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LERAY FUNCTOR AND COHOMOLOGICAL CONLEY INDEX 
FOR DISCRETE DYNAMICAL SYSTEMS 

MARIAN MROZEK 

ABSTRACT. We introduce the Leray functor on the category of graded modules 
equipped with an endomorphism of degree zero and we use this functor to 
define the cohomological Conley index of an isolated invariant set of a home-
omorphism on a locally compact metric space, We prove the homotopy and 
additivity properties for this index and compute the index in some examples, 
As one of applications we prove the existence of nonconstant, bounded solu-
tions of the Euler approximation of a certain system of ordinary differential 
equations. 

INTRODUCTION 

The problem of the construction of the Conley index for the case of discrete 
time dynamical systems was posed already in Conley's book [Co]. When study-
ing this problem in detail one can see that most steps of the continuous case 
construction (in particular the definition and existence theorem for index pairs) 
can be carried over without difficulties to the discrete case. The only serious 
obstacle is the lack of homotopy along trajectories of the flow. Because of this, 
the homotopy type of an index pair and its homology or cohomology are not 
invariants. 

In a recent paper Robbin and Salamon [RS] chose the shape theory to over-
come this difficulty (in smooth setting) and define the shape index as the shape 
of the one-point compactification of the unstable manifold of an isolated in-
variant set (with some special intrinsic topology). This construction is very 
interesting because it shows the close relation between the Conley index and 
the topology of the unstable manifold of an isolated invariant set. On the other 
hand, the shape index seems not to be a convenient tool in applications, because 
of the presence of inverse limits appearing in its construction. 

In the present paper we propose a construction of the cohomological Conley 
index for discrete dynamical systems, which goes along Conley lines whenever 
it is possible, with certain modifications taken from [Mr2]. The problem of 
lack of the trajectory-defined homotopy is overcome by considering not only 
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150 MARIAN MROZEK 

index pairs but also index maps associated with every index pair (cf. [Mrl]) 
and by introducing a new functor (the Leray functor) from the category of 
graded modules equipped with an endomorphism of degree zero in its proper 
subcategory of graded modules equipped with an isomorphism. The definition 
of this functor is based on the notion of a generalized kernel used by Leray [Le] 
to define the generalized Lefschetz number as well as on the dual notion of the 
generalized image. 

The index takes the form of a graded module with a distinguished isomor-
phism. The isomorphism has no counterpart in the case of the shape index. 
Therefore our index distinguishes between isolated invariant sets which cannot 
be differentiated by the index of Robbin and Salamon. 

In this paper we consider the case of a discrete dynamical system given by 
a homeomorphism of a locally compact metric space. The generalization of 
the theory presented to the case of a continuous map (discrete semi dynamical 
system) is straightforward. Removing the local compactness assumption in the 
spirit of Rybakowski [Ry] is also possible, through some different techniques 
are necessary (see [MR]). 

We use the Alexander-Spanier cohomology only because of its nice excision 
properties. Other homology or cohomology theories can also be used, but then 
certain extra assumptions as in the case of regular index pairs (see [Mrl]) have 
to be added to the definition of the index pair. 

The organization of the paper is as follows. § 1 contains preliminaries. In 
§2 we present the main results of the paper. The indices of a hyperbolic fixed 
point and a hyperbolic periodic point are computed in §3. The Leray functor 
and its properties are studied in §4. Next we prove the existence of index pairs 
in the discrete case. In §6 the index is constructed. The main properties of the 
index are proved in §7. In §8 we present some examples. 

1. PRELIMINARIES 

R, Z, Z+, Z-, and N will denote the sets of real, integer, nonnegative 
integer, nonpositive integer, and natural numbers, respectively. E will stand 
for a fixed ring with unity. For a topological space X and a subset A ~ X the 
notation int x A, cl x A, bd x A will be used for the interior, the closure, and 
the boundary of A in X, respectively. If this causes no misunderstanding, we 
shall drop the subscript X in the above notation. 

We will frequently consider pairs of topological spaces of the form (XI' X 2 ) 

without assuming that X2 ~ XI . The special case X 2 ~ XI will be referred to 
as a topological pair. In order to simplify the notation we will usually denote 
pairs of spaces by single capital letters. In such a situation the first or the 
second element of the pair will be denoted by adding to the letter the subscript 
1 or 2, respectively. Thus if P is a pair of spaces then P = (PI' P2 ) , where 
PI 'P2 E Top. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LERAY FUNCTOR AND COHOMOLOGICAL CONLEY INDEX lSI 

We make a general assumption that whenever a pair P = (PI' P2) of subsets 
of a topological space X appears in a notation making sense for topological 
pairs only, then P should be considered as the pair (PI' PI n P2). 

The notation used for spaces will be extended in a natural way to pairs of 
spaces. Thus if P, Q are pairs of subspaces of a topological space X and 
f: X ----> X is a mapping, then f(P) := (f(PI) ,f(P2)). Similarly, P ~ Q will 
mean Pi ~ Qi for i = 1,2, int P will denote the pair (int PI ' int P2) ,etc. We 
shall identify a single space X with the pair (X, 0) . 

By a map f: P ----> Q of pairs P, Q, we mean a continuous mapping 
f: PI ----> QI such that f(PI nP2) ~ QI nQ2' which is equivalent to f(PI nP2) ~ 
Q2· 

Note that the identity map id: PI 3 X ----> x E PI can be obviously considered 
as a map id: P ----> P of the pair P = (PI' P2) into itself. 

If R, S are pairs such that R ~ P, S ~ Q, and f: PI ----> Q I is such that 
f(R) ~ S, then one can consider the map 

R I 03X---->f(x)ESI , 

which maps RI n R2 into SI n S2. This map will be called the contraction of 
f to the pair of pairs (R, S) and denoted by fR S . 

If R, S are pairs such that R ~ S then iRS ~ill stand for the contraction 
of the identity id: S ----> S to the pair of pairs (R, S). It will be called the 
inclusion of pair R into pair S. 

In part of the paper the language of multivalued maps will be used. Recall 
that a multivalued (m.v.) map rp: X ----> Y is a mapping which assigns to every 
x E X some nonempty, compact subset rp(x) of Y. The image of a subset 
A ~ X under rp is rp(A) := U{ rp(x) I x E A}. The m.v. map rp is called upper-
semicontinuous (u.s.c.) iff for every x E X and for every neighborhood U of 
rp(x) there exists a neighborhood V of x such that rp(y) ~ U for all y E V. 

The following well-known property of m.v. maps will be needed. 

Proposition 1.1. If rp: X ----> Y is u.s.c. and K ~ X is compact then rp(K) is 
compact. 

g> will denote the category of graded modules over the ring S and homo-
morphisms of degree zero. If E, FE g> then g>(E, F) will stand for the set of 
all morphisms from E to F in g>. Thus, if E, F E g>, rp E g>(E, F), then 
E = {En}' F = {Fn} , rp = {rpn} , where En' Fn are modules over Sand 
rpn: En ----> Fn are homomorphisms. 

For E I , E2 E g> , the product of E I , E2 will be denoted by EI x E2. If 
Ei,Fi E g> for i = 1,2 and rpi E g>(Ei,Fi) then rpl x rp2: EI x E2 ----> FI X F2 
will stand for the product of the maps rpl' rp2. 

The functor of the Alexander-Spanier cohomology with coefficients in S will 
be considered as a functor H*: TOP2 ----> g> , where TOP2 stands for the category 
of topological pairs. Since the coefficient ring S is fixed, we shall omit it in 
the notation of the cohomology module. If P = (PI' P2) is an arbitrary pair of 
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subspaces of a topological space X , then, according to our general assumption, 
we put H*(P) := H*(PI ,PI n P2 )· 

The category ~ E of graded modules equipped with an endomorphism is 
defined as follows. The objects of the category ~ E are all pairs (E, e) ,where 
E E ~ and e E ~(E ,E) is an endomorphism. The morphisms from (E ,e) E 
~ E to (F,f) E ~ E are all maps qJ E ~(E, F) such that the diagram 

(1.1 ) 

F ----+ F 
f 

commutes. We will briefly write qJ: (E, e) ~ (F,f) to denote that qJ is a 
morphism from (E ,e) to (F,f). 

