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Abstract

Background: The limited spatial resolution of the clinical PET scanners results in image

blurring and does not allow for accurate quantification of very thin or small structures

(known as partial volume effect). In cardiac imaging, clinically relevant questions, e.g. to

accurately define the extent or the residual metabolic activity of scarred myocardial

tissue, could benefit from partial volume correction (PVC) techniques.

The use of high-resolution anatomical information for improved reconstruction of the

PET datasets has been successfully applied in other anatomical regions. However,

several concerns linked to the use of any kind of anatomical information for PVC on

cardiac datasets arise. The moving nature of the heart, coupled with the possibly

non-simultaneous acquisition of the anatomical and the activity datasets, is likely to

introduce discrepancies between the PET and the anatomical image, that in turn might

mislead lesion quantification and detection. Non-anatomical (edge-preserving) priors

could represent a viable alternative for PVC in this case.

In this work, we investigate and compare the regularizing effect of different anatomical

and non-anatomical priors applied during maximum-a-posteriori (MAP) reconstruction

of cardiac PET datasets. The focus of this paper is on accurate quantification and lesion

detection in myocardial 18F-FDG PET.

Methods: Simulated datasets, obtained with the XCAT software, are reconstructed

with different algorithms and are quantitatively analysed.

Results: The results of this simulation study show a superiority of the anatomical prior

when an ideal, perfectly matching anatomy is used. The anatomical information must

clearly differentiate between normal and scarred myocardial tissue for the PVC to be

successful. In case of mismatched or missing anatomical information, the quality of the

anatomy-based MAP reconstructions decreases, affecting both overall image quality

and lesion quantification. The edge-preserving priors produce reconstructions with

good noise properties and recovery of activity, with the advantage of not relying on an

external, additional scan for anatomy.

Conclusions: The performance of edge-preserving priors is acceptable but inferior to

those of a well-applied anatomical prior that differentiates between lesion and normal

tissue, in the detection and quantification of a lesion in the reconstructed images. When

consideringbull’s eye plots, all of the testedMAP algorithms produced comparable results.

Keywords: MAP reconstruction, Cardiac 18F-FDG PET, Anatomical priors, Edge-preserving

priors
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Background

Positron emission tomography (PET) images suffer from partial volume effects (PVE) due

to the limited spatial resolution of the PET system (2–6 mm FWHM [1, 2]). This effect is

not only observed in the heart, but all anatomies can be affected. However, there are very

thin or small structures in the heart (e.g. apex, right ventricle) that can be particularly

affected by PVE. Moreover, some pathologies might cause a thinning or scarring of the

myocardial walls. In all these cases, the blurring caused by PVE might hamper correct

interpretation of the resulting image. In order to deal with the PVE in PET, many partial

volume correction (PVC) techniques have been proposed [3].

In cardiac imaging, additional blurring is caused by the breathing motion and the beat-

ing of the heart. Dual gating of the cardiac datasets is one possible approach to remove the

motion blur [4]. This approach removes the motion blur that affects the PET acquisitions

by dividing the initial PET list-mode into a set of gates, each of which ideally represents

the heart in a fixed cardiac and respiratory phase. Despite being effective in removing the

motion blur in most cases, the process of gating dramatically reduces the statistics of the

final datasets and leads to extremely noisy reconstructions (still to be corrected for PVEs).

Alternatively, the use of motion fields extracted e.g. from the PET dataset itself [5, 6] or

from a simultaneous dynamic magnetic resonance imaging (MRI) scan [7] would correct

for the motion and improve the noise characteristics of the final PET dataset, but the PVE

would still need to be corrected for.

Among themethods that have been proposed in the past to tackle the PVEs, an effective

way is represented by the incorporation of the resolution effects into the system matrix

during the iterative image reconstruction process (resolution recovery (RR)). This process

can effectively deal with PVEs but, due to the ill-posed nature of the problem, reconstruc-

tion with resolution recovery can lead to over- and under-shoots of the reconstructed

activity, known as Gibbs artefacts, that might hamper accurate image quantification [8].

Consequently, some sort of regularization is needed to avoid such artefacts. The use

of high-resolution anatomical information (e.g. high-resolution computed tomography

(HRCT) or MRI) for improved reconstruction of the activity datasets is appealing and has

shown promising results in brain imaging [9]. Clinically relevant questions in the field

of cardiac 18F-FDG PET, e.g. to accurately define the amount of tissue still metabolically

active in or around a lesioned site, could benefit from anatomy-based PVC. The acqui-

sition of the anatomical image for PVC is, however, not free from drawbacks. Firstly, the

entire examination would be more expensive, longer and more cumbersome than a single

PET study. In fact, most PET scanners are hybrid devices that include a CT module, with

which a CT for attenuation correction can be acquired. However, the spatial and tempo-

ral resolution of most CT modules in the current PET/CT scanners is often insufficient

for obtaining a frozen image of the heart in one cardiac and respiratory phase, and with

a quality that is adequate for PVC. Therefore, the patient would need to be transferred

from the PET scanner to a dedicated scanner for the acquisition of the image to be used as

anatomical information. The use of truly simultaneous PET/MR devices would overcome

this issue. This technology, however, is currently being integrated in the clinical practice,

and so far, very few centres can benefit from its advantages.

