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ABSTRACT 

In this study large eddy simulation (LES) technique has been applied to predict a selected 
swirling flame from the Sydney swirl burner experiments. The selected flame is known as the 
SM1 flame operated with fuel CH4 at a swirl number of 0.5. In the numerical method used, 
the governing equations for continuity, momentum and mixture fraction are solved on a 
structured Cartesian grid. Smagorinsky eddy viscosity model with the localised dynamic 
procedure of Piomelli and Liu is used as the subgrid scale turbulence model. The conserved 
scalar mixture fraction based thermo-chemical variables are described using the steady 
laminar flamelet model. The GRI 2.11 is used as the chemical mechanism. The Favre filtered 
scalars are obtained from the presumed beta probability density function (β -PDF) approach. 
The results show that with appropriate inflow and outflow boundary conditions LES 
successfully predicts the upstream recirculation zone generated by the bluff body and the 
downstream vortex breakdown zone induced by swirl with a high level of accuracy. Detailed 
comparison of LES results with experimental measurements show that the mean velocity field 
and their rms fluctuations are predicted very well. The predictions for the mean mixture 
fraction, subgrid variance and temperature are also reasonably successful at most axial 
locations. The study demonstrates that LES together with the laminar flamelet model in 
general provides a good technique for predicting the structure of turbulent swirling flames. 
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1. INTRODUCTION 
 
Swirl stabilised turbulent flames are widely used in a range of practical combustion 

applications such as gas turbines, furnaces, power station combustors and boilers. Depending 

on the strength of swirl, a number of recirculation zones and central vortex breakdown 

regions can be seen in many swirl stabilised flames. Recirculation zones in swirl stabilised 

flames are effective in providing a source of well mixed combustion products and acts as 

storage of heat and chemically active species to sustain combustion and provide flame 

stabilization. Another type of a coherent structure referred to as precessing vortex core (PVC) 

which is an asymmetric three-dimensional time dependent flow structure is also present in 

some high swirl number flows. In general these features makes swirl flows and flames to 

exhibits highly three-dimensional, large scale turbulent structures with complex turbulent 

shear flow regions.  

 

During the past four decades, a number of theoretical and experimental studies have been 

carried out to investigate the characteristics of swirling flames, which have mainly focused on 

instabilities and onset of vortex breakdown in combustion systems (see Syred and Beer, 1974, 

Gupta et al., 1984, Escudier, 1988, Lucca-Negro and O’Doherty, 2001). The complexity of 

the swirling flow behaviour depends on several key parameters such as the geometry of the 

working fluids and conditions that have been adopted in various research works to explore 

these phenomena (Escudier, 1988). Due to complex asymmetric and transient behaviour of 

swirling flames, a full theoretical or experimental description of the physical mechanism of 

recirculation and vortex breakdown has not been achieved.  

 

Numerical calculation of swirl flows has also received considerable attention. However, the 

accurate prediction of recirculation and vortex breakdown, unsteady time dependent 
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phenomena such as jet precession and asymmetric behaviour are computationally difficult 

problems to handle. Numerous researchers have applied different modelling approaches to 

predict swirling reacting and non-reacting flows in practical applications as well as in 

laboratory scale experiments. Majority of the attempts have used Reynolds averaged Navier-

Stokes (RANS) equations accompanying different turbulence models to predict swirl flows. 

Sloan et al. (1986) and Weber et al. (1990) have reviewed much of these attempts. In generals 

RANS based models are primarily suitable to calculate stationary flows with non-gradient 

transport and they are not capable of capturing the unsteady nature of the large-scale flow 

structures found in swirl flows. Large eddy simulation (LES) technique on the other hand 

solves for large scale unsteady behaviour of turbulent flows therefore has been widely 

accepted as a promising numerical tool to accurately predict complex turbulent flows. Among 

others, the studies of Kim et al. (1999), Sankaran and Menon (2002), Di Mare et al. (2004), 

Wall and Moin (2005), Mahesh et al. (2005) have demonstrated the ability of LES to capture 

detailed flow field in swirling flow configurations.  

 

In the computation of complex combusting flows the unsteady three-dimensional nature of 

LES has many advantages for turbulence modelling over classical Reynolds-averaged Navier-

