The load applies OGURA
PB-1.2 brake, and the tachometer series number is MI-
CROTECH MES-30-1000-E-K5.

Table 1: Parameters list
Stator resistance Rs = 3:2931Ω
Rotor resistance Rr = 2Ω
Stator inductance Ls = 0:1462H
Rotor inductance Lr = 0:1439H
Mutual inductance M = 0:1391H
Lumped inertia J = 0:009NMS2

Number of poles p = 4

From Eqs.(13), we can find

KF = 2:03;KE = 0:29iγs;KT = 0:27iγs; (58)

Let iγs = 3:5A, then KE = 1:02, and KT = 0:94. If we
choose KI = 100, then the transfer function of Eq.(14) be-
comes

Gp(s) =
922095

s2 +9296s+9632
; (59)

S1: Kalman-filter Gain Design
For the target feedback loop design, we need to set
the matrices Γ, W and V in advance, then solve
Eq.(25) to find Pf , and finally obtain the Kalman-
filter gain Kf from Eq.(23). This procedure is simi-
lar to solve the Equation of a Linear Quadratic prob-
lem, thus in the following, we shall abbreviate the
formulation of this step as

Kf = LQE(A;Γ;C;W;V ): (60)

Generally, it is advisable to start with simple
choices of Γ, W , and V , then inspect the result-
ing Kalman-filter return ratio. One set of possible
choice is Γ = B [3], W = 1, V = µ. Thus, we have

Kf = LQE(A;B;C;1;µ): (61)

After some trial-and-error, we choose µ = 1, then

Kf 1 =

�
0:0055
0:0001

�
: (62)

For the sake to make the steady-state error be zero,
the first thing is to insert integral action to each in-
put. As it was mentioned [?], placing poles of the
augmented model at the origin would lead to prob-
lems in the recovery step later, so in this case we
place them at -0.0001. Then the system model of
this integrator can be expressed as

Aw =�10�4
; Bw = 1; Cw = 1; Dw = 0: (63)
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The augmented system model is[12]

Aa =

�
A ΓCw

0 Aw

�
; Ba =

�
B
0

�
;

Γa =

�
ΓDw

Bw

�
; Ca = [C 0]: (64)

Now we have the new Kalman gain matrix as

K0

f 1 = LQE(Aa;Γa;Ca;1;1) =

2
4 10�4

0
1

3
5
: (65)

Define the sensitivity function

SF(s) =
�
I +Ca(sI�Aa)

�1K0

f 1

�
; (66)

and the closed-loop transfer function is

TF(s) = I�SF(s): (67)

The principal gain of the return ratio �C(sI �
A)�1K0

f 1 is shown in Figure 3, Figure 4 shows the
principal gains of the sensitivity function SF(s) and
the closed-loop transfer function TF(s). From TF(s)
it can be seen that the steady-state error of the sys-
tem is reduced to zero by inserting integral action to
each input.

S2: LEQG/LTR Compensator Gain Design
Let N = Ca, Q = I, R = ρI and W = I, then we
have the Hamiltonian matrix of the LEQG problem
defined as�

Ẋ
Ṗ

�
=

�
Aa

�2CT
a Ca

�
1
2 Baρ�1BT

a +
1
2 ΓaαWΓT

a
�AT

a

�
�

X
P

�
; (68)

where X is the state vector, and P is the Lagrange
multiplier. Thus by Eqs.(64), (24) and (26), one can
obtain the optimal control gain Kc. Choose α = 100
and ρ = 1, then by Eq. (24) we have

Kc1 =

�
7 70345 �1

�
: (69)

Once the control gain Kc has been found, a state-
space realization of the compensator K(s) is given
by (AK1;BK1;CK1;DK1), where

AK1 = Aa�BaKc1 �K0

f 1Ca; (70)

BK1 = K0

f 1; (71)

CK1 = �Kc1; (72)

DK1 = 0: (73)

Thus the sensitivity and co-sensitivity functions are

S(s) = [I +CK1(sI�AK1)
�1BK1] (74)

T (s) = I�S(s): (75)

Figure 5 shows the principal gain of K(s)Gp(s), the
principal gains of the sensitivity function S(s) and
the closed-loop transfer function T (s) are shown
in Figure 6. The closed-loop step and impulse re-
sponses are shown in Figures 7 and 8, respectively.

