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Leray Endomorphisms and Cone Maps (*).

GILLES FOURNIER (**) - HEINZ-OTTO PEITGEN (***)

dedicated to Jean Leray

Introduction.

Computations of the fixed point index of a map which is not necessarily
compact have proved to lead to interesting applications (cf. [16,1-7, 19]).
In this paper we shall try to generalize to some non compact maps the index
computations due to C. C. Fenske and H.-O. Peitgen [5], G. Fournier and
H.-O. Peitgen [8] and R. D. Nussbaum [16].

The notion of fixed point index used in this paper shall be the one de-
fined by R. D. Nussbaum [18]. As an alternative, the one defined by J. Eells
and G. Fournier in [4] generalized to convex sets would be sufficient. Our

methods of proof strongly rely on the calculation of the generalized Lefschetz
number and the generalized trace due to J. Leray [13].

0. - Preliminaries.

0.1. Compact attractors and ejective sets.

An extensive use of the notion of « compact attractor » which is due to
Nussbaum [15] shall be made in the following.
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5300 Bonn, Federal Republic of Germany.
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(0.1.I) DEFINITION. Let X be a topological space and f : X - X a contin-
uous map. A compact, nonempty set such that M is f -invariant i.e. ,
f(M) c M, will be called a compact attractor for f if, given any open neigh-
bourhood U of M and any compact set .K c X, there exists an integer
n = n(K, U) such that fm(K) c U for m&#x3E;n.

In the above situation we say that M « attracts » the compact subsets
of X. If c M for m &#x3E; n(K), then we say that .M « absorbs » the compact
subsets of X under f. (/~ is the m-th iterate of f).

(0.1.2) PROPOSITION. Let X be a topological space and f: X ~ X a continu-
ous map. Let V be an open subset of X such that there exists n E N such that

f or all m ~ n. Then absorbs the compact subsets of

under f. (F7 denotes the closure of V).

PROOF. Observe that whence f (Uv) c Up . Now, let K c Uv
be compact. Then there exists j = j (.~) such that

and hence, for all m ~ n + j, we have that

The notion of an  ejective » point is due to F. E. Browder [1, 2] and

plays a fundamental role in recent studies of the existence of periodic solu-
tions of certain nonlinear functional differential equations.

(0.1.3) DEFINITION. Let X be a topological space and f : X - X a contin-
uous map. A closed subset F of X is said to be ejective for f relative to
an open neighbourhood U of F provided that, for all x E UEF there exists
n = n(x) such that f n(x) E 

The relation between compact attractors and ejective sets (to be made
precise in the next proposition) is fundamental for our considerations.
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A similar observation has been used in [5], but there, however, the mappings
are always assumed to be locally compact and this is a restriction which,
in view of the class of mappings we shall consider, has to be eliminated.
Unfortunately, this programm requires some very technical and elaborate
arguments.

(0.1.4) PROPOSITION. Let X be a topological space and f : X --* X a contin-
uous map which has a compact attractor M. Let F be an ejective set for f,
and assume that

Then
’ 

has a compact attractor M’.

PROOF. Since F is ejective, we can choose an open neighbourhood TT of F
such that

00

According to (0.1.5), there exists a compact, f-invariant set M’ such that

It remains to show that M’ attracts the compact subsets of under f :
let .K c be compact and let TI be an open neighbourhood of M’ in 
Consider

Obviously, y MK is f-invariant and, since M attracts the compact subsets
of X and .K and M are compact, it follows that MK is compact. According
to (0.1.5), there exists a compact, f-invariant set MI. such that

Moreover, since K is compact, there exists mK E N such that

and hence
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Thus, it remains to show that there exists nH E N such that

Again, since Mi is compact, there exists jK E N such that

Note that U and M’ is f-invariant. Hence

and, since lVlBY c M’ c W, we have that u (MnV) c V U W. More-

over, since if is f-invariant, it follows that

Hence, since M attracts there exists such that

for

Finally, we have that, for 

(0.1.5) LEMMA. Let X be a topological space and f: X ~ X a continuous map.
Let F be closed and V be open in X such that t(X BF) c X BF, F cV and
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If M is a compact, f-invariant subset, then there exists a compact, f-invariant
subset M’ such that

PROOF. Since MB,BV is compact, we have that f i(MBV) is compact for
all i E N. Moreover,

Hence, for i = 1, there exists n E N such that

(0.1.6) COROLLARY. Let X be a topological space and f : X --&#x3E;. X a contin-

uous map which has a compact attractor M. Let V be open in X and such

that, for all x E there is n = n(x) E N such that f n(x) E XBBV.
00

Then, if Uv = U f -i(XBY), one has that Uv is f -invariant and has a

compact attractor. 
i =1

PROOF. Since XBY c XBY c Uv, we have that Uv is f-invariant. Since

Uv is open, we have that F = XBUv is closed, F c V, and, for all x E VB
B.F c Uv there exists n = n(x) E N such that

i.e., F is ejective. According to (0.1.4), f: Uv - Uv has a compact at-

tractor.