Stokes (RANS) approach. However in combustion LES, the chemical reaction usually occur 

well below to the resolution limit of the LES filter width and consequently modelling is 

required to predict the chemical state of the simulation. Combustion models which have been 

successfully used in the RANS context have been extended to LES to create sub-grid scale 

combustion models. For example, Cook and Riley (1994) applied equilibrium chemistry as a 

sub-grid model for the chemical reactions and Branley and Jones (2001) also applied a similar 

model to simulate a jet flame and obtained reasonably good predictions for the thermo-

chemical variables. Forkel and Janicka (2000) have also demonstrated an efficient method for 
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LES based on equilibrium chemistry. The steady flamelet modelling concept by Peters (1984) 

has been often used in combustion LES, because of its simplicity and ability to predict minor 

species. Venkatramanan and Pitsch (2005) and Kempf et al. (2006) have carried out 

combustion LES with the steady laminar flamelet model to simulate the Sydney bluff-body 

flames (Dally et al. 1998) and excellent comparisons with experimental measurements were 

obtained. However the steady flamelet assumption is not strictly valid for flows with slow 

chemical and physical process. The unsteady flamelet equations have to be used to account 

for such physical processes. Pitsch and Steiner (2000), for example, have demonstrated the 

Lagrangian unsteady flamelet model to simulate a piloted jet flame. A hybrid approach which 

employs LES and a particle based Lagrangian filtered-density-function approach by Raman et 

al. (2005), has also shown to give very good predictions in a bluff-body flame simulation.  

The conditional moment closure (CMC) model originally derived in the RANS context by 

Bilger (1993) has also been extended to LES. Kim and Pitsch (2005), Navarro-Martinez et al. 

(2005) have successfully demonstrated the conditional moment closure (CMC) model for 

LES. The flamelet/progress variable approach for LES proposed by Pierce and Moin (2004) 

has the potential to capture the local extinction, re-ignition and flame lift-off. Other 

approaches such as the linear eddy model developed by Mcmurtry et al. (1992) and the 

transported probability density function method originally introduced by Pope (1985) have 

also shown to be suitable for combustion LES. 

 

Number of previous studies have demonstrated the application of combustion LES to swirling 

reacting and non-reacting flows. Wang et al. (2004) applied LES to study confined non-

reacting turbulent swirling flows in a model dump combustor and successfully simulated the 

vortex breakdown, the circulation zones and anisotropic structures for all swirl numbers 

considered. Pierce and Moin (2004) have showed promising agreement between the LES 
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results and the experimental measurements for low swirl number flames with the 

flamelet/progress variable approach.  

 

The Sydney University swirl burner experimental series is one of the most useful 

experimental campaigns which have provided comprehensive data sets for reacting and non-

reacting swirl flames. The swirl configuration used features a non-premixed flame stabilised 

by an upstream recirculation zone caused by a bluff body and second downstream 

recirculation zone induced by swirl, which greatly improve the mixing process. In certain 

cases of this flame series vortex breakdown has been observed. This flame series has also 

been the target flames for computations in the Proceeding of Turbulent non-premixed flames 

(TNF) group meetings (2006). The complexity of the flow conditions in these flames makes 

them ideal for the evaluation of turbulence chemistry interaction in combustion modelling.  

 

In this paper, Large eddy simulation of a selected flame known as the SM1 flame from the 

Sydney swirl series is considered. The aim of this work is to investigate how LES technique 

employing moderate computing resources would perform in predicting key features of swirl 

flames. A number of other studies have attempted to model the Sydney swirling flame series 

with different modelling approaches. Masri et al. (2000) introducing this flame series have 

attempted to model a selected case using PDF-Monte Carlo approach using flamelet 

chemistry and showed good comparison for flow field parameters. No species or temperature 

comparison has been attempted in their study. El-Asrag and Menon (2005) studied the SM1 

flame from this series using the linear eddy model for combustion LES and reported good 

agreement with data. More recently Stein and Kempf (2007) have attempted LES of one 

isothermal case (N29S054) and two combusting cases (SM1 and SMH1) using the laminar 

flamelet approach. Very good agreement for the flow properties of the non-reacting case and 
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reasonable agreement for the mixture fraction and its variance in the SMH1 flame have been 

reported. Comparison of mean axial and tangential velocity predictions for the SM1 flame 

also showed good agreement. El-Asrag and Menon (2007), and James et al. (2007) have also 

carried out LES on selected cases and obtained encouraging results. 

 

In a previous paper the present authors have shown LES predictions for different isothermal 

swirling flow fields of the Sydney swirl flame series with a good degree of success 

(Malalasekera et al. 2007). This paper is an extension of this earlier work where a reacting 

case is considered using combustion LES. The steady laminar flamelet model together with an 

assumed probability density function (PDF) approach is used for the combustion model. Here 

results obtained from combustion LES using moderate computer resources are compared with 

experimental data to asses the capability of LES. 

 

 The rest of the paper is structured as follows. Details of the burner configuration and the 

selected flame are discussed in the next section. In section 3, mathematical model for the 

governing equations and the combustion model details are presented and discussed. The 

numerical and computational detailed are presented in section 4, and in section 5 LES results 

obtained are compared with experimental measurements and discussed. 