In the sequel we will identify the isomorphic objects of ~ E. Note that if 
qJ in (1.1) is an isomorphism, then e, f are known as equivalent (similar) 
endomorphisms. In some cases a classification of equivalent endomorphisms 
can be given by means of the Jordan form of their matrices. 

We define the categories ~ M and ~ I as the full subcategories of ~ E con-
sisting of graded modules equipped with a mono- and isomorphism, respec-
tively. 

The object (E, e) E ~ E such that En = 0 and en = 0 for all n will be 
called the zero object of ~ E (or briefly zero) and it will be denoted by o. 

We will consider the category ~ as a subcategory of ~ I using the natural 
functorial embedding 

~ 3 E ~ (E, id) E ~ I. 

Thus we have 

2. MAIN RESULTS 

Let (X, e) denote a fixed, locally compact metric space. By a discrete dy-
namical system on X we mean a fixed homeomorphism f: X ~ X. We will 
study isolated invariant sets of f. The set K is invariant if for each x E K 
the trajectory of x, i.e. {fn(x) In E Z}, is contained in K. In other words, 
K is invariant iff f(K) = K. K is said to be an isolated invariant set if it is a 
compact invariant set which is the largest invariant set in its neighborhood N. 
In such case N is said to isolate K. If N is additionally compact, it is called 
an isolating neighborhood for K. 

Note that the empty set is a trivial example of an isolated invariant set, which 
is also an isolating neighborhood of itself. 

We assume an isolated invariant set K and its fixed isolating neighborhood 
N are given. 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LERAY FUNCTOR AND COHOMOLOGICAL CONLEY INDEX 153 

A <; N is called positively invariant with respect to N iff A n f- I (N) <; 
f-I(A) . 

The main tool in constructing the Conley index for flows is the index pair. 
To define its discrete counterpart, we introduce the sets 

Inv+ N:= {x E XlVi E Z+ lex) EN}, 
- - i Inv N:= {x E X I Vi E Z f (x) E N}, 

- + Inv N := Inv N n Inv N, 

which will be called the positively invariant, the negatively invariant, and the 
invariant part of N (relative to f), respectively. Hence the set A is invariant 
iff Inv A = A. Similarly, we say that A is positively invariant (negatively 
invariant) iff Inv+ A = A (Inv- A = A). 

Definition 2.1. The pair P = (PI' P2 ) of compact subsets of N will be called 
an index pair of K in N (with respect to f) iff the following three conditions 
are satisfied. 

(2.1 ) 
(2.2) 
(2.3) 

PI' P2 are positively invariant with respect to 
Inv- N <; intN PI' Inv+ N <; N\P2 ; 

PI \P2 <; int N n f- I (int N) . 

N' , 

The family of all index pairs in N will be denoted by IP(N, f) or simply 
by IP(N). 

Three simple properties of index pairs are summarized in the following. 

Proposition 2.2. 
(2.4) P E IP(N) "* Inv N <; int(PI \P2 ). 

(2.5) P, Q E IP(N) "* P n Q E IP(N) , 
(2.6) XEPI , f(x) ~ N,,*XEP2 . 

One can put forward other, slightly less restrictive definitions of the index 
pair. The above definition is convenient for us, because it is handy in proofs 
and not overrestrictive, as the following shows. 

Theorem 2.3 (see also [RS and Mrl]). For every neighborhood W of K there 
exists an index pair P in N such that PI \P2 <; W. (For proof see §5.) 

As in the continuous case, we shall use index pairs to construct the cohomo-
logical Conley index in our case. Unfortunately, we cannot take H* (PI' P2 ) as 
the index, since, unlike the case of the flow, this cohomology does depend on 
the particular index pair (cf. [Mrl]). To overcome this difficulty we need two 
more notions: the index map and the Leray functor. 

For P E IP( N) we define 

S(P) := (PI U f(P2) , P2 U f(P2)) ' 
T(P) := TN(P) := (PI U (X\ int N), P2 U (X\ int N)). 
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Proposition 2.4. Assume P E IP(N). Then 
(2.7) f(P) ~ S(P) ~ T(P), 
(2.8) inclusions ip,S(p) ' is(P),T(P) ' ip,T(P) induce isomorphisms in the 

Alexander-Spanier cohomology. 

Proof. Assume x E Pi' f(x) tt Pi .Then, by (2.1), f(x) tt N and by (2.6), 
x E P2 , i.e., f(x) E f(P2 ) ~ Pi uf(P2 ). This proves the first inclusion in (2.7). 
The second inclusion follows from (2.1). 

We have 

(PI U f(P2 ))\(P2 U f(P2 )) = PI \P2 \f(P2 ) = PI \P2 , 

T(PI )\T(P2 ) = (PI \P2 ) n int N = PI \P2 , 

and (2.8) follows from the strong excision property of the Alexander-Spanier 
cohomology (see [Sp, Chapter 6.5, Theorem 5]). 0 

Formula (2.7) shows that the contraction of f to the pair of pairs (P, T(P)) 
is well defined. Introduce the notation 

fp := fp ,T(P) , 

Since by (2.8), H* (i p) is an isomorphism, we can pose the following: 

Definition 2.5. The endomorphism H* (fp) 0 H* (i p) -I of H* (P) will be called 
the index map associated with the index pair P and denoted by I p . 

The index map was first introduced in [Mrl]. 
In §4 we shall construct a functor L: g' E -+ g'I , which we call the Leray 

functor, which restricted to g'I is an identity (see Proposition 4.1). 
Applying the Leray functor to (H* (P) ,I p) we obtain an object of g' E , 

which will be called the Leray reduction of the Alexander-Spanier cohomology 
of the index pair P. 

Now we are able to formulate the main results of the paper. 

Theorem 2.6. Assume f: X -+ X is a homeomorphism and K is an isolated 
invariant set with respect to f. Then for all N, M isolating neighborhoods 
of K and P E IP(N). Q E IP(M) the Leray reductions of Alexander-Spanier 
cohomologies L(H*(P) ,Ip) and L(H*(Q) ,IQ) are isomorphic (the proof will 
be given in §6). 

Corollary 2.7. The Leray reduction of the Alexander-Spanier cohomology of an 
index pair of an isolated invariant set K depends only on K. 

Definition 2.8. The common value L(H*(P) ,Ip) for all index pairs P of K 
will be called the co homological Conley index of K (or briefly the index of K) 
and denoted by C(K,f) , or simply by C(K) when f is clear from context. 

Obviously, C(K) is a graded module over the ring =: equipped with an 
endomorphism of degree zero. The nth component of C(K) will be denoted 
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by Cn(K). Thus C(K) = {Cn(K)} , where Cn(K) is a module over:::: with an 
endomorhpism. 

The reader familiar with the Conley index for flows should note that if f is 
the time-one map of a flow and K is an isolated invariant set, then there exists 
an index pair P both in the flow and homeomorphism sense. Moreover, fp is 
homotopic to i p , thus Ip is an identity. Consequently 

C(K) = L(H* (P) , id) = (H* (P) , id) = H* (P) . 

Hence we have the following. 

Theorem 2.9. The cohomological Conley index of an isolated invariant set of a 
flow coincides with the corresponding cohomological Conley index of the time-one 
map of this flow. 

Hence our index can be considered as a generalization of the cohomological 
Conley index for flows. 

The empty pair (0,0) is obviously an index pair of the empty set. Since 
H* (0,0) = 0 and L(O) = 0 (see Proposition 4.6) we get, as in the continuous 
case, the following important property of the Conley index. 

Proposition 2.10. The Conley index of the empty set is zero. In other words, a 
nonzero Conley index implies a nonempty isolated invariant set. 

This means that our index can be used to establish the existence of nonempty 
isolated invariant sets. We shall need, however, some tools for computing the 
index. As in the case of a flow, we have the continuation and additivity prop-
erties. 

Theorem 2.11 (homotopy (continuation) property). Assume A ~ R is a compact 
interval and f: A x X ---> X is a continuous map such that for each A E A 

h: X 3 x ---> f(A, x) EX 

is a homeomorphism and N is an isolating neighborhood with respect to h. 
Then C(Inv(N, h)) does not depend on A E A (jor proof see §7). 