0.2. Leray endomorphisms and generalized Lefschetz numbers.

The notions of this paragraph are due to J. Leray [13]. They have
proved to be of great importance in fixed point theory (cf. [9]).
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Let E be a vector space and let T be an endomorphism. Set N(T ) _
= {e E E : there exists n E N with T n(e) = 0}. One observes that c

c N(T) and T(N(T)) c N(T), and hence T induces an endomorphism
~ : .~ --~ ~ where 2 := If È is finite-dimensional, then, since T is
injective, T is an isomorphism. We define the « Leray trace » Tr(T) of T
to be the ordinary trace tr(T) of T.

Let E = be a graded vector space and T = be an endomorphism
of degree zero. If f = is of finite type, then we say that T is a « Leray
endomorphism &#x3E;&#x3E; and we define the «generalized Lefschetz number » A(T)
of T by

We have the following properties.

(0.2.1) (cf. [10]) Assume that the following diagram of graded vector
spaces and morphisms is commutative.

Then, if T or T’ is a Leray endomorphism, so is the other and, in
that case, = A(T’).

(0.2.2) Let be an endomorphism of a graded vector space of
degree zero. Let A c E be a graded vector subspace which is

T-invariant and such that, for all e E E, there exists n E N such
that Tn(e) E A. Then T is a Leray endomorphism if, and only if,
T : A - A is a Leray endomorphism and, if so,

PROOF. The assertion can be obtained as a combination of the following
facts (cf. [9]):

1) T induces an endomorphism T on E/A and T is weakly-nilpotent
(i.e., for all there is n E N such that pn(f) = 0); i.e., T is a Leray
endomorphism and = 0.
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2) The following diagram with exact rows is commutative.

It is easy to check that TE is a Leray endomorphism if, and only if, T,
and Tare Leray endomorphisms and

Let X be a topological space and f : X - X a continuous map. Let H

denote the singular homology functor with rational coefficients. (Our main
reason for choosing this homology here is that it has compact supports.)
If f * = H(f): H(X) - H(X) is a Leray endomorphism, then we say that f
is a «Lefschetz map &#x3E;&#x3E; and we define the Lefschetz number A(f) of f by

Let us recall that a space X is « acyclic » with respect to H if = 0

for q &#x3E; 0 and B"o(X) = Q is the field of coefficient. A space X is « con-
tractible » if there exists ro E X and a continuous map h : X x [0, 1] -7 X
such that h(x, 0) = x and h(x, 1) = xo for all x E X. Note that a contrac-

tible space is acyclic with respect to H.
We collect a few properties for Lefschetz maps.

(0.2.3) Let f : X - X be a continuous map and let Y c X absorb the com-
pact subsets of X under f. Then

if f*-invariant and absorbs the elements of H(X) where i : Y - X

denotes the inclusion. Furthermore, f is a Lefschetz map if, and

only if, /~: AY is a Leray endomorphism and, in that case,

PROOF. Evidently, Ay is f*-invariant. Choose Since H has

compact supports, there exists K c X compact and b E H(.K) such that

j*(b) = a where j : K - X denotes the inclusion. Now, there exists nK E N
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such that Y for all i.e. , Y is defined. Therefore,
for all Hence for all 

Since the following diagramm is commutative,

we obtain that = = E AY.
Finally, y we obtain the remaining part of the assertion from (0.2.2).

(0.2.4) Let f : X - X be a continuous map and let Y c X be an f-invariant
subset which absorbs the compact subsets of X under f. Then, if
one of f : X -~ X or f : Y .-~. Y is a Lefschetz map, both are Lef-
schetz maps and, in that case,

PROOF. This is a consequence of an argument similar to the one in (0.2.2)
and the fact that .H~ has compact supports (cf. [6], II, lemma 1.2).

(0.2.5) Let f : X - X be a continuous map and let X be acyclic. Then f
is a Lefschetz map and

be homotopic maps ( f ~ g). Then

provided one of these numbers is defined.