Moreover, discrepancies between the selected PET gate and the anatomical gate being

used are likely to occur, especially if the two acquisitions come from scanners of two dif-

ferent vendors. In addition, small, residual motion artefacts might still be present after
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the gating of both datasets, due to changes in the heartbeat or breathing patterns from

one scan to the other. Furthermore, the high level of noise present in the PET images,

coupled with possible residual motion artefacts and attenuation artefacts [10], might

complicate the perfect alignment of the two datasets and therefore increase the chances

to introduce additional, anatomy-driven artefacts in the PVC-PET reconstructions. The

reconstruction of the PET datasets with the use of anatomical prior information is also

not straightforward and more time consuming, as it needs a case-by-case verification

of the alignment between the anatomy and the activity images and, if necessary, extra

steps (e.g. non-rigid registration or manual initialization of the alignment of the datasets)

in order to obtain an acceptable alignment before the actual reconstruction can take

place.

On the other hand, edge-preserving and de-noising techniques, which promise noise

reduction and edge preservation without the use of any anatomical side information, have

also been presented in the past to deal with the Gibbs artefacts caused by the RR [11, 12].

These techniques produce visually appealing images, with better contrast-to-noise ratios

when compared to the current standard for PET reconstruction. In addition, they have

the advantage of not relying on an external, additional scan for anatomy. Therefore, they

are not subject to the previously mentioned complications and they could more easily be

introduced in the clinical practice and in the clinical software.

The aim of this article is threefold. Firstly, we aim at assessing the performances of

edge-preserving priors for the purpose of lesion detection in cardiac 18F-FDG PET,

in comparison to anatomy-based priors. Secondly, we aim at highlighting the possible

risks of anatomy-based PVC, which occur when the anatomical image is mismatched or

shifted relative to the corresponding PET dataset, and their effect on lesion detection and

quantification. Finally, we aim at identifying differences in performance when using two

different modalities as source of anatomical information. In particular, we compare the

use of an MR image where the lesion is visible, to the use of a high-resolution CT image

where the lesion is not visible.

This study explores the effect of PVC on lesion visibility and quantification, in the ideal-

case scenario where all motion has been already removed from the datasets. In fact, only

in this way can the blurring caused by the PV effect be clearly distinguished from the

one caused by the motion. In doing so, we can therefore clearly identify how well the

sole blurring due to PVE is eliminated thanks to edge-preserving and anatomical priors.

XCAT-based simulations have been performed to achieve the aforementioned objectives.

Methods

Phantom generation

The XCAT software [13] was used to create the ground truth activity distribution, the

attenuation distribution and the high-resolution anatomical images to be used for this

study. We generated an XCAT phantom corresponding to a single cardiac and respiratory

gate for the PET, the attenuation and the high-resolution anatomical images.

All phantoms represented an average male, arms up [14]. Realistic and homogeneous

activity values were assigned to the different tissues of the simulated activity phantom (see

Table 1), based on average activity values observed in available measured datasets (nor-

mally injected with 370MBq and scanned 30min postinjection). Values in the same order

of magnitude were also reported upon in a previous study on myocardial 18F-FDG uptake
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Table 1 Key parameters for phantom generation

Antero-posterior (AP) expansion [cm] 1.2

Diaphragmmotion [cm] 2.0

Resp. cycle duration [s] 5

Card. cycle duration [s] 1

No. resp gates/cycle 5

No. card gates/cycle 10

Phantom size [pixel] 600 × 600 × 203

Phantom pixel size [mm] 0.8

Left ventricle activity [kBq/cc] 18

Right ventricle activity [kBq/cc] 12

Lung activity [kBq/cc] 0.9

Blood pool activity [kBq/cc] 5.5

Liver activity [kBq/cc] 6.5

Non-transmural lesion (L1) activity [kBq/cc] 8

Transmural lesion (L2) activity [kBq/cc] 0

[15]. An overview of the main common parameters used to generate all the phantoms can

be found in Table 1. Figure 1 shows a coronal slice of the generated datasets.

PET and AC CT datasets

One static image of the thorax was obtained with the XCAT software, with the heart

captured in a fixed cardiac and respiratory phase. The gate corresponding to end-diastole

was chosen. The respiration phase of the simulated PET phantom was kept fixed to end-

expiration. This procedure simulates a cardiac 18F-FDG PET scan where the cardiac and

respiratory gating have ideally removed all motion present in the dataset. Two lesions

(transmural and non-transmural) were included in the simulation. The non-transmural

lesion (L1) transgresses 60 % of the mid lateral wall and has a volume of approximately

3 ml. The transmural lesion (L2) is located in the apical portion of the inferior wall and

has a volume of 1.5 ml (Fig. 1).

A corresponding attenuation image at 511 keV was automatically generated with the

XCAT software, in the same cardiac and respiratory phase as the PET, used to per-

form attenuation simulation and attenuation correction (AC) of the PET dataset. Both

the attenuation and the activity images were created using a voxel size of 0.8 mm in all

directions.