Theorem 2.12 (additivity property). Assume an isolated invariant set K is a 
disjoint sum of two other isolated invariant sets K" K2 . Then 

C(K) = C(K,) x C(K2). 

(For proof see §7.) 

3. THE INDEX OF A HYPERBOLIC FIXED POINT 

AND A HYPERBOLIC PERIODIC ORBIT 

As we have seen, in case of the time-one map of a flow, the distinguished 
isomorphism of an index is always the identity. This is not true in general. The 
simplest example is a hyperbolic fixed point. 
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Recall that a linear map A: Rn -t Rn is called hyperbolic iff A is an isomor-
phism and no eigenvalue of A has modulus one. A point x E Rn is called a 
hyperbolic fixed point of a C'-diffeomorphism f: Rn -t Rn iff f(x) = x and 
Df(x) is hyperbolic. 

Let Xo be a hyperbolic fixed point of f. Let k denote the number of eigen-
values of Df(xo) with modulus greater than one (counted with multiplicity). 
Let 1 denote the number of real eigenvalues of Df(xo) which are less than 
-1 . Then the pair (k, I) will be called the Morse index of xo. 

Theorem 3.1. Assume Xo is a hyperbolic fixed point of a C'-diffeomorphism 
f: Rn -t Rn. Then {xo} is an isolated invariant set and 

(3.1 ) Ci({XO}) = {~2'(-I)lid) 
where (k, I) is the Morse index of {xo}. 

for i =I- k, 

for i = k, 

The shape index of {xo} is the shape of the sphere of dimension k. Hence" 
contrary to our index, it does not reflect whether the map is orientation pre-
serving or reversing. 

It is worth mentioning that the only feature of the Leray functor L which 
is necessary to prove the above and the following theorems is the fact that L 
restricted to it'I is an identity. It is always so if we succeed in constructing an 
index pair P with I p an isomorphism. However, one should note that there 
exist isolated invariant sets which do not admit such index pairs. 

Proof of Theorem 3.1. Without loss of generality we can assume that Xo = O. 
Put A := Df(O). 

First we shall consider the case when f is linear. Then A = f and Rn 

can be decomposed into two invariant subspaces on which either A or A -, is 
expanding (cf. [Ni, Lemma 2.2]). Thus {O} is the only compact trajectory of 
f = A and consequently it is an isolated invariant set. 

In order to prove (3.1), first assume that A has n different eigenvalues. 
Choose a basis in which A has the block-diagonal matrix with one-dimensional 
blocks [A) corresponding to the real eigenvalues Aj and two-dimensional 
blocks 

[ r cos rp . r sin rp . ] 
J J J J 

-rjsinrpj rjcosrpj 
corresponding to the pairs of complex eigenvalues rj exp( -irp), rj exp(irp) . 
For t E [0, 1] let AI be a map with the matrix of the same block-diagonal 
structure and with corresponding blocks of the form 

and 
h(r t) [ co~ trpj 

J' - sm trp. 
J 
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where 
h(u, t) := tu + (1 - t) sgn(u) exp(sgn(lul- 1) In2). 

Then the origin is the only nontrivial isolated invariant set with respect to each 
At and Theorem 2.11 shows that C( {O}, AI) = C( {O}, Ao) . Thus it suffices to 
assume that A = Ao has the diagonal matrix in which -2 appears / times, 2 
appears k - / times, and the remaining nonzero entries are ~ or - ~ . 

Without loss of generality we can assume that Rn = Rk X Rn- k is a de-
composition of Rn into invariant subspaces corresponding to eigenvalues with 
modulus greater than one and less than one, respectively. Then A = B xC, 

h B Rk Rk C Rn- k Rn- k I' . h d' 1 . were : -> ,: -> are mear maps WIt lagona matnces. 
In particular, we can assume that B has the matrix 

200 
o 2 

2 

o 

-2 

-2 0 
o -2 

with (k - /) positive entries and I negative entries. 
Put 

N:= {(x ,y) E Rk X Rn - k Illxll ::; 2, Ilyll ::; 2}, 
PI := {(x ,y) E N Illyll ::; I}, 
P2 := {(x ,y) E PI Illxll ~ I}, 

Bk := {x E Rklllxli ::; I}, 

Sk-I := {x E Rk Illxll = I}. 
It is easy to verify that P := (PI' P2 ) is an index pair of {O} . 

Let the mappings 

be given by 

d: (B k ,Sk-I) -> (Bk ,Sk-I) and 
k k-I 

it: (B ,S ) -> (PI ' P2 ) 

d(x, ,Xl"" ,Xk):= (XI ,x2' ... ,xk_I ' - xk_I+I' ... , -xk), 
a(x) := (x, 0) 

From the homotopy commutative diagram 

P __ Ap,--_, T(P) +-, ___ ip __ P 

d 
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we get the following commutative diagram in cohomology: 

H*(P) 
Ip 

H*(P) +--

0-1 10-
H*(Bk ,Sk-I) +-- H*(Bk ,Sk-I) 

d-

The homotopy and strong excision properties of the Alexander-Spanier coho-
mology imply that 0:* is an isomorphism. Thus 

because obviously d* is an isomorphism (cf. Proposition 4.1). It is now 
an elementary task of homology and cohomology theories to verify that 
(Hi (B k ,Sk-I), d ') is given by the right-hand side of formula (3.1). 

In order to obtain that formula in case of a linear map with multiple eigen-
values it suffices to construct a homotopy joining the map A with a close map 
A' which has pairwise different eigenvalues and then apply Theorem 2.11 and 
the case just proved. 

Now we shall consider the case of a general f. The fact that also in this 
case {O} is an isolated invariant set follows directly from the linear case and 
the Hartman-Grobman theorem (see [Ni, Theorem 2.2]). 

We have 
f(x) = Ax + r(x), 

where r(x) = o(llxlJ). For A E [0,1] define 

1;Jx) := Ax + Ar(x). 

For each fixed A E [0, 1] , we can apply the Hartman-Grobman theorem to find 
c5(A) > 0 such that B(c5(A)) := {x E Rn : Ilxll :::; c5(A)} is an isolating neigh-
borhood with respect to 1;, isolating {O}. A compactness argument together 
with Corollary 7.3 shows that there exists c5 > 0 such that B(c5) is an isolating 
neighborhood with respect to 1;, for each A E [0, 1]. Obviously, we can make 
J small enough to ensure that Inv(B(c5),f) = {O}. Since 1; = f, fa = A, the 
thesis now follows from the homotopy invariance of the Conley index (Theo-
rem 2.11) and the proved linear case. D 

Theorem 3.2. Let Xo E Rn be a hyperbolic periodic orbit of f, i.e., a hyperbolic 
fixed point of r for some dEN. Let (k, l) be the Morse index of Xo with 
respect to r . Assume d is the minimal period of xo' i.e., l (xo) "=I Xo for i = 
1 ,2, ... ,d - 1. Then K:= {xo' f(xo) , ... ,r- I (xo)} is an isolated invariant 
set and 

for i "=I k, 
for i = k, 
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where D: 3 d -+ 3 d is given on the canonical basis {eJ i= I d of 3 d by D( ei) = 
ei+1 for i = 1,2, ... ,d - 1, D(ed) = (-I)le l . ' 

Proof. Choose N an isolating neighborhood of {xo} with respect to g := 
rand P E IP(N, g). Put Xi := /(Xo), Mi := /(N), Qi := /(P) for 
i = 0,1, ... ,d - 1. Taking N smaller, if necessary, we can assume that 
MinMi =0 for i-=/=J and f(Mi)nMi =0 for J-=/=(i+l) modp. 

Obviously, Xi are hyperbolic fixed points of g with the same Morse index 
(k, l). One can easily verify that Qi E IP(Mi , g) for i = 0,1, ... ,d - 1. It 
follows that M:= U Mi is an isolating neighborhood with respect to f, which 
isolates {xo, Xl , ... ,Xd- I}. Moreover, Q:= U Qi E IP(M,f). We have 

H*(Q) = H*(Qo) x ... X H*(Qd-I). 

Hence it follows from (3.1) that Hi(Q) is zero for i -=/= k and Hk(Q) is a 
d-dimensional free module. 