0.3. lVleasure of non-compactness.

The notion of «measure of non-compactness » is due to Kuratowski [11].
Let ( Y, d) be a metric space. We define the « measure of non-compactness »
y( Y) of Y to be

y( Y) = inf {r &#x3E; 0 : there exists a finite covering of Y by subsets

of diameter at most ri -
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Notice that y( Y)  oo if, and only if, Y is bounded. Let f : X - Y be a
continuous map where (X, d’) and (Y, d) are metric spaces. We define

One has the following properties (cf. [11, 15]) :

(0.3.1) where diam(Y) is the diameter of Y.

(0.3.2) If A c B c Y, then y(A) c y(B).
(0.3.3) y(A U B)  max {y (A), y (B)}.
(0.3.4) If A is compact, then y(A) = 0.

(0.3.5) y(A) = y(A).
(0.3.6) If (Y, d) is complete and Ai D A2 :) A3 D ... is a sequence of closed,

nonempty subsets of Y such that

then

is compact, nonempty and, for all neighbourhoods V of A~, there
exists such that An c V for all 

(0.3.7) If f is a compact map, then y(f) = 0.

(0.3.8) If g: Y -* Z is a continuous map then 

(0.3.9) If f is a Lipschitz map with Lipschitz constant k, then y(f)  k.
(0.3.10) If X = Y and lim y(fn(X)) - 0, then f has a compact attractor.

Furthermore, if Y is a linear, normed space, we have the following (cf. [3]) :

where co A denotes the closed, convex hull of A.

0.4. Condensing mappings.

Let X be a metric space and Q c X a subset. A continuous map

f: Q -* X is called « condensing » (k-set-contraction, with k  1, in [15])
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if y(f: S~ --~ X)  1. If f : X - X is a continuous map and Q c X is a sub-
set, then f: S~ -~ X is called « eventually condensing &#x3E;&#x3E; if there exists n E N

such that X)  1. A continuous map f : S~ ---~. X is called « con-

densing on bounded subsets » if y( f : A -~. ~Y) C 1 for all bounded subsets
A c S~. The notions of maps which are «compact on bounded subsets »
or are «eventually condensing on bounded subsets » are defined in a

similar manner.

0.5. I’ixed point index.

The reference for this section is R. D. Nussbaum [18]. First, we fix a
class of spaces. We shall write X e Y if X is a closed subset of a Banach

space from which it inherits its metric and if .X has a closed, locally finite
covering by closed, convex sets Ca c X. We shall write 
if X e Y and if .A is finite. Note that if X e Y than X is an absolute neigh-
bourhood retract (X E ANR) .

Suppose that U and Y are open subsets of a space X e Y such that
U c Y and f : U - Y is a continuous map. Assume that Fix(f) = U:

f (x) = x} is compact (possibly empty). Suppose there exists a bounded open
neighbourhood W of Fix(/), W c U, and a decreasing sequence of spaces
:gn c Y, Kn E :Fo, such that

(0.5.1) DEFINITION (Nussbaum). If the above conditions are satisfied for

some Wand some decreasing sequence we say that « f belongs
to the fixed point index class », and we define

If gn is empty for some n, then ind(f: U - Y) is taken to be zero.

Note that a map f : U -.~ Y which is weakly condensing (in the sense
of Eells-Fournier [4]) belongs to the fixed point index class. The fixed point
index defined in the above generality satisfies the familiar properties; e.g., the
excision, additivity, solution, and commutativity properties. Since we make

use of the contraction, normalization, and homotopy properties permanently,
we cite them here. We need one more definition.
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(0.5.2) DEFINITION. Suppose that X Y is an open subset of X, and
f : Y --~ Y is a continuous map. Let Me Y be a compact, f-invariant
set. Assume that there exists an open neighbourhood W of M and
a decreasing sequence of sets Y, such that KI D W,

n and lim = 0. Then we say that f : Y -+ YI

has property (L) in a neighbourhood of M.

We have the following properties.

(0.5.3) CONTRACTION. Suppose that Y, Z are open in X e Y, t7 is open
in Y, and Z c Y. Then, if f(U) c Z,

(0.5.4) NORMALIZATION. Suppose that X Y is open in X, and f : Y ~ Y
is a continuous map which has a compact attractor M.