 

2 SYDNEY SWIRL BURNER 

Figure 1 shows the Sydney swirl burner configuration, which is an extension of the well-

characterised Sydney bluff body burner to swirling flames (Al-Abdeli and Masri, 2003). It has 

a 60mm diameter annulus for a primary swirling air stream surrounding the circular bluff 

body of diameter D=50mm. The central fuel jet is 3.6mm in diameter. The burner is housed in 

a secondary co-flow wind tunnel with a square cross section of 130mm sides. Swirl is 
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introduced aerodynamically into the primary annulus air stream at a distance of 300mm 

upstream of the burner exit plane and inclined 15 degrees upward to the horizontal plane. 

Swirl number can be varied by changing the relative magnitude of tangential and axial flow 

rates. The velocity measurements for mean velocity, rms fluctuations and Reynolds shear 

stresses were made at The Sydney University (Al-Abdeli and Masri, 2003) and compositional 

measurements in the combusting cases were made at Sandia National Laboratories (Masri et 

al., 2004). 

 

The flow behaviour and flame characteristics were determined by four main parameters: the 

bulk axial velocity of fuel jet jU , the bulk axial and tangential velocity of primary air annuls 

sU  and sW , and the coflow velocity eU  of the wind tunnel. The swirl number is usually 

defined as the ratio between the axial flux of the swirl momentum to the axial flux of the axial 

momentum. In this experiment, a quantitative representation of the swirl intensity has been 

introduced by using the geometric swirl number gS , which is expressed as the ratio of 

integrated (bulk) tangential to primary axial velocities s sW U . This SM1 flame considered 

here used compressed natural gas (CNG) as the fuel, operated at a swirl number of 0.5 and 

used a fuel jet velocity of 32.7 m/s, which was 54% of the blow-off velocity. The Reynolds 

number was based on the fuel jet diameter of 3.6mm. Table 1 lists the details of the physical 

properties and characteristics of the flame SM1. In the experiments Laser Doppler 

velocimetry (LDV) technique has been used to measure the velocities. All the scalar 

measurements have been measured by using the Raman-Rayleigh technique. 

Case Fuel jU  m/s sU  m/s sW  m/s eU  m/s gS  Res  

SM1 CNG 32.7 38.2 19.1 20.0 0.5 75,900 

Table1. Details about the characteristics properties of flame SM1 
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3 MODELLING AND MATHEMATICAL FORMULATIONS 

3.1 Equations solved 

In LES the governing equations resolve the large scale features, which must be obtain by 

applying the filtering operator. The filtered field ( , )f x t  is determined by convolution with 

the filter function .  G

 '( ) ( ) ( , ( ))f x f x G x x x d
Ω

x′ ′= − ∆∫  (1) 

Where the integration is carried out over the entire flow domain Ω  and ∆  is the filter width, 

which vary with the position. A number of filters are used in LES and a top hat filter having 

the filter-width j∆  set equal to the size jx∆  of the local cell is used in the present work. In 

turbulent reacting flows large density variation occur and that is treated using Favre filtered 

variables. The transport equations for Favre filtered mass, momentum and mixture fraction 

are given by   
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The transport equation for conserved scalar mixture fraction is written as  
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In the above equations ρ  is the density,  is the velocity component in iu ix  direction,  is 

the pressure, 

p

ν  is the kinematics viscosity, f  is the mixture fraction, tν  is the turbulent 

viscosity, σ  is the laminar Schmidt number, tσ  is the turbulent Schmidt number. An over-bar 

describes the application of the spatial filter while the tilde denotes Favre filtered quantities. 
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The laminar Schmidt number was set to 0.7 and the turbulent Schmidt number for mixture 

fraction was set to 0.4. 

 

3.2 Turbulence Model 

The subgrid contribution to the momentum flux is computed using Smagorinsky eddy 

viscosity model (Smagorinsky, 1963), which uses a model constant , the filter width sC ∆  and 

strain rate tensor  according to equation (5): jiS ,
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The model parameter sC  is obtained through the localised dynamic procedure of Piomelli and 

Liu (1995). 

 

3.3 Combustion Model 

In LES, the chemical reactions occur mostly in the sub-grid scales and therefore consequent 

modelling is required for combustion chemistry. Here a presumed probability density function 

(PDF) of the mixture fraction is chosen as a means of modelling the sub-grid scale mixing. A 

β  function is used for the mixture fraction PDF. The functional dependence of the thermo-

chemical variables is closed through the steady laminar flamelet approach. In this approach 

the variables, density, temperature and species concentrations only depend on Favre filtered 

mixture fraction, mixture fraction variance and scalar dissipation rate.  