Choose arbitrarily a generator ad -I E Hk (Qd -I) and define recursively a 
sequence {ai}i=O,d_1 of generators in Hk(Qi) by a i - I := Hk(f)(a i) for i = 
1,2, ... ,d - 1. Then {el=O,d-1 with e i := (0, ... ,ai , ... ,0) is a basis of 
Hk (Q) . It is straightforward to verify that I Q,f( e1) = ei - I for i = 1 ,2, ... , d-
1. We also have by (3.1) that 

° d-I d-I IQ,f(e ) = IQJd(e ) = (0, ... ,0, Ip ,g(a )) 
I d-I I d-I =(O, ... ,O,(-I)a )=(-I)e . 

This shows that IQ,f is an isomorphism, hence (H*(Q) ,/Q,f) = C(K) is of 
the form (3.2). 0 

4. THE LERAY FUNCTOR 

In this section we construct the Leray functor and prove its main properties. 
Let (F, f) E g E. Define the generalized kernel of f as 

gker(f) := U{f- n (0) I n EN} . 

Since f(gker(f)) ~ gker(f) , we have an induced monomorphism 

/: F I gker(f) 3 [X] -+ [f(x)] E F I gker(f). 

Put 

(4. I) LM(F,f) := (F I gker(f), /) E g M. 

Assume (jJ: (E, e) -+ (F ,f) is a morphism. The commutativity of the dia-
gram (I. I) implies that (jJ(gker(e)) ~ gker(f); thus we have an induced mapping 
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q/: E / gker(e) -+ F / gker(f) . Obviously, the diagram 

commutes. We put 
( 4.2) 

E/ gker(e) e' 
---+ E / gker( e) 

F / gker(f) ---+ F / gker(f) 
f' 

LM(rp) := rp'. 
It is straightforward to verify that (4.1) and (4.2) define a covariant functor 

LM: g' E -+ g'M . 
Now assume that (F, f) E g'M. Define the generalized image of f as 

gim(f) := n{fn(F)tn E N}. 

Since f(gim(f)) ~ gim(f) , we can consider the contraction 

(': gim(f) 3 x -+ f(x) E gim(f). 

Obviously, (' is a monomorphism, as a contraction of a monomorphism. To 
see that (' is also an epimorphism, take Y E gim(f). Then there exists a 
sequence {xn t n E N} ~ F such that fn(xn) = y for all n EN. Since f is 
a monomorphism, we get f(xn+ l ) = xn and fn(xn+ 1) = XI for all n EN. 
Thus XI E gim(f) and y = f(x l ) E f(gim(f)). This shows that (' is an 
isomorphism. Put 
(4.3) LI(F ,f) := (gim(f) , (') E g'I. 

Assume (E, e), (F,f) E g'M and rp: (E, e) -+ (F, f). It follows from 
the commutativity of the diagram (1.1) that rp(gim(e)) ~ gim(f). Let rp" 
denote the contraction rp": gim(e) 3 X -+ rp(x) E gim(f). We then have the 
commutative diagram 

gim(e) e" 
---+ gim(e) 

gim(f) ---+ gim(f) 
J" 

which shows that (4.3) together with 

LI(rp) := rp" 
defines a covariant functor 

LI: g'M -+ g'I . 
The functor 

L:g'E-+g'I 
defined as the composition Llo LM will be called the Leray functor. 

Note the following obvious proposition. 
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Proposition 4.1. If (E, e) E ? I then L(E, e) = (E, e). Moreover, if also 
(F ,f) E ?I and rp: (E ,e) --+ (F,f) then L(rp) = rp. (Identities here are 
understood as natural, obvious isomorphisms.) 

Observe that if (E, e) E ? E then e can be considered as a morphism 
e: (E , e) --+ (E , e) , because obviously the diagram 

E~E 

E --+E 
e 

commutes. In particular, L(e) makes sense and it can be understood both as a 
morphism in ? I and as the endomorphism with which L(E, e) is equipped. 

Remark 4.2. If E E? and e E ?(E ,E) is an isomorphism then e: (E ,e) --+ 

(E , e) is an isomorphism in ? I . 

Definition 4.3. We say that two objects (E, e) , (F,f) E ? E are linked by 
rp E ?(E ,F), If/ E ?(F ,E) iff the following diagram commutes 

(4.4) 

E~E 

'1/1' 
F --+F 

f 
Note that the commutativity of diagram (4.4) in particular means that rp: (E , e) 
--+ (F,f) , If/: (F,f) --+ (E ,e), and the following diagram commutes. 

(E,e) ~ (E,e) 

~1 / 1~ 
(F ,f) --+ (F ,f). 

f 

Applying the Leray functor to the above diagram, we get the following com-
mutative diagram in ? I : 

L(E,e) ~ L(E,e) 

L(~) 1 ~ 1 L(~) 
L(F,f) --+ L(F ,f). 

L(f) 

Since L(e) and L(f) are isomorphisms in ? and consequently also in ? I, 
we see that L(rp) and L(If/) are also isomorphisms. This proves the follow-
ing theorem, which allows us to overcome the lack of the trajectory-defined 
homotopy in the construction of the Conley index for the discrete case. 
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Theorem 4.4. Assume (E, e) and (F, f) are linked by rp E it'(E, F), IfI E 
it'(F ,E). Then L(rp), L(IfI) are isomorphisms; in particular, L(E ,e) and 
L(F,f) are isomorphic. 

We finish this section with the following two simple propositions. 

Proposition 4.5. The product of (E , e) , (F , f) E it' E (it' I) in the category it' E 
(it'I) is given by 

(E ,e) x (F ,f) := (E x F,e x f). 

Moreover, 
L((E, e) x (F ,f)) = L(E, e) x L(F ,f). 

Proposition 4.6. L(O) = 0. 

5. CONSTRUCTION OF INDEX PAIRS FOR THE DISCRETE CASE 

We begin with the following 

Proposition 5.1. 
(5.1) A ~ B ~ Inv A ~ Inv B, Inv + A ~ Inv + B, Inv - A ~ Inv - B ; 
(5.2) Inv(Inv A) = Inv A, Inv+(Inv+ A) = Inv+ A, Inv - (Inv- A) = Inv - A; 
(5.3) Inv A = Inv+ A n Inv- A. 

As a consequence of (5.2) we get 

Proposition 5.2. For every A ~ X Inv A is invariant. It is the maximal invariant 
subset of A. 

Proposition 5.3. If N is compact then Inv + N, Inv - N, Inv N are compact. 

Lemma 5.4. Assume M is compact and for every n E N there exists xn E M 
such that /(Xn)EM for all i=0,1,2, ... ,n. Then InvM#0. 

Proof. Put y n = fn (x2n ) . Then / (y n) E M for i E {-n, -n+ 1, ... , n-l , n} . 
Without loss of generality we can assume that y n -+ y EM. Fix k E Z. Since 
for almost all n E N we have fk(Yn) EM; there is also fk(y) EM. Thus 
y E Inv M. 0 

For x E N put 
+ -i . O:N(X):= sup{n E Z If (x) EN for l = 0, 1, ... ,n}, 

wN(x):= sup{n E Z+ I/(x) E N for i = 0, 1, ... ,n}. 

We shall need the following m.v. maps 

FdN := FdN./ N 3 x -+ {lex) I i = 0, 1, ... ,wN(x)} ~ N 

and 
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Lemma 5.5. The m.v. mappings FdN , BkN are u.s.c. on sets N\Inv+ N, 
N\ Inv - N, respectively. 
Proof. Consider FdN . Let x E N\Inv+ Nand U ;2 FdN(x) be open. Put 
n := wN(x). Then f n+1(x) ¢. N. Choose V a neighborhood of x so 
that /(v) ~ U for i = 0,1, '" ,n and f n+1(v) ~ X\N. Then FdN(V) ~ 
U{/(V) I i = 0, 1, ... ,n} ~ U. 