Then, if f has property (L) in a neighbourhood of M, f belongs
to the fixed point index class, f is a Lefschetz map, and

(0.5.5) HOMOTOPY. Suppose that Y are open in X, and 
X [0,1] ~ Y is a continuous map such that

S = {x E U : there exists t such that ft(x) = f (x, g = x}

is compact. Assume there exists a bounded open neighbourhood W
of S with W c U and a decreasing sequence gn E :;-0’ 9 gn c Y, such
that Ki D W, f ((Wn r1 x [0, 1]) c Kn+l, and lim = 0. Then

I

ind( is defined and constant for

Since it is difficult to tell whether a map belongs to the fixed point index
class, we shall select a few examples of those given in [18] and [4]:

(0.5.6) EXAMPLES:

(1) Suppose U is an open subset of X, and f : U --~ X
is a continuous map such that Fix(f) is compact. Assume that
there is an open neighbourhood yV of Fix(/) such that f : W’ --~ X
is condensing. Then f belongs to the fixed point index class.
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(2) Suppose that X U is an open subset of X, and f: U --&#x3E;. X

is a continuous map such that Fix(f) is compact. Assume there
exists a compact set M D and a constant k, 0  k  1,
such that M) if) whenever x E U and d (x, 
r a fixed positive number. Then f belongs to the fixed point
index class.

(3) Let U be an open subset of a Banach space X and f: U - X
a continuous map such that Fix(f) is compact. Assume that f
is continuously Fréchet differentiable on some open neighbour-
hood of Fix(f) and is eventually condensing on some open neigh-
bourhood of Fix(f). Then f belongs to the fixed point index class.

1. - Main results.

1.1. Index of ejective sets and fixed points of index zero.

In this paragraph, we give generalizations and extensions of character-
izations due to C. C. Fenske and H. O. Peitgen [5]. First, we give a formula
which allows calculation of the index of certain fixed points in terms of

generalized Lefschetz numbers.

(1.1.1 ) THEOREM. Let Y be an open subset of a space X c- Y. Assume that

f : Y -&#x3E; Y is a continuous map which has a compact attractor M and
has property (L) in a neighbourhood of M. Let F c Y be a closed

subset, assume that

and has a compact attractor. Then

for all open subsets W such that

PROOF. Note that f has no fixed points in = W r1 Hence

the additivity property of the index implies that
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Condition (*) and the contraction property yield

and, finally, the normalization property implies the assertion.

The next result is fundamental for paragraph 1.3.

(1.1.2) COROLLARY. Let Y be an open subset of a space X Assume

that f : Y - Y is a continuous map which has a compact attractor M
and has property (L) in a neighbourhood of M. Let F be an ejective
set for f relative to W, and assume that

Then

PROOF. According to (0.1.4), f : YgF has a compact attractor.

(1.1.3) THEOREM. Let Y be an open subset of a space X that

f : Y - Y is a continuous map which has a compact attractor M and
has property (L) in a neighbourhood of M. Let F c Y be a closed sub-
set, assume that

and f : YBF has a compact attractor M’. Furthermore, as-
sume that one of the following conditions is satisfied.

(1) The inclusion j : Y induces an isomorphism H(j) in

homology ;

(2) there exists an open subset U of Y such that F c U c U c YnM’
and the inclusion j : Y induces an isomorphism H(j)
in homology ;

(3) there exists a neighbourhood V of M’ in YBI’ and the inclusion

j : Y -~ Y induces an isomorphism H(j) in homology. Then

for all open subsets W of Y such that

11 - Annali della Scuola Norm. Sup. di Pisa
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Moreover, A implies

PROOF. Note that both YBF and YB U are neighbourhoods of M’ disjoint
from F. Hence it suffices to prove the assertion using (3).

Note that V absorbs the compact subsets of YBF, and hence, in the no-
tation of (0.2.3), we have that where i : V- YnF
is the inclusion. Moreover, according to (0.2.3), we have that

Next, observe that if then E H(V), and hence, according
to (0.2.3), there exists n e N such that

Now we have a commutative diagram

and thus we obtain

Next, observe that and f * t* = l* f * imply that 1*(l*(Av)) c
c l*(Ay). Applying (0.2.2), we obtain

It remains to show that

This follows from (0.2.1) once we have proved that 1,: is an

isomorphism. Suppose that 1* is not injective; i.e., there is a E Av such
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that = 0 and a 0 0. From the definition of A,, we have that a = i* b
for some b E H(V), b # 0. Now, l*(a) = 0 implies = 0. However,

= b, and this is a contradiction.

PROBLEM. Does (1.1.3) remain true if we replace the assumption (*) by
the assumption that .I’ is ejective?