 

In the present selected case (SM1), there is no experimental evidence of significant local 

extinction. Hence a single flamelet with a strain rate of 500 /s has been used to calculate the 

characteristic flamelet profiles. This strain rate was chosen after comparing laminar flamelet 

profiles of density, temperature and species generated at different strain rates with 
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experimental data and a rate of 500 /s seems to show a reasonably good agreement to be used 

as a single strain rate. The sub-grid scale variance of the mixture fraction is modelled 

assuming the gradient transport model proposed by Branly and Jones (2001). The flamelet 

calculations have been performed using the Flamemaster code (Pitsch, 1998) incorporating 

the GRI 2.11 mechanism for detailed chemistry (Bowman et al., 2006)  

 

4. NUMERICAL DESCRIPTION 

The program used to perform simulations is the PUFFIN code originally written by 

Kirkpatrick (2002) and later extended by Malalasekera et al. (2007). PUFFIN computes the 

temporal development of large-scale flow structures by solving the transport equations for the 

spatially filtered continuity, momentum and mixture fraction. The equations are discretised in 

space with the finite volume formulation (FVM) using Cartesian coordinates on a non-

uniform staggered grid. Second order central differences (CDS) is used for the spatial 

discretisation of all terms in both the momentum equation and the pressure correction 

equation. This minimizes the projection error and ensures convergence in conjunction with an 

iterative solver. The diffusion terms of the scalar transport equation are also discretised using 

second order CDS. The convection term of the mixture fraction transport equation is 

discretised using the SHARP scheme (Leonard, 1987).  

An iterative time advancement scheme is used for variable density calculation.  First, the time 

derivative of the mixture fraction is approximated using the Crank-Nicolson scheme. The 

flamelet library yields the density and calculate filtered density field at the end of the time 

step. The new density at this time step is then used to advance the momentum equations. The 

momentum equations are integrated in time using a second order hybrid scheme. Advection 

terms are calculated explicitly using second order Adams-Bashforth while diffusion terms are 

calculated implicitly using second order Adams-Moulton to yield an approximate solution for 
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the velocity field. Finally, mass conservation is enforced through a pressure correction step in 

which the approximate velocity field is projected onto a subspace of divergence free velocity 

field. The pressure correction method of Van Kan (1986) and Bell (1989) is the method used 

here. Typically 8-10 outer iterations of this procedure are required to obtain satisfactory 

convergence at each time step. 

 

The time step is varied to ensure that the Courant number iio xtuC ∆∆= remain 

approximately constant. Where ∆ s the cell width, tix  i ∆  is the time step and iu  is the velocity 

components in the ix  direction. The solution is advanced with a time stepping corresponding 

to a Courant number in the range of =oC 0.3 to 0.6. The equations, discretised as described 

above, are solved using a linear equation solver. Bi-Conjugate Gradient Stabilized 

(BiCGStab) method with Modified Strongly Implicit (MSI) preconditioner are used to solve 

the system of algebraic equations resulting from the discretisation. The momentum residual 

error is typically of the order 510 −  per time step and the mass conservation error is of the 

order of 810 − . 

 

The computational domain used dimensions 300 300 250mm× ×  and employed a non-uniform 

Cartesian grid. Two different grid resolutions have been used to investigate the effect of the 

grid. Grid 1 consisted of 150150150 ×× cells (approximately 3.4 million) and Grid 2 

consisted of 100 cells (1 million) in 100 100× × ,X Y and Z directions respectively. In the 

present case the mean axial velocity distribution for the fuel inlet and mean axial and swirling 

velocity distributions for air annulus are specified using power low profiles (Masri et al, 

2000). A laminar velocity of 20 m/s is used for the co-flow velocity. The fluctuations are 

generated from a Gaussian random number generator and added to mean velocity profiles 
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such that the inflow has correct turbulence kinetic energy levels obtained from experimental 

data. A top hat profile is used as inflow condition for the mixture fraction. No-slip boundary 

condition is applied on the solid walls. At the outflow plane, a mass conserving convective 

outlet boundary condition is used for velocities and zero normal gradients is used for the 

mixture fraction. 

 

The computations suggest that the statistical calculations can be started after 0.04s. This 

allows the flow field to fully develop and initial transients to exit the computational domain. 

The number of samples used for statistics is 1000 and corresponds to a sampling time of 0.02s 

and the total time for the complete simulation is 0.06s. The length of the sampling interval 

used is sufficient to permit converged statistics.  

 

4 RESULTS AND DISCUSSION 

The Sydney swirl burner is designed to study reacting and non-reacting swirling flow 

structures for a range of swirl numbers and Reynolds numbers. The swirl induced 

recirculation and vortex breakdown leads to a very complex flow field, hence the accurate 

predictions of swirling flow field is important for the simulation of combustion, where an 

upstream bluff body stabilized recirculation zone and a downstream vortex breakdown zone 

can be seen certain cases. The structure of the swirling flow reveals the existence of rotating 

zones of gas within flames. Such rotating zones of gas lead to form the collar-like flow 

features (Al-Abdeli and Masri, 2003), where the flow dynamics are substantially different 

from those in the wider and adjoining flow.  