The case of BkN is similar. 0 

Lemma 5.6. Assume Z is compact and Z n Inv+ N = 0. Then FdN(Z) is 
compact and 

FdN(Z) n Inv+ N = 0, 

i.e., N\FdN(Z) is a neighborhood of Inv+ N. 
Proof. Compactness of FdN(Z) follows directly from the above lemma and 
Proposition 1.1. The remaining assertion is obvious. 0 

Lemma 5.7. Assume Z is a compact neighborhood of Inv - N in N. Then 
FdN(Z) is compact. 
Proof. It suffices to show that FdN(Z) is closed. Let {Yn} ~ FdN(Z) be a 
sequence converging to yEN. If Y E Inv- N then y E Z ~ FdN(Z). Thus 
assume y ¢. Inv- N, i.e., f-k(y) ¢. N for some kEN. Since Yn E FdN(Z) , 
one can find sequences Un} ~ Z+, {Zn} ~ Z such that In(zn) = Yn' jn E 
{O, 1, ... ,wN(zn)}' Since f-k(w) ¢. N for w sufficiently close to y, we see 
that the sequence Un} is bounded. Taking subsequences, if necessary, we can 
assume that jn -> j E Z+, zn -> Z E Z. Thus l(z) = y and /(z) EN for 
i = 0, 1, ... ,j, which means that y E FdN(Z). 0 

Lemma 5.8. Assume A is compact, positively invariant with respect to N, and 
Inv - N ~ A. Then for every open neighborhood V of A there exists a compact 
neighborhood Z of A in N such that 

(5.4) 

Proof. Compactness of N\ V implies that there exists kEN such that f- k (y) 
¢. N for all y E N\V. Let x E A and 

n(x) := min(k, wN(x)). 

Obviously 
fi (x) E A ~ V for all j = 0,1, ... ,n(x) . 

Thus one can find for every x E A a compact neighborhood Wx of x in N 
such that 

/ (Wx ) ~ V for j = 0,1, ... ,n(x) . 

Taking a smaller neighborhood, if necessary, we can also ensure that n(z) :::; 
n(x) for all Z E Wx ' By compactness of A there exists a finite Ao ~ A such 
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that AS; Z := U{Wx I x E Ao}' Then 

(5.5) fJ(z) E V for all z E Z and j = 0, 1, ... ,n(z) . 

Obviously Z is a neighborhood of A. In order to show that such Z satisfies 
(5.4) take x E FdN(Z). Then there exist z E Z and m E Z+ such that 
x = fm(z) and m = wN(z). If m ::; k, then m ::; n(z) and x E V by 
(5.5). Thus assume m > k. If x iV, then f- k (x) iN, which contradicts 
f-k(x) = fm-k(z) EN. Thus x E V. This finishes the proof. 0 

Lemma 5.9. Assume U and V are open neighborhoods of Inv + Nand Inv - N, 
respectively. Then there exists an index pair P in N such that 

( 5.6) 
Proof. Without loss of generality we can assume that 

Un V S; intNnf-l(intN). 

Using Lemma 5.8 choose a compact neighborhood Z of A := Inv - N such that 
FdN(Z) S; V. Put PI := FdN(Z) and P2 := FdN(N\U). Then by Lemmas 5.6 
and 5.7, PI' P2 are compact and obviously they are positively invariant with 
respect to N. There is also Inv - N S; intN Z S; intN PI S; PI S; V. Since 
(N\U) n Inv+ N = 0, we get from Lemma 5.6 that FdN(N\U) n Inv+ N = 0. 
Hence Inv+ N S; N\P2 • There is also N\U S; FdN(N\U) = P2 , thus N\P2 S; 
U. Finally, 

PI\P2 S; Un V S; intNnf-l(intN), 

which shows that P:= (PI' P2 ) E IP(N) . 0 

We are now able to prove Theorem 2.3 on the existence of index pairs. 

Proof of Theorem 2.3. Choose neighborhoods U of Inv+ N and V of Inv- N 
in N such that Un V S; W. Then by Lemma 5.9 there exists an index pair P 
in N such that (5.6) is satisfied. Thus we have PI \P2 S; Un V S; W. 0 

We shall need some more lemmas on the existence of index pairs. We begin 
with a definition which is important in the construction of the cohomological 
index. 

Definition 5.10. Assume P, Q E IP(N). We shall say that P is related to Q 
iff P S; Q and 

cl(QI\P2 ) S; intNnf-l(intN). 

Remark 5.11. If P is related to Q then (QI' P2 ) E IP(N) . 

Lemma 5.12. For every isolating neighborhood N there exist P, Q E IP(N) 
such that P S; int N Q and P is related to Q. 
Proof. Let W be a neighborhood of Inv N such that 

cl W S; intNnf-l(intN). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



LERAY FUNCTOR AND COHOMOLOGICAL CONLEY INDEX 165 

By Theorem 2.3 we can choose QI and P2 such that (QI' P2) E IP(N) and 
QI \P2 ~ W. Then also 

(5.7) cl(QI \P2) ~ cl W ~ int N n f- I (intN). 

Select V' open in N such that 
, , + 

P2 ~ V ~ cl V ~ N\ Inv N. 

Using Lemma 5.9 we can find (PI' Q2) E IP(N) such that QI C intN PI ' 

N\Q2 ~ V:= N\ cl V'. Then 

P2 ~ V' ~ cl V' = N\V ~ Q2' 

hence P2 ~ intN Q2· Put P := (PI' P2) and Q := (QI' Q2). We have just 
shown that P ~ intN Q. There are also 

PI\P2 ~ QI\P2 ~ intNnf-l(intN), 

QI\Q2 ~ QI\P2 ~ intNnf-l(intN), 

hence P, Q E IP(N). Finally (5.7) implies that P is related to Q. 0 

Proposition 5.13. Assume A is compact and positively invariant with respect to 
N, An Inv+ N = 0, and A ~ V for some V open in N. Then there exists a 
compact neighborhood Z of A in N such that F d NZ ~ V . 
Proof. Positive invariance of A with respect to N implies that F dNA ~ A ~ 
V. Using the upper semicontinuity of FdN we can find for every x E A a 
compact neighborhood Vx in N such that FdN(~) ~ V. Choose a finite 
subset Ao ~ A such that Z := U{ VX I x E Ao} :2 A. Then Z is compact and 
FdN(Z) ~ V. 0 

Proposition 5.14. Assume P, Q, R E IP(N) , P ~ Q ~ R. If P, R are related 
then so are P, Q and Q, R. 

Lemma 5.15. Assume P, R E IP(N), P, R are related, and P ~ intN R. Then 
there exists Q E IP(N) such that P ~ intN Q, Q ~ intN R, P is related to Q, 
Q is related to R. 
Proof. Using Proposition 5.13 and Lemma 5.8 for i = 1,2 find a compact 
neighborhood Ai of Pi such that FdN(Ai) ~ intNRi · Put Qi:= FdNAi. QI' 
Q2 are obviously positively invariant with respect to N. There are 

Inv - N ~ intPI ~ intN Al ~ intN QI ' 

Inv + N ~ N\R2 ~ N\Q2 ~ N\A2. 
Thus (2.2) is satisfied and QI' Q2 are compact by Lemmas 5.6, 5.7. 

We have also 
QI \Q2 ~ RI \P2 ~ int N n f- I (int N). 

Thus Q:=(QI' Q2)EIP(N). P~intNQ, Q~intNR are obvious. The 
remaining part of the lemma follows from Proposition 5.14. 0 
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6. CONSTRUCTION OF THE COHOMOLOGICAL CONLEY INDEX 

Assume A ~ B ~ N are compact and A, B are positively invariant with 
respect to N. Define the set 

G(B) := G A ,N(B) := A U (f(B) n N) . 

The properties of the set G(B) are summarized in the following easy 

Proposition 6.1. 
(6.1) G(B) is compact and positively invariant with respect to N, 
(6.2) A ~ G(B) ~ B, 
(6.3) f(B) n N ~ G(B). 

Note that by (6.1) G = G A N can be considered as a map from the family 
of all compact subsets of N, positively invariant with respect to N into itself. 
In particular, for all n E N Gn (B) , the nth iterate of G at B is defined. 

Lemma 6.2. Assume Invcl(B\A) = 0. Then there exists n E N such that 
Gn(B)=A. 

Proof. Assume the contrary. Then A =I- Gn(B) for all n EN. However, 
A ~ Gn(B); thus there exists a sequence {Yn} ~ N such that Yn E Gn(B)\A. 
This means that for every n E N there exists xn E B\A ~ cl(B\A) such that 
l (xn) E B\A ~ cl(B\A) for i = 0,1, ... ,n. It follows now from Lemma 5.4 
that Inv cl( B\A) =I- 0 , a contradiction. 0 

Assume P, Q E IP(N) , P ~ Q. Put 

G(Q) := Gp ,N(Q) := (GP1 ,N(QI)' Gp2 ,N(Q2))' 

Lemma 6.3. If P, Q E IP( N), P is related to Q, then 
(6.4) G(Q) E IP(N) , 
(6.5) P is related to G(Q), G(Q) is related to Q, 
(6.6) f(Q) n N ~ G(Q). 