AVe can only give a partial answer to this problem. Similar results have

been obtained by Nussbaum in [17] and in [5].

(1.1.4) PROPOSITION. Let P be a closed, convex subset of a Banach space,
and let f : P --&#x3E;- P be a continuous map which is condensing on bounded
subsets. Assume that Xo E P is an ejective fixed point f or f relative to W,
and assume that is contractible.

Then 
’

PROOF. Choose r &#x3E; 0 such that Br(xo) r1 PeW.
Define by

Note that if . Thus,

According to (0.3.10), this means that P - P has a compact attractor.

Finally, we can apply (1.1.2) and obtain

since P and P%(zo) are contractible.
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1.2. Mappings leaving a wedge invariant and the calculation of some Lefschetz
numbers.

Following Schaefer [20], we call a closed, convex subset P of a linear
normed space a « wedge » if x E P implies for t &#x3E; 0. We call P a
« cone » if P is a wedge and x E 0, implies P. If P is a

wedge which has the additional property of a cone for at least one point
(i.e., there exists xo 0 0, such then we say P is a « wedge
missing a ray &#x3E;&#x3E;. For r &#x3E; 0, we set

In the forthcoming paragraphs we shall deal with the following hypotheses.

There exists m E N such that

and, for all x E Br, there exists 
such that

H~: There exists such that

and, for all x E P""-Br, there exists nx E N such that

There exists m e N such that

for all i &#x3E; m, and there exists n E N such that

H’ : There exists m e N such that
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for all i ~ m, and there exists such that

We have the following property which is fundamental for our further
considerations (cf. (2.9) of [8]).

(1.2.1) PROPOSITION..Let P be a wedge missing a ray and let f: P -~ P be
a continuous map. Assume that one o f the conditions H’ 01 s
or is satisfied. Let

in cases Ho and H’ 0
in cases and H’ *

Then f(W) c W, f : T D’ -~ W is a Lefschetz map, and A(f : W - W ) =1,
where 00

PROOF. Note that W is open, and, since we obtain

f ( W ) c W U B c W. Choose yo E P such We define p: P- P by

Observe that e (B) c Sr and hence e (W) c [ (PBB ) r1 W] c W. Moreover,
(cf. (2.2) of [8]).

Similar to the proof of (2.9) in [8], one obtains the assertion as a con-

sequence of the following facts:

(1 ) B is contractible (cf. (2.2) of [8]) and absorbs the compact subsets of W
under fmo e.

(2) If i : W denotes the inclusion, then i* H(B) is acyclic, f*-invariant,
= Id. Thus, A (f*) = 1.

(3) Let f * denote the quotient homomorphism of /: H(W) - H(W) and f* :
.v N

Then f * is weakly nilpotent. This is a consequence of (1). Hence 4(/) = 0.
(4) Since f* and f * are Leray endomorphisms, one concludes that f* : H(W) -&#x3E;

--~ I~( W) is a Leray endomorphism and 
’
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The next proposition is only designed for section 1.4. It can be obtained

by going through the proof of (1.2.1) with obvious modifications.

(1.2.2) PROPOSITION. Let P be a wedge missing a ray, X c P an open subset,
acnd f: X --~ X a continuous map. Assume that, with the notation

o f (1.2.1 ), B c X acnd that the assumptions of (1.2.1 ) are satisfied.
Then f(W) c W, f : W ---&#x3E; W is a Lefschetz rrtap, and

1.3. Condensing mappings of wedges.

The following result for cones is due to Nussbaum [17].

(1.3.1) PROPOSITION. Let P be a wedge missing a ray in a Banach space,
and let f : P --* P be a continuous map which is condensing on bounded
subsets. If 0 E P is an ejective fixed point for f relative to U, then

PROOF. According to (1.1.4), it suffices to show that P%(0) is contrac-
tible. To see this, choose r &#x3E; 0 and observe that the radial retraction

e: P%(0) - Sr defined by 
....

is homotopic to Since P is missing a ray we find yo E P such that
Define h: Sr x [0,1] by

this homotopy is well defined by the choice of yo .

Nussbaum’s proof substantially uses the fact that, if P is a cone, then
0 E P is an extremal point.

The following results for mappings which are compact on bounded sets
are due to G. Fournier and H. O. Peitgen [8].

(1.3.2) PROPOSITION. Let P be a wedge missing a ray in ac Banach space,
and let f : P --~ P be a continuous macp which is condensing on bounded
subsets. Assume that H. or H’ cD is satisfied.