 

The SM1 flame considered here is a short flame compared to other flames studied in the 

series. This flame operated with a jet velocity of 32.7 m/s and a swirl number of 0.5. The 
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experiments showed upstream recirculation stagnating at about 43 mm downstream of the 

bluff body and a second down stream recirculation zone extending from about 65 mm to 110 

mm, centred around 70 mm in the axial direction. This recirculation zone results in from the 

vortex breakdown on the centre line of the geometry. A collar-like flow feature has been 

observed at about 60 mm from the burner surface. Oscillation of the central jet indicating the 

precession behaviour of this flame has also been reported (Al-Abdeli, 2003) 

 

In our earlier work (Malalasekera et al. 2007), we have successfully predicted the non-

reacting swirling flow fields and captured the occurrence of recirculation and vortex 

breakdown. The present work is an extension of the application to reacting turbulent non-

premixed swirling flames. The assessment of the capabilities of LES in predicting correct 

flow features such as recirculation zones and vortex breakdown in this combustion situation 

considered is aim of the work and the success is measured by comparing with detailed 

experimental data. Favre averaged velocities and scalars quantities are used in comparisons. 

 

4.1 Effect of the grid 

To gain an understanding of the effect of grid resolution on the LES results simulations were 

conducted using two different grids, a 3.4 million grid and a 1 million grid. The two grids are 

referred to as Grid 1 and Grid 2 respectively. Figure 2 shows the comparisons of the mean 

axial and swirl velocity between the measurements and LES results calculated using two grid 

resolutions. At upstream both grids yield similar results In further downstream, the Grid 1 

results (3.4 million) give good predictions than Grid 2 results (1 million). Particularly, the 

mean axial velocity obtained with Grid 1 is much closer to the experimental measurements 

than Grid 2 in the outer shear layer of the downstream recirculation zone ( . 

Figure 3 shows the computed radial profiles of mean mixture fraction and its variance 

)2.1,8.0/ =Dx
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compared with experimental data for both grids. The Grid 1 results clearly show a good 

comparison with experimental data than Grid 2. The values of the centreline mean mixture 

fraction and the radial profiles of the mixture fraction variance are greatly improved with the 

fine grid simulation. However, overall results of these two grids as shown in the above 

comparisons are not vastly different from one another indicating that the fine grid is 

reasonably fine enough to produce good LES results and further refinement at an enormous 

cost is not required. In the following discussion Grid 1 (3.4 million cells) results are compared 

with experimental measurements. 

 

4.2 Flow Features 

Figure 4 (a) and (b) show snapshots of the filtered axial and swirl velocities. Figure 5 (a) and 

(b) shows instantaneous mixture fraction and temperature respectively. These snapshots have 

been taken from animations, which provide an interesting insight into the complex transient 

turbulent swirling flow behaviour and combustion interactions. The animation of the filtered 

axial velocity contour plot shows the formation of the upstream and central recirculation 

zones where the axial velocity becomes negative and the dynamics of fuel jet break-up in the 

upstream recirculation zone can also be seen. The axial velocity animation show that the 

central recirculation zone formed by the vortex breakdown is very unstable in nature and 

appear to show a flapping behaviour. Figure 4(a) show the instantaneous nature of the 

negative velocity regions in the central zone and Figure 4(b) show the instantaneous swirling 

velocity where the swirl velocities are positive on one side and negative on the other side 

resulting in a collar-like flow. Mixture fraction in Figure 5(a) shows the breakup of the fuel 

jet and resulting mixture distribution within recirculation regions. Temperature animation in 

Figure 5(b) also show the dynamic nature of temperature distribution in the central vortex 

breakdown region. The stochiometric contour is also marked in Figure (b) to highlight the 
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instantaneous high temperature regions and these regions indicate that the instantaneous 

temperature distribution is very much a dynamic feature and pockets of high temperature 

regions move about in axial and radial directions. Temperature animations indicate that the 

combustion products inside the recirculations zone continuously provide an ignition source, 

thereby stabilizing the flame. Zones and pockets of high temperature regions appear to be 

shed and consumed along the axial direction and these results in the flapping behaviour of the 

flame. 

 

The contour plot for the mean axial velocity is shown in Figure 6. Recirculation zones and 

vortex breakdown bubble can be clearly identified in this mean contour pot. Here, LES appear 

to be very successful in reproducing all the flow features seen in the experiments. Stagnation 

region for the upstream recirculation zone where the mean axial velocity is zero is just above 

40 mm which was observed in the experiments to be around 43 mm. Contours shows that the 

stagnation region for the second vortex breakdown region is also predicted correctly which is 

about 70 mm from the burner surface. 