Proof. Let R i := Gp"N(Qi) for i = 1,2. It follows from Proposition 6.1 that 
R I , R2 are compact, positively invariant with respect to N, and P ~ R ~ 
Q. Thus Inv - N ~ int N PI ~ int N R I' Inv + N ~ N\ Q2 ~ N\R2' R I \R2 ~ 
QI \P2 ~ int Nnf- I (int N) . The last inclusion follows from Remark 5.11. This 
proves that R E IP(N). We also have that 

cl(R I \P2) ~ cl(QI\P2 ) ~ intNnf-l(intN), 

cl(QI\R2 ) ~ cl(QI\P2) ~ intNnf-1(intN), 

which proves (6.5). Property (6.6) follows from (6.3). 0 

Theorem 6.4. Assume f: X --> X is a homeomorphism, N is an isolating neigh-
borhood with respect to f, and P, Q E IP( N), P ~ Q. Then the inclusion 

I: (PI ,PI nP2 ) --> (QI ,QI nQ2) 
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induces an isomorphism LH*(I) := L(H*(I)): L(H*(Q) ,IQ) --t L(H*(P) ,Ip). 
Proof. The proof consists of four steps. 

Step 1. In this step we make the following three additional assumptions: 
(6.7) P2 c;;. PI' Q2 c;;. QI ' 
(6.8) P is related to Q, 
(6.9) f(Q) c;;. TN(P). 

Condition (6.9) enables us to define the mapping 

fQp: Q 3 x --t f(x) E TN(P) 

and 
* * . -I I Qp := H (fQp) 0 H (lp) . 

We have the following commutative diagram, in which vertical arrows denote 
inclusions: 

P ~ TN(P) 

11~ 1 
ip 

f---- P 

Q ---> TN(Q) f---- Q 
fQ iQ 

Applying H* to the above diagram and removing H*(TN(P)) , H*(TN(Q)) , 
we obtain the following commutative diagram: 

H*(P) ~ H*(P) 

H"{l)! ~ ! H"{l) 

H*(Q) f---- H*(Q) 
IQ 

which shows that (H*(P) ,Ip) and (H*(Q) ,IQ) are linked. Theorem 4.4 then 
shows that LH*(I) is an isomorphism. 

Step 2. Now we assume that only (6.7) and (6.8) are satisfied. We see from 
Proposition 5.1 that 

Invcl(QI \PI ) c;;. cl(QI \PI ) n Inv N c;;. cl(N\PI ) n intN PI = 0; 

thus Inv(QI \PI ) = 0. Similarly, 

Inv cl(Q2 \P2) c;;. Q2 n Inv N c;;. Q2 n (N\Q2) = 0; 

i.e., also Invcl(Q2 \P2 ) = 0. 
Thus we can apply Lemma 6.2 to find n E N such that Gn (Q) = P. Put 

Qi := d (Q). Then an induction argument based on Lemma 6.3 shows that 
{Qi} i=O ,n is a sequence of index pairs in N such that QO = Q, Qn = P, 
and Qi+1 is related to Qi, f(Qi) n N c;;. Qi+l. Let Ii: Qi+1 --t Qi de-
note inclusion. It follows from Step 1 applied to index pairs Qi+ I, Qi that 
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LH* (z i): LH* (Qi) -+ LH* (Qi+ I) is an isomorphism and consequently also 
LH*(z) is an isomorphism as a superposition of isomorphisms LH*(z). This 
finishes the proof of Step 2. 

Step 3. Now we assume that the only additional assumption is (6.7). Put RI := 
PI U Q2' R2 := PI n Q2' Then R I , R2 are compact, positively invariant with 
respect to N, and 

Inv- N S;;; intNPI S;;; intNR I , 

We also have 
PI\R2 S;;; PI\P2 S;;; intNnf-l(intN), 

RI \Q2 S;;; QI \Q2 S;;; intN n f- I (intN). 

This shows that (PI' R2 ), (RI ,Q2) E IP(N). (Note that (RI' R2) need not be 
an index pair.) Consider the following commutative diagram of inclusions: 

(PI ,P2 ) ~ (QI ,Q2)' 

Since PI \R2 = PI \ Q2 = R 1\ Q2 ' it follows from the strong excision property of 
the Alexander-Spanier cohomology that z~ is an isomorphism; hence LH* (zo) 
is also an isomorphism. It is straightforward that (PI' P2) is related to (PI' R2) 
and (RI ,Q2) is related to (QI' Q2) . Thus we can apply Step 2 to conclude that 
LH* (II) and LH* (Z2) are also isomorphisms. Hence 

LH*(z) = LH*(zl) 0 LH*(zo) 0 LH*(Z2) 

is an isomorphism, which finishes the proof of Step 3. 

Step 4. No additional assumptions. Put Q; := Q2 n QI' P~ := P2 n PI' It is 
obvious that P' := (PI ,P~), Q' := (QI ,Q;) are index pairs in N. Thus the 
assertion of the theorem follows directly from Step 3 applied to P' and Q'. 
o 
Corollary 6.5. For any P, Q E IP(N), L(H*(P) ,Ip) and L(H*(Q) ,IQ) are 
isomorphic. 
Proof. Let R:= P n Q E IP(N). Since R S;;; P and R S;;; Q, the above theorem 
implies that L(H*(P) ,Ip) = L(H*(R) ,IR) = L(H*(Q) ,IQ)' 0 

Proof of Theorem 2.6. First consider the case M S;;; N. It follows from Corol-
lary 6.5 that it suffices to show only the existence of index pairs P E IP(N) 
and Q E IP(M) such that L(H*(P),Ip) and L(H*(Q),IQ) are isomorphic. 
To this end choose P E IP(N) such that PI \P2 S;;; int M n f- I (int M) (the 
existence of such a pair is implied by Theorem 2.3) and put Qi := M n Pi for 
i = 1,2. One can easily verify that Q := (QI ,Q2) E IP(M). We also have 
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QI \Q2 = M n (PI \P2 ) = PI \P2 ; thus the inclusion Q ~ P induces an isomor-
phism of H*(Q) and H*(P) by the strong excision property of the Alexander-
Spanier cohomology, which shows that L(H*(P),Ip) and L(H*(Q),IQ) are 
also isomorphic. 

If M, N are arbitrary isolating neighborhoods isolating K then the as-
sertion of the theorem follows from the just proved case applied to isolating 
neighborhoods M n N, Nand M n N, M . 0 

7. PROOFS OF HOMOTOPY AND ADDITIVITY PROPERTIES 

Assume A ~ R is a compact interval and f: A x X ---> X is continuous and 
for each A E A !;.: X ---> X given by f;Jx) := f(A, x) is a homeomorphism. 
For .1 ~ A consider the mapping 

f(.1): .1 x X 3 (A, x) ---> (A ,f(A, x)) E .1 x X. 

Note the following simple 

Proposition 7.1. For every A E .1 the set {A} x X is invariant with respect to 
f(.1) . 

We will simply write A or .1 instead of !;. or f(.1) in all cases where !;. or 
f(.1) appears as a parameter. 

Proposition 7.2. Assume N ~ X is compact. Then the m. v. mappings 

are u.s.c. 
Proof. Fix Ji, E A and assume the mapping 

A ---> Inv - (N ,A) 

is not u.s.c. at Ji,. Then there exist U open in N such that Inv - (N , Ji,) ~ U 
and a sequence {An} ~ A, An ---> Ji" such that Inv-(N,An) ct. U. Choose 
zn E Inv-(N ,An)\U. Taking a subsequence, if necessary, we can assume that 
Z n ---> Z for some Z E N\ U. Since N is compact, we get from (!;.) -k (z n) E N 
that (f,J- k (z) E N for all k E Z+ . Thus Z E Inv - (N, Ji,) ~ U, a contradiction. 