Then
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PROOF. We shall use the notation of proposition (1.2.1). Note that we

have (2(A) c U A} for all A c P whereby Y«(2)  1; i. e. I fO(2: P - P is
condensing. Since

we have that and, according to (0.3.10), this implies
that P - P has a compact attractor.

Note that Sr c W, thus e (-W) c W and c W. Moreover, F = PBW
is closed and ejective for f relative to Br. Since = also ejec-
tive for Now we can apply (1.1.2) and obtain

The first of these Lefschetz numbers is 1 because P is contractible. The

second, however, is also 1 since and thus we can apply (1.2.1).

(1.3.3) PROPOSITION. Let P be a wedge missing a ray in a Banach space,
and let f: P - P be a continuous map which has property (E) for
each compact, f-invariant subset and which is eventually condensing
on bounded subsets. Assume that either Do is satisfied and there exists

I no E N such that

or go is satisfied.
Then, if

we have that W is f -invariant, f : yP -~. W has a compact attractor, and

PROOF. Note that either Ho together with condition (*) or Ho 
I 

implies
that there exists mo E N such that

F is closed in P and, since c W and Br c W, we have that F c W.
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Moreover, F is f -invariant because

Now we use F to show that f: W-W has a compact attractor M:
_ 

mo 
_

we observe that Br c U f-i(T3,) implies that
i=l

for all n E N; in fact, if x E Br , then there are i¡,..., is E N such that
n - (il +... + is)  W1o , and

for j E {1, ..., s~.
Since f is eventually condensing on bounded subsets of P, we have that

f n(Br) is bounded for each n E N, and therefore we can find .R &#x3E; 0 such that

Now choose k c- N such that y(fk : P)  1. Let n &#x3E; mo + k and let
be chosen such that 

and k. We have

hence lim y(fn(F)) = 0. According to (0.3.6), we obtain that

is compact, nonempty, and, for all open neighbourhoods U of M, there
exists nu E N such that

whenever Since F is f-invariant, and since we have

that M is f-invariant.
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It remains to show that M attracts the compact subsets of W. Let

.g c W be a compact subset. There exists E N such that

Hence

Now, f has property (L) in a neighbourhood of M ; thus (0.5.4) implies
that f : W - W belongs to the fixed point index class and

Finally, the excision and contraction properties together with (1.2.1) imply

PROBLEM. Does (1.3.3) remain true without assuming condition (

We can only give a partial answer here (see also 1.5.2).

(1.3.4) PROPOSITION. Let P be a wedge missing a ray in a Banach space,
and let f: P - P be a continuous map which has property (L) for
each compact, f -invariant subset and which is eventually compact on
bounded subsets. Assume that lq’o is satisfied. Then if

we have that W is f -invariant, f : W -* W has a compact attractor, and

PROOF. Choosing k c- N such that is compact, consider

We have that K is compact in ~. From Ho and the definition of W, we have

that, for each x E yY, there exists nx such that E Br whenever

n ~ nx . This means V, and therefore we have that
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Since is compact, we find n E N such that

Then if is f-invariant since

Moreover, absorbs the compact subsets of W. To see this, let L be a
compact subset of T~. Then

and hence

for all l E N.

For the final part of the proof, see the last part of the proof for (1.3.3).

Combining the results of this section, we obtain a fixed point principle
that can be regarded as an asymptotic version of the principle due to
M. A. Krasnosel’skil [12] which has come to be known as the principle for
mappings « expanding» or  compressing » a cone.

(1.3.5) THEOREM. Let P be a wedge missing a ray in ac Banach space, acnd

let f : P -+ P be a continuous map which is condensing on bounded
subsets. Let r = r1 &#x3E; 0. Assume that one of the following conditions
is satisfied:

(1) 7

(2) Ho and f is eventually eompa,ct on bounded subsets ;
no

(3) Ho and Br c ,J for some no.1 

i=l 
1

;=1 
’
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. Assume that one of the following conditions is satisfied.

is an ejective fixed point for f relative to Br. and r2  r1.

Thus, f has a fixed point in

PROOF. This is an immediate consequence of the additivity property
for the fixed point index and (1.3.1)-(1.3.4).

1.4. Eventually condensing mappings of wedges.

Propositions (1.3.1) and (1.3.2) do not seem to generalize to mappings
which are condensing on bounded subsets and which have property (L) for
each compact, invariant subset. However, we still can obtain a fixed point
principle.