 

4.3 Velocity Field 

The success of the LES predictions is further demonstrated by the comparisons of the time 

averaged mean axial velocity, swirl velocity and rms values of axial and swirl velocities at 

different axial locations . Figure 7 shows the 

comparison of mean axial velocity with experimental data. The experimental data shows that 

there is a relatively short bluff body stabilized upstream recirculation zone towards the axial 

direction from the burner exit plane and a second central recirculation zone due to the 

occurrence of  vortex breakdown (VB) around locations 

}5.2and0.2,4.1,2.1,8.0,4.0,136.0{/ ∈Dx

4.1/ =Dx  and 2.0. The negative 

values of the mean axial velocity at / {0.4,0.8}x D∈  and }0.2.,1{/ ∈Dx (Figure 7) indicate the 
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flow reversal, which generate the upstream bluff body stabilized recirculation zone and the 

central VB zone respectively. It can be seen that LES predictions closely match the 

experimental data and correctly predict the upstream and central recirculation zones. These 

features can be seen in Figure 6 where the bubble shaped vortex breakdown zone is 

reproduced by the LES calculations. The downstream recirculation zone coincides with the 

highly rotating flow feature called collar-like flow as shown in Figure 6. The calculations 

have reproduced all peaks of the mean axial velocity well, which appears above the primary 

annulus (Figure 7). Overall axial mean velocity comparisons show very good agreement.  

 

The comparison of the mean swirling velocity is shown in Figure 8. The comparisons 

between calculations and measurements are very good at most of the axial locations. The 

predictions have captured peaks appearing on the inner and outer shear layer of the upstream 

recirculation zone. However, at 136.0/ =Dx  and 0.2 the swirl velocity is slightly over 

predicted above the bluff body face. This may be attributed to the shear layer instability and 

jet precession of the upstream recirculation zone which may not have been captured 

accurately by LES. At other down steam locations LES mean swirl velocity predictions 

closely follow the experimental measurements except at 0.2/ =Dx  where the changes in 

swirl profile is not resolved that well. Overall agreement is, however, reasonably good for the 

mean swirling velocity.  

 

Figure 9 shows comparison for the axial velocity fluctuations. The rms axial velocity 

fluctuations are found to be slightly under predicted at the first three axial locations and 

slightly over predicted at  and 1.4 above the primary annulus. The overall 

agreement however is good for the rms axial velocity and its profiles are in reasonable 

agreement with measurements. Figure 10 shows the comparison of the swirl velocity 

/ 1.2x D =
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fluctuations. The agreement between measurements and predictions is reasonable, but over-

prediction of the swirl velocity fluctuations can be seen near the central axis at locations 

 and 1.2. Location 8.0/ =Dx 8.0/ =Dx  corresponds to 40 mm axial distance which is the 

central region of the upstream recirculation zone. LES may not have captured very well the 

effects of interaction with the central precessing jet in this region. The location 2.1/ =Dx  

corresponds to 60 mm which is in the boundary of the two key features, upstream 

recirculation and downstream vortex breakdown. Again the effects of central jet precssion in 

this region may not have been very accurately captured by LES. It should be noted that the 

magnitude of both axial and swirl velocity fluctuations are small in comparison to their 

respective mean values and therefore discrepancies in these rms values are small in 

comparison.  

 

Overall, the LES of SM1 yield a good qualitative and quantitative agreement with 

experimental observations for flow features, while some discrepancies are apparent. It should 

be noted that due to the coupling with density these discrepancies may have been resulted 

from certain deficiencies in combustion predictions which is discussed below.  

 

4.4 Scalar fields 

The instantaneous snapshot of the density and flame temperature is shown in Figure 5 (a) and 

(b). The calculations show two high temperature regions, one inside the upstream 

recirculation zone, the second located further downstream near to the centreline. Furthermore, 

the necking occurs around,  (downstream from the burner exit plane), which is 

linked to the collar-like flow feature and as a result, the visible flame width is reduced to 

about . It has been observed experimentally that, the flame SM1 is relatively 

shorter than other flames (Al-Abdeli and Masri, 2003).  

70x m= m

25 30mm−



 19

 

Figure 11 shows comparisons for the radial profiles of the mean mixture fraction at different 

downstream axial locations. It is evident that the radial spread of the mixture fraction is 

slightly under predicted in the regions between 8.04.0/ −=Rr at . Despite 

this slight discrepancy, the agreement between calculations and measurements are good at 

other downstream axial locations except at 

/ {0.2,0.4}x D∈

5.1/ =Dx  where the mixture fraction at the centre 

line shows a notable over prediction. This is exactly the stagnation region of the central 

recirculation region where present LES may not have captured the correct mixture fraction 

distribution in this highly dynamic region. Figure 12 shows the computed profiles of mixture 

fraction variance with experimental data at different positions along the burner axis. The 

mixture fraction variance is also over-predicted at 5.1/ =Dx . Overall predictions of mixture 

and its variance, however , shows reasonably good agreement all other locations. 