The proof of the remaining case is similar. 0 

Corollary 7.3. If for some Ji, E A N is an isolating neighborhood with respect 
to ~, then N is an isolating neighborhood with respect to !;. for A sufficiently 
close to Ji,. 

Proof. We have Inv(N, Ji,) ~ int N. Since 

Inv( N , Ji,) = Inv - (N , Ji,) n Inv + (N , Ji,) , 

there exist open neighborhoods U, V of Inv - (N , Ji,), Inv + (N , Ji,), respec-
tively, such that U n V ~ int N. Using the above proposition one can find 
a neighborhood Ao of Ji, in A such that A E Ao implies Inv - (N , A) ~ U, 
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Inv+(N ,A) ~ V, i.e., Inv(N ,A) ~ Un V ~ intN. This shows that N is an 
isolating neighborhood with respect to h for A E Ao . D 

Lemma 7.4. Assume that N is an isolating neighborhood with respect to f/1 for 
some 11 EA. If P, Q E IP(N,}l) are such that P ~ intN Q and P is related to 
Q, then there exists Ao' a neighborhood of 11 in A, such that for every A E Ao 
there exists P(A) E IP(N ,A) satisfying P ~ P(A) ~ Q. 
Proof. Put P(A) := F dNA (P) ; we will show that for A sufficiently close to 11 
the index pair P(A) satisfies the assertion of the lemma. 

Put Z := N\ intN QI . By Proposition 7.2 and Corollary 7.3 one can find a 
compact neighborhood Ll of 11 in A such that N is an isolating neighborhood 
with respect to hand 

(7.1 ) Inv+(N ,A) ~ N\Q2 for all A Ell. 

In particular, 

because P ~ intN Q. Put g:= f(Ll) , M:= N x Ll. One can easily verify that 
M is an isolating neighborhood with respect to g and 

Inv - (M, g) n Z x Ll = U{Inv - (N, A) n Z x {A} I A E A} = 0, 

Inv + (M , g) n P2 x Ll = U {Inv + (N , A) n P2 x {A} I A E A} = 0 . 

Let x E Z . Then BkN ,fl(X) n PI = 0 and (x, 11) E Z x Ll, i.e., BkM ,g(x, 11) n 
PI x Ll = 0. Thus it follows from the upper semicontinuity of BkM (see ,g 
Lemma 5.5) that there exists an open neighborhood Vx of x in Nand Llx of 
11 in Ll such that 

i.e., 

BkM (y ,A) n PI x Ll = 0 for y E V~ , A E Llx ' ,g 

BkN )(y) n PI = 0 for y E ~ , A E Llx . 
A compactness argument proves that there exists a finite subset Zo ~ Z such 
that Z ~ U{V~ I x E zo}' Put Llo := n{Llx I x E Zo}' Then Llo is a neigh-
borhood of 11 and BkN A (y) n PI = 0 for y E Z, A E Llo . This shows that 
PI (A) = FdN)(PI) ~ N\Z = intN Ql ~ Ql for A E Llo ' 

Now take x E P2 . Then F d N,/1 (x) ~ P2 ~ int Q2' Similar reasoning using a 
compactness argument and the mapping g shows that there exists a neighbor-
hood Lll of 11 such that FdN A(y) ~ intNQ2 for y E P2 and A E Ll l . Thus 
P2 (A) = FdN }(P2 ) ~ Q2 for A Eo Lll . 

It follows from Lemmas 5.6,5.7 that PI(A) and P2 (A) are compact. Ob-
viously they are positively invariant with respect to h and Pi ~ Py,) for 
i = 1,2. Thus we get from (7.1) that 
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for A E.1. A compactness argument with respect to cl(QI \P2 ) shows that for 
A in some neighborhood of J.l we have 

Hence P(A) E IP(N ,A) for A sufficiently close to J.l. 0 

The following lemma strengthens the previous result. 

Lemma 7.5. Assume N ~ X, J.l E A, P, Q E IP( N ,J.l) are as in the previous 
lemma. Then there exists Ao a neighborhood of J.l in A, such that for every 
K E Ao there exists R(K) E IP(N, K) satisfying P ~ R(K) ~ Q and such that 
the inclusions 

induce morphisms 

j: R(K) -t Q 

(: (H*(R(K)) ,IR(K)) -t (H*(P) ,Ip), 

/: (H*(Q)'/Q) -t (H*(R(K)),IR(K)). 

Proof. Applying Lemma 5.15, find R, S E IP(N) such that P ~ intN R ~ 
R ~ intNS ~ S ~ intN Q. It follows from Lemma 7.4 that we can find a 
neighborhood Ao of J.l such that for every A E Ao there exist index pairs 
P(A) , R(A), S(A) satisfying 

P ~ P(A) ~ R ~ R(A) ~ S ~ S(A) ~ Q. 

Fix K E Ao. To show that R(K) satisfies the assertion of the lemma consider 
the following, generally noncommutative diagram 

P f",? TN(P) ---+ 

1 1 
R(K) f" ,R(KI TN(R(K)) ---+ 

1 1 
Q 

,f,',Q 
TN(Q) ---+ 

in which vertical arrows denote inclusions. The diagram is homotopy commu-
tative, because for any A E Ao 

f;JP) ~ f;JP(A)) ~ TN(P(A)) ~ TN(R) ~ TN(R(K)) , 

f;,(R(K)) ~ h(S) ~ f;JS(A)) ~ TII/(S(A)) ~ TN(Q) 
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and f.1, K are joined in Ao by an arc. Thus we get the following commutative 
diagram in the Alexander-Spanier cohomology. 

H*(P) 
(I. ,p)* 

H*(TN(P)) Up)* H*(P) +-- -----t 

i" I I Ii" 
H*(R(K)) I 

(fK ,R!K))" 
H* (TN(R(K))) ~ H*(R(K)) 

rl I Ir 
H*(Q) 

(f# ,Q)* 
H*(TN(Q)) 

(iQ)* H*(Q) +-- -----t 

which, in view of the definition of an index map (see Definition 2.5), finishes 
the proof. 0 

Proof of Theorem 2.11. Obviously it is sufficient to show that for any f.1 E A 
there exists Ao' a neighborhood of f.1, such that for all v E Ao 

C(Inv(N, f.1)) = C(Inv(N,v)). 
Thus fix f.1 E A and using Lemmas 5.12 and 5.15 find index pairs P, Q, R E 
IP(N, f.1) such that P ~ intN Q, Q ~ intN R, P is related to Q, Q is related to 
R. Applying Lemma 7.5 twice we can find Ao' a neighborhood of f.1 in A, such 
that for every A E Ao there exist index pairs P(A) , Q(A) E IP(N ,A) satisfying 
P ~ P(A) ~ Q ~ Q(A) and such that we have the following commutative 
diagram of maps induced by inclusions: 

(H*(P(A)),Ip(A)) 

)01 
) 

Applying the Leray functor to the above diagram we get from Theorem 6.4 that 
LUo) 0 LUI) = LUo 0 i l ), LUI) 0 L(2 ) = LUI 0 i 2 ) are isomorphisms; thus 
LU) is also an isomorphism. Hence 

C(Inv(N ,.u)) = L(H*(P) ,Ip) = L(H*(Q(A) ,IQ(A)) = C(Inv(N ,A)), 

which finishes the proof. 0 

Recall that for P E IP(N) S(P):= (PI U f(P2 ) 'P2 U f(P2 )). Property (2.8) 
and the commutative diagram 

H*(S(P)) -----t H*(P) 

fp,s~;/ 1 / 
H*(P) +-- H*(T(P)) 

Ii 
in which the unmarked arrows indicate maps induced by inclusions, imply the 
following proposition. 
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Proposition 7.6. For every P E IP(N) 
* .*-1 

I p = fp ,S(P) 0 1 P ,S(P) . 