(1.4.1 ) THEOREM. Let P be a wedge missing a ray in a Banach space, and
let f : P ---&#x3E; P be a continuous map which has property (L) for each
compact, f -invariant subset and which is eventually condensing on
bounded subsets. Let r = r1 &#x3E; 0, and assume that

(1) .go is satisfied; or

(2) lIo is satisfied and Br C U f -i(Br ) for some no E N.1 

i=i 
1’ 

i=l

Let r = r2 &#x3E; 0, and assume that

(3) g~ is satisfied; or

(4) is satisfied; or

(5) 0 E P is an ejective fixed point of f relative to Bra and f (PB{0~) c
c 

Then, if r1 &#x3E; r2 , we have that
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Thus, f has a fixed point in

00 
,

PROOF. According to (1.3.3), if W= lJ f -E(Brl), then W is f-invariant,
i=i 

°

f: W - W has a compact attractor, and ind(f: Brl -~ P) = 1.

Case where 0 E P is ej ective : f ( WB{o} ) c r1 W c W%(0) and,
moreover, F = {0} is an ejective fixed point of f: W -. W.

_

Other cases : Note that c Br, c W. Hence, if W’ = U f-i(P""-.Brs)’
a=1 

"

then F = Brs"’W’ c and f ( W’ ) c W’. Thus, we have that F
is an ejective set for f : W - W and f (WBF) c WBF.

According to (1.1.2 ), we have in all cases that

Now, (1.2.1) implies that ll ( f : ~Y -~. W ) = 1. Since

we can apply (1.2.2) to the mapping f : and obtain A(f: W%F -
--~. WBF’) = 1. Thus, ind(f: ~ P) = 1-1= 0, and finally we obtain the
assertion by using the additivity property of the index:

PROBLEM. Do (1.3.1 ), (1.3.2) and (1.3.5) generalize to mappings which
have property (L) for each compact, invariant subset and which are even-
tually condensing on bounded subsets

1.5. Special wedges.

In this section, we shall restrict attention to  special wedges,)); that
is, a wedge P for which there exists yo E P such that 11 x 11 for

all x E P. Notice that &#x3E; 0, for all x E P,

The following lemma is our main reason for considering this type of wedge.
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With its aid, it will be possible to eliminate one of the crucial assumptions
which were necessary in 1.3.

(1.5.1) LEMMA. Let P be a special wedge in a linear normed space, and let
.R &#x3E; 0. For all 8 &#x3E; 0, there exists a retraction e: 13 R -~. SR such that

= IdsR and y(~O) c 1-f- s.

PROOF. Choose yo E P such that ii yo II = 1 and 11 x + Yo II for all

x E P. Now, for all n E N, define a map h~ : by

Observe that, for all A c BR, hn(A) c co(A U and therefore

. i.e., y(hn:BR -~ P) c 1. Furthermore, we have the esti-

mates
.1 - - II

provided that and since P is a special wedge

provided This implies that

Finally, define

Then
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To obtain ~O : BR -~. ~SR, setting

(1.5.2) PROPOSITION. Let P be a special wedge in a Banach space, and let
f : P --~ P be a continuous map which is condensing on bounded sub-
sets. that go is satisfied.
Then

00

PROOF. Set W = U f-i(Br). Then is open in P, f (W) c yY,
i=1

c W, and, according to (1.2.1), we have that, A(f : T7 -~ W) = 1.

Now, if e: Br - Sr is any retraction, define n: W - W by

Since jB~ is convex, we have that Set g : = nof :
W - W, and observe that g ~ f ; hence yV -~. W) = A (f: W - W) = 1.

00

Now, observe that W c U 
i=’

In fact, if then there is n E N such that f n(x) E Br . Suppose that n
is minimal with this property; i.e., Then gn(x) =

Next, since there egists m E N such that f m(Sr) c Br, we have that

Moreover7 one obtains from c Br that

Since f is condensing on bounded sets, we have that f i(Br) is bounded,
and therefore we can find .R &#x3E; 0 such that
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Now, choose 8 &#x3E; 0 such that