 

The comparison of the predicted mean temperature field is shown in Figure 13. Given the 

complexity of the flow field, the comparison of the temperature field with experimental data 

is reasonable at most of the axial locations. It appears that the slightest under-prediction of the 

radial spread of the mixture fraction leads to a corresponding over-prediction of the 

temperature, which can be seen at locations / {0.2,0.4}x D∈ . Although the mixture fractions 

and its variance predictions are reasonably good at locations 8.0/ =Dx  and 1.2 the predicted 

peak temperature at the outer shear layer at these axial locations is somewhat over-predicted. 

The flame may be subjected high shear effects in this region and the use of a single flamelet 

to extract thermo-chemical properties may not be very accurate in this region. Furthermore, 

the steady flamelet assumption may not be perfectly valid in this region, which could have 

resulted in these discrepancies. As expected where the scalar predictions show notable 

discrepancy at 5.1/ =Dx  the resulting temperature also show a corresponding under-
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prediction. Anther important aspect relevant to mixture fraction and its relationship to 

temperature is the stochiometric value of the mixture fraction. In this case the stochiometric 

mixture fraction value is 0.054. Even a minor discrepancy around this value at locations 

where the mixture fraction should be 0.054 makes a noticeable difference in temperature. The 

over-prediction or under-prediction of temperature around peak temperature locations is 

tightly coupled to mixture fraction. Despite the discrepancies mentioned above the mean 

temperature profiles follow the correct experimental trends. The other studies which have 

used different approaches for combustion modelling to model this flame (James et al, 2007, 

El-Asrag and Menon, 2007) have reported similar success. It should also be noted that the 

radiation heat transfer is not included in the present simulations and account of radiative 

losses could results in reduced temperature profiles. The present LES show that there is scope 

for further improvements. We aim to improve the combustion modelling aspects and include 

radiative heat transfer calculations in our future work with combustion LES. 

 

The comparison for the species concentration profiles are shown in Figures 14-16. The 

profiles for  are consistent with those with temperature with slightly similar peaks. 

Predicted  at locations  and 0.4 show a very good match with experimental 

data while other profiles closely follow the experimental trends. The predictions of  

shown in Fig. 15 is slightly under-predicted at first two axial locations and considerably 

under-predicted at the location 

OH 2

OH 2 2.0/ =Dx

2CO

5.1/ =Dx . This is simple manifestation of the mixture 

fraction and temperature predictions discussed above for this location. Figure 16 shows CO 

predictions at axial positions showing similar trends as other species. In general, given the 

complexity of the flame and the flow field, present species predictions using the laminar 

flamlet model are reasonably good, however, there is scope for improvement in terms of 
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combustion modelling as well as achieving good scalar predictions (mixture fraction and its 

variance).  

 

The case considered here is a complex flow situation where there are upstream recirculation 

zones, a down stream vortex breakdown region, collar-like flow, and further experimental 

data shows that the central jet has a precession behavior. There are number of high shear 

layers and the interaction of flow, turbulence and chemistry is complex. The current LES 

attempt which used moderate resources has yielded reasonably good agreement with data and 

the study shows that the LES combustion procedure used is capable of predicting complex 

swirl flow situations. There may be regions in this flame where the steady laminar flamelet 

assumption may not be strictly valid and local extinction and re-ignition effects may be 

present which could have resulted in discrepancies where the present modeling approach does 

not address such issues. Overall the present LES attempt has shown successful results.  

  

5 CONCLUSION 

In this paper we have considered large eddy simulation of a turbulent swirling reacting flow  

test case from the Sydney swirl burner experimental series investigated by Masri and co-

workers (Al-Abdeli and Masri, 2003; Masri et al., 2004). Here LES is performed for a 

swirling flame from the SM group known as the SM1 flame having a swirl number of 0.5. A 

Cartesian grid with 3.4 million nodes was used to perform the simulations. The steady laminar 

flamelet model that incorporates detailed chemical kinetics has been employed to obtain the 

thermo-chemical variables as a function of mixture fraction. The presumed beta probability 

density function approach has been used to model the sub-grid mixture fraction fluctuations. 
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In the experiments a number of complex recirculation zones including a vortex breakdown 

zone has been observed. The predictions show that the LES has successfully captured the 

bluff body stabilized upstream recirculation zone and the downstream vortex breakdown (VB) 

region very well. The SM1 flame modelled also contain zones of gas, which rotate around the 

geometric centreline of the flow. These zones leads to the formation of the collar-like flow 

features downstream of the bluff body stabilized recirculation zone near the necking region of 

the flame. These features has been correctly predicted by the present simulation. Detailed 

comparison shows that the agreement between LES predictions and experimental data are 

good for mean and fluctuating velocity profiles, mean mixture fraction profiles and 

temperature. Given the complexity of the flow this is a good achievement and confirm the 

ability of LES to predict turbulence chemistry interactions in complex combusting flows. 