S3: Digitize LEQG/LTR Controller
Let the sampling period be 100 µsec, then we have
the system matrices of digital controller

ADK1 =

2
4 0:388 �5:52 10�4

10�4 0:99 0
�0:003 �87:2 1

3
5 (76)

BDK1 =

2
4 10�4

0
0:999

3
5
; (77)

CDK1 = [ �8 �10�4
�7:029 10�4

]; (78)

DDK1 = �3 �10�5
: (79)

S4: Experimental Realization

Fig. 9 System configuration of the experiment

(a) With speed sensor
The system configuration of the experiment
is shown in Figure 9.

i. PI-based design1.
The results of no load for the square-
wave rotation speed input ω�

rm with am-
plitudes 600 and 1800 rad=s are shown
in Figure 10. The responses with 1 N
load are shown in Figure 11. It can be
seen that there is chattering effect for
the case of ω?

rm = 600 rad=s, and the
rising time of the response is larger with
ω?

rm = 1800 rad=s.

ii. LQG/LTR-based design
The responses by using LQG/LTR
method with the same design parame-
ters are shown in Figures 12 and 13. It
can be seen that there is overshoot for
the no load case withω?

rm = 600 rad=s.

1The PI coefficients, KP = 6 and KI = 2400, are de-
signed for the same bandwidth as LEQG/LTR method.
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iii. LEQG/LTR-based design
The responses by using LEQG/LTR
method are shown in Figures 14 and
15. It can be seen that the results ob-
tained by the proposed method are bet-
ter for comparing with the other meth-
ods aforementioned.

(b) Sensorless
The speed sensor is replaced by the extended
Kalman-filter.

i. PI-based design
The results are shown in Figures 16
and 17. From the responses, we can
find that there are vibratory effects in
low speed, and the rise times are larger
for the high speed command responses
with and without load.

ii. LQG/LTR-based design
The responses by using LQG/LTR
method are shown in Figures 18 and
19. It can be seen that for the case with
ω?

rm = 600 rad=s there is vibratory in
low speed. Also, the rising times with
ω?

rm = 1800 rad=s are also large for the
response with and without load.

iii. LEQG/LTR-based design
The results for LEQG/LTR-based con-
troller are shown in Figures 20 and 21.
The results are still better despite of
some small or shake effects.

4 Conclusions

In this paper, the LEQG/LTR method is applied for the
servo controller design. A systematic design procedure
is proposed. In addition, we design a speed sensorless
induction motor vector controlled driver with both the
extended Kalman-filter and the LEQG/LTR algorithm.
Performance comparisons with load disturbance and
parameter variations by experimental realization are also
carried out. It can be seen that by using the proposed
method to the design of induction motor servo drive
system, the loop transfer functions can be shaped so that
the closed-loop systems will yield (1) good command
following, and (2) good output disturbance rejection,
which are better than those obtained by the well-known PI
and LQG/LTR methods.
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Fig. 10 The speed response w/o load and w/ ω?

rm =

600 and 1800 rad=s (dashed line).
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Fig. 11 The speed response w/ 1 N load and w/ ω?

rm =

600 and 1800 rad=s (dashed line).
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Fig. 12 The speed response w/o load and w/ ω?

rm =

600 and 1800 rad=s (dashed line).
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Fig. 13 The speed response w/ 1 N load and w/ ω?

rm=

600 and 1800 rad=s (dashed line).
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Fig. 14 The speed response w/o load and w/ ω?

rm =

600 and 1800 rad=s (dashed line).
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Fig. 15 The speed response w/o load and w/ ω?

rm =

600 and 1800 rad=s (dashed line).
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Fig. 16 The speed response w/o load and w/ ω?

rm =

600 and 1800 rad=s (dashed line).
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Fig. 17 The speed response w/ 1 N load and w/ ω?

rm=

600 and 1800 rad=s (dashed line).
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Fig. 18 The speed response w/o load and w/ ω?

rm =

600 and 1800 rad=s (dashed line).
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Fig. 19 The speed response w/ 1 N load and w/ ω?

rm=

600 and 1800 rad=s (dashed line).
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Fig. 20 The speed response w/o load and w/ ω?

rm =

600 and 1800 rad=s (dashed line).
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Fig. 21 The speed response w/ 1 N load and w/ ω?

rm=

600 and 1800 rad=s (dashed line).
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