According to (1. ~.1 ), we may assume that y ( ~O )  1 --~- ~, and therefore

Since one cbtains that F is f-in-
variant. We compute y(gn(F)) for n &#x3E; m :

o

Hence, lim y(gn(F)) = 0, and, from (0.3.6), we obtain that c
~~~ 

i=o

is compact, nonempty, and, for all neighbourhoods U of M, there
exists na E N such that gi (.F) c U whenever Moreover, we have that M
is g-invariant since g(F) c F.

Furthermore, M attracts the compact subsets of W under g. To show

this, let . be a compact subset of Wand let U be an open neigh-I 
00 nk 

zn-

bourhood of M. Since .K c U yi(Br), we find n., E N such that K c U f-i(Br);
n. i=i i=l

i.e., K c U Now, gnK(K) c Sr U U gi(Sr) c F U U gi(F) c F. Hence,
i=1 i=l i=l

g?(K) c gi-nK(F) c U, whenever + nu.
Now, the normalization property for the index implies that

and, since g(x) =,- x for all we have that ind(g: =

= ind(g: W - W). Thus, to obtain the assertion, we have to show that
ind(g : Br - W ) = ind(f : P). First, ind(f : Bur - P) = ind(f : Br - W )
by (0.5.3). Then, consider the homotopy

defined by h(x, t) = tf (x) + (1- t) g(x). We have that y(h(A x [o, 1])~ 
u g (A)))  ky(A) for all A c Br and that h(x, t) # x for all (x, t) E

E Sr X [0, 1]. Therefore, from (0.5.5), it follows that

(1.5.3) THEOREM. Let P be a special wedge in a Banach space, and let f : P-+P
be a continuous map which is condensing on bounded subsets. Let

r = r1 and assume that Ho or is satisfied. Let r = r2 and either

assume that or g~ is satisfied or assume that 0 E P is an ejective
fixed point of f relative to Br, and r2  r1.
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Then

and f has a fixed point in

PROOF. This is immediate from the additivity property of the fixed
point index, (1.3.1)-(1.3.5), and (1.5.2).

1.6. Continua o f solutions for mappings Leacving a wedge invariant.

Let P be a wedge missing a ray in a Banach space, and let a, b E R,
a  b. In this paragraph, we consider mappings .F’ : P X (a, b ) ~ P and
wish to establish conditions under which the nonlinear eigenvalue problem

admits a continuum (i.e., a closed, connected set) of solutions. Our result
here is a generalization of Peitgen [19] where the case of mappings which
are compact on bounded sets is treated. Since the structure of the proof
is taken from [19], we only outline the main steps here and refer to [19].

First, we fix some notation.
Let r, R: (a, b) - R+B{0~ be continuous maps such that r(A)  R(A)

for all A or &#x3E; for all A. If ~,1 E (a, b) are fixed elements then
we set

and

If Q c Z, then D(A) = {x E P: (x, A) E Q) is the section over A. Observe

that UR is open in Z.

(1.6.1 ) THEOREM. Let F: Z -~ P be a continuous map which is condensing,
and assume that F(x, A) ~ x for all (x, A) E 
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Let 2,,, ~,1 E (a, b) be fixed elements. Let r = r(A,,), and assume that
F(., Âo): P - P satisfies

- condition B’o ; or
- condition Ho and is eventually compact on bounded subsets ; or

- condition go and there is no E N such that

- condition Ho and P is a special wedge.

Let r = and assume that F(., ~,1 ) : P ~. P satisfies
- condition or

- condition H’ ,, ; or
- 0 E P is an ejective fixed point of F(., relative to Br and

B (A)  

Then

(ii) for any s &#x3E; 0, there exists a continuum

such that

(iii ) the projection of C, onto the I-axis fills the entire interval

-.

PROOF. Let us assume that r(A)  B(A) for all A E (a, b) ; the case

&#x3E; is proved similarly.

(1) Since for all (x, A) E the generalized homotopy
property (cf. [14], p. 245) together with the index computations of the
previous paragraphs give

12 - Annali della Scuola Norm. Sup. di Pisa
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and

thus, we obtain from the additivity property that

Choose 8 &#x3E; 0. Let .g~ be the set

Then Ks is compact (cf. [14], p. 245) and (1) implies that KB=F0. Now
assume that there is no continuum joining KB(a + s) # 0 with ITe(&#x26; 2013 8) ~ 0.
Then, by a lemma of Whyburn ([21], Chap. 1, Theorem 9.3), y Ks decom-
poses into two disjoint closed subsets Ki, .g2 such that

Choose Q open in Uf such that .g1 c D and = 0. Observe that

the generalized homotopy property (cf. [14]) and the excision property
imply (~&#x3E;~ + 8)

However, since we have ind(F(., b - s): Q(b-e)-+
- P) - 0, and this is a contradiction.

It is obvious from the above proof that (1.6.1) can be generalized to
mappings considered in the previous paragraphs after the generalized homo-
topy property has been extended appropriately. This, however, is omitted
here for reasons of length.
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