Some discrepancies between experimental data and predictions suggests that the steady 

laminar flamelet model may not be valid in some regions of swirling flames and further 

improvements of the combustion models will help to improve the temperature and species 

predictions.  
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FIGURE CAPTIONS 
 
Figure 1: Schematic drawing of the Sydney swirl burner (adapted from Al-Abdeli and Masri, 
2003). 
 
Figure 2: LES predicted time averaged mean axial and swirl velocities using different grid 
resolutions. Dotted lines represent the Grid 1 results (finer grid), dashed lines represent the 
Grid 2 results (coarser), and symbols represent experimental measurements. 
 
Figure 3: LES predicted mean mixture fraction and its variance using different grid 
resolutions. Dotted lines represent the Grid 1 results (finer grid), dashed lines represent the 
Grid 2 results (coarser), and symbols represent experimental measurements. 
 
Figure 4: Snapshot of filtered axial (a) and swirl velocity (b). 
 
Figure 5: Snapshot of filtered mixture fraction (a) and temperature (b). 
 
Figure 6: Contour plot of mean axial velocity obtained from LES calculation. 
 
Figure 7: Comparison of mean axial velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 8: Comparison of mean swirling velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 9: Comparison of rms of axial velocity fluctuations. Lines represent LES results, and 
symbols represent experimental measurements. 
 
Figure 10: Comparison of rms swirling velocity. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 11: Comparison of mean mixture fraction. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 12: Comparison of mixture fraction variance. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 13: Comparison of mean temperature. Lines represent LES results, and symbols 
represent experimental measurements. 
 
Figure 14: Comparison of mass fraction of . Lines represent LES results, and symbols 
represent experimental measurements. 

OH 2

 
Figure 15: Comparison of mass fraction of . Lines represent LES results, and symbols 
represent experimental measurements. 

2CO

 
Figure 16: Comparison of mass fraction of . Lines represent LES results, and symbols 
represent experimental measurements. 

CO
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Figure 1: Schematic drawing of the Sydney swirl burner (adapted from Al-Abdeli and Masri, 

2003). 
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Figure 2: LES predicted time averaged (a) mean axial and (b) mean swirl velocity at different 

axial locations using different grid resolutions. Solid lines represent the Grid 1 results (3.4 

million grid points), dashed lines represent the Grid 2 results (1 million grid points), and symbols 

represent experimental measurements. 
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Figure 3: LES predicted mean mixture fraction and its variance at different axial locations 

using different grid resolutions. Solid lines represent the Grid 1 results (3.4 million grid 

points), dashed lines represent the Grid 2 results (1 million grid points), and symbols 

represent experimental measurements. 
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Figure 4: Snapshots of filtered axial and swirl velocity. 
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Figure 5: Snapshots of filtered mixture fraction and temperature. 



 32

Radial distance (mm)

A
xi

al
di

st
an

ce
(m

m
)

-50 0 50
0

20

40

60

80

100

120

140
50
46
42
38
33
29
25
21
17
13
9
4
0

-4
-6

<U> m/s

VB Bubble

Collar-like
flow feature

Bluffbody
stabilized
recirculation
zone

 
 

Figure 6: Contour plot of mean axial velocity obtained from LES calculation. 
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Figure 7: Comparison of mean axial velocity. Lines represent LES results, and symbols represent 
experimental measurements. 
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Figure 8: Comparison of mean swirling velocity, Lines represent LES results, and symbols 

represent experimental measurements. 
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Figure 9: Comparison of rms axial velocity. Lines represent LES results, and symbols represent 

experimental measurements. 
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Figure 10: Comparison of rms swirling velocity. Lines represent LES results, and symbols 

represent experimental measurements. 
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Figure 11: Comparison of mean mixture fraction. Lines represent LES results, and symbols 
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Figure 12: Comparison of mixture fraction variance. Lines represent LES results, and symbols 
represent experimental measurements. 
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Figure 13: Comparison of mean temperature. Lines represent LES results, and symbols represent 

experimental measurements. 
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Figure 14: Comparison of mass fraction of . Lines represent LES results, and symbols 

represent experimental measurements. 
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Figure 15: Comparison of mass fraction of . Lines represent LES results, and symbols 

represent experimental measurements. 
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Figure 16: Comparison of mass fraction ofCO . Lines represent LES results, and symbols 

represent experimental measurements. 
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