Proof of Theorem 2.12. Choose VI' V2 to be disjoint, open neighborhoods of 
KI and K 2 , respectively. For i = 1,2 let Nj be a compact neighborhood of 
K j such that 

(7.2) 

Select p' , P" index pairs of KI and K2 in NI and N 2 , respectively. One can 
easily verify that P := p' uP" is an index pair of K in N := NI UN2 • It follows 
from (7.2) that S(pI) ns(p") = 0; thus H*(S(P)) = H*(S(pI)) X H*(S(P")). 
Obviously also H*(P) = H*(p') X H*(P") and, by Proposition 7.6, 

* .*-1 
Ip = fp,s(p) 0 lp,S(p) 

* * .*-1 .*-1 
= (fp, ,S(P') x fplI ,S(PII)) 0 (lp, ,S(P') X lpll ,S(PII)) 

* .*-1 * .*-1 
= (fp, ,S(P') 0 lp, ,S(P')) X (fPII ,S(PIl) 0 lpll ,S(PII)) 

= Ip, x I pll . 

Thus (H* (P) ,I p) = (H* (pI), I p,) x (H* (P") ,I plI)' Now we get from Proposi-
tion 4.5 

C(K) = L(H* (P),/ p) = L(H* (p') ,/p,) x L(H* (P"),/ plI) = C(K 1) x C(K2 ). 0 

8. EXAMPLES AND FINAL REMARKS 

In this section we take the coefficient ring :=: to be Q, the field of rational 
numbers. We begin with computing the index of some horseshoes. 

Example 8.1 (index of horseshoes). Assume X = S2 = Ru {oo} and f: X ----> X 
is a continuous map such that f maps two rectangles Ro and RI linearly into 
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rectangles SO and Sl as indicated in Figure 1. Then N:= [0, 5] x [0,5] is an 
isolating neighborhood. Take 

PI := [1,4] x [0,5], P2 := [1,4] x ([0,1] U [2,3] U [4,5]). 

Then P := (PI' P2 ) E IP(N,f), H* (P) is a free module with two generators 
a, P, and I p (up to a permutation of a, P) has the matrix 

[~ =~]. 
It follows that I; = 0, H*(P)/ gker(Ip) = 0, and consequently the Conley 
index of the classical Smale's horseshoe is zero. 

This is not the case for the isolated invariant set K of the horseshoe on 
Figure 2. P as above is again an index pair but Ip has the matrix 

[ ~ ~]. 
Since I; = 2Ip, it follows that gker(Ip) = ker(Ip) and we find that 

{ o, k=rfl, 
Ck(K) = (Q,2id), k = 1. 

However, one should note that similar computations for integer coefficients give 
a zero index, because 2 id: Z ---t Z is not an isomorphism, only a monomor-
phism and its generalized image is zero. This shows that sometimes rational 
coefficients may provide more information (unlike the case of homology theory). 

As in the two other cases, one can find that the index of the isolated invariant 
set K of the horseshoe on Figure 3 is 

Ck(K) = {~Q, id), 
k=rfl, 
k=1. 
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Hence for the three horseshoes we obtain three different indices. It follows 
that none of them can be deformed into another one without giving rise to 
bounded trajectories crossing the boundary of N. Otherwise we would contra-
dict the homotopy invariance of the index. 

Example 8.2 (a hyperbolic circle). Consider the map 
I f: S x R 3 (z , x) -+ (a z, - 2x) E SIX R, 

where SI is the unit circle of the complex plane and a E Sl is fixed. The map 
has an invariant isolated circle, namely Sl x {O}. Take 

I 
N:= PI := {(z ,x) E S x Rllxl ~ 2}, 
P2 := {(z ,x) E Nllxl ~ I}. 

It is straightforward to verify that P := (PI' P2 ) E IP(N ,f) and 

for k = 1 or k = 2, 
otherwise. 

Less obvious, though not very difficult, is to see that Ip(a) = -a, Ip(P) = 
-P for both generators a E HI(P), P E H 2(P). It follows that Ip is an 
isomorphism and C(SI x {O}) = (H* (P) ,I p) . 

Example 8.3. Let A <;:; R be a compact interval and let ~: Rn -+ Rn be a family 
of diffeomorphisms with continuous dependence on (A, x) E A x X. Assume 
for A E A D i. = {u"" v}) is an invariant set with respect to ~ such that for 
some fl E A 

(8.1) uJl=vJl' ui.:j:.vi. forA:j:.fl, 
(8.2) ui.' vi. are two hyperbolic fixed points of ~ with no negative eigenval-

ues for A < fl , 
(8.3) {u';' v,;J is a hyperbolic 2-periodic orbit of ~ for A> fl. 
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Then there exists a neighborhood V of D Il such that for some A suffi-
ciently close to f.i there are bounded trajectories of h contained in V but 
disjoint from DA • In other words, contrary to the case of a flow (see [Co, 
Example 1.4.5]), a hyperbolic .periodic solution of a discrete dynamical system 
cannot be continued to two disjoint hyperbolic fixed points without giving rise 
to some other bounded trajectories. 

To see this, assume the contrary. Then the index of two hyperbolic fixed 
points would equal the index of the hyperbolic periodic orbit. This is, however, 
impossible, because the index map maps one generator into the other (up to 
the sign) in case of the periodic orbit and into the same in case of two periodic 
points. 

Example S.4. C. Conley proved in [Co, § 1.5] that the system of differential 
equations 

(8.4) { X; = x i+' ' i = 1,2, ... , n - 1, 
I 2 Xn = (x,) - 1 

admits a non constant, bounded solution. A natural question is whether the 
same applies to the discrete-time dynamical system obtained from (8.4) by the 
Euler approximation method, i.e., to the system defined by the map 

is: Rn '3 (x, ,x2'··· ,xn) -+ (x, ,x2' ... ,xn) +s(x2, ... ,xn ,(X,)2 - 1) ERn, 

where s is a constant denoting the step of the Euler method. After the linear 
change of coordinates Zj := sn-'+J Xj the map is becomes 

I' n ( 2 2n n Js:R '3 zl'z2, ... ,zn)-+(z"z2, ... ,zn)+(z2, ... ,zn'(z,) -s )ER. 

As in Conley's proof concerning (8.4), one can show that the origin is the only 
nontrivial isolated invariant set with respect to the map 10 and C( {O} ,10) = O. 
Hence it follows that B:= {x E Rn : Ilxll :S I} is an isolating neighborhood with 
respect to is for small s. If the two fixed points of is were the only trajectories 
of is in B, then, by Theorem 2.12, they would both have zero index. However, 
an easy computation shows that at least one of the fixed points is hyperbolic; 
thus, by Theorem 3.1, at least one of them has nonzero index. 

This shows that the Euler approximation of the system (8.4) also admits a 
nonconstant, bounded trajectory at least for small values of the step s. 

In this paper we proposed an alternative approach to the Conley index for 
discrete dynamical systems. Obviously, several questions are left open. The 
first question is, what is the formal relation between our index and the shape 
index? Cohomology carries less information than shape; hence in this respect 
our index is less general than the shape index. On the other hand, as we have 
seen, much information is contained in the distinguished isomorphism and this 
information is lost in case ofthe shape index. Nevertheless, some kind of formal 
relation between both indices seems to exist. 
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Another question is whether all objects of WI (all isomorphisms) can be 
realized. It appears not, at least in zero dimension. 

In the detailed study of isolated invariant sets as in Example 8.2 it would be 
convenient to have a product formula for the index as in the continuous case 
(see [Co, 1.4.2]). Such a product formula for discrete dynamical systems can 
be formulated and proved at least in the case of field coefficients and isolated 
invariant sets with indices of finite type (i.e., with finite numbers of generators). 
This suffices for many applications. We shall discuss this in detail in a separate 
paper, because it is not yet clear to the author whether the finite-type assump-
tion is essential. To answer this question one requires further studies of the 
properties of the Leray functor. 

An important problem is what generalizations of the presented index are 
possible. As we already mentioned, contrary to the shape index, the discrete 
semidynamical system (continuous map) on a locally compact space can be 
treated just as in this paper, only with obvious changes in definitions. This is 
important, because the discretization of a differential equation is usually not 
injective. In the forthcoming paper [MR] continuous mappings in nonlocally 
compact spaces will also be considered. 

Attractor-repeller pairs and the Morse-Smale equation for the discrete case 
can be studied similarly to the continuous case. Details will be presented in 
[Mr3]. One would like to know, however, whether such notions of the classical 
Conley index theory as connected simple system index (see [Ku]), connection 
index (see [Co, 111.7.2]), index braids, and connection matrices (see [FrI, Fr2]) 
can be included in the presented case. Hence there is a broad field for future 
investigations. 
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