Anatomical images (HRCT andMRI)

In order to generate the HRCT frame of reference, a dataset with blood-pool contrast

and high spatial and temporal resolution was generated. To this purpose, the AC CT

described above was converted to Hounsfield units (HU) and blood contrast enhance-

ment was performed by thresholding the blood from resulting images. This resulted in a

simulated high-resolution contrast-enhanced CT image to be used as perfectly matching

anatomical information during the reconstruction of the PET dataset.

A second anatomical image was also obtained by shifting such perfectly matching

anatomical image by 2 mm both in the x and in the z direction (the corresponding

reconstruction has the suffix -shift), with the aim of verifying the robustness of the

anatomy-based prior to mis-registration. In addition, to verify the robustness of the
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Fig. 1 Overview of the activity, attenuation and anatomical datasets generated with the XCAT phantom. The

anatomical images are obtained starting from the attenuation image generated by the XCAT software and

post-processed manually to obtain the desired anatomical information

conclusions against varying magnitudes and directions of shifts of the anatomical image

relative to the PET, ten random directions were generated in 3D and used to obtain shift

vectors with a magnitude of 1, 2, 4, and 6 mm (40 vectors in total). These shift vectors

were each applied to the perfectly matching anatomical image to offset it from the activity

image.

Another anatomical image was generated in the same respiratory phase and in a slightly

different cardiac phase from the activity image (the corresponding reconstruction are

referred to with the suffix-mism). Four other mismatched anatomical images were simu-

lated too, in order to account for physiological variations of the cardiac volume between

different acquisitions [16] or between different heart cycles [17, 18]. To this end, we gen-

erated an anatomical image with a diastolic volume reduced by 10 % when compared

to the PET image (mism1). Moreover, we simulated an increase of the heart size by 5 %

(mism2), to account for small increments of the diastolic volume. The same cardiac phase

(ph1) or the next cardiac phase (ph2)—compared to the PET dataset—were used for PVC.

The mismatches produced were visually compared to the ground truth and were found

representative of a realistic scenario (see Fig. 2).

It is important to highlight that an HRCT cannot distinguish between healthy tissue and

scar. A previous preliminary study has suggested that this lack of differentiation might
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mism1_ph2

(MR with -10%vol@ED)

mism2_ph1

(MR heart scaled +5%)
Fig. 2 Mis-alignment of PET and MR datasets. Two examples of mismatched MRs: on the left, the diastolic

volume in the MR is reduced by 10 % and the next cardiac phase is chosen relative to the PET. On the right

column, the heart of the MR is up-scaled by 5 % when compared to the heart of the corresponding PET

dataset. On the top row, the contours of the initial activity phantom are overlapped in blue. In the bottom row,

the same phantom was reconstructed using OSEM3D with RR and post-smoothing of 5 mm (red colour scale)

and it was overlapped to the MR images (grey colour scale). While in the top row, the misalignment between

PET and MR is very easily detectable, it would be harder to identify when using a realistic PET image

hamper the performances of the anatomical priors used during reconstruction of the

PET datasets [19]. Conversely, other imaging modalities (e.g. MRI) are able to produce

images where a clear distinction between scarred and normal tissue is present, if par-

ticular acquisition sequences are used [20]. Therefore, all anatomical images generated

above (perfectly matching, shifted and in a different cardiac phase or volume) were sim-

ulated with MR-like contrast values, and also used as anatomical information during the

reconstruction of the PET datasets.

The MR image was derived from the XCAT attenuation image by assigning MR-like

values to the tissues. These values were extrapolated from one MR patient scan in short-

axis orientation, acquired with inversion recovery and contrast enhancement. Regions

of interest were drawn in seven tissue classes (left ventricle, blood pools, cardiac lesion,

pericardium, lungs, soft tissue and fat), and the contrast between the different tissues

was calculated. These same contrasts were reproduced in the simulated MR image, by
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assigning a value of 100 to the fat tissue and setting the values for the other tissue

classes accordingly. The pericardiumwas separately generated and integrated into the just

described simulated MR, as in the regular AC CT, no distinction between pericardium

and muscle is possible. The bone tissue (present in the AC CT simulated dataset) was

assigned a value of 0 in the simulatedMR image. Rician noise was also added to the noise-

free XCAT-MR according to [21]. Figure 3 shows the regions drawn in the MR and the

resulting synthetic, XCAT-based MR used as anatomical prior. Table 2 shows the tissue

classes and the values used for each of them, in one patient dataset and in the simulated

dataset. Comparable contrast values were observed in other two MR human datasets

available, acquired with a similar protocol.

Furthermore, we simulated the more realistic case where the MR has an anisotropic

resolution (i.e. the slice thickness is much larger—8 mm—than the in-plane resolution—

0.8 mm). The reconstructions obtained with the use of such anisotropic MR are referred

to with the suffix -aniso in the remainder of this study.
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Fig. 3 Assignment of tissue values. ROIs were delineated in a clinical MR (a). Similar contrast values were

imposed to the tissues in the attenuation image generated with the XCAT phantom. Panes b, c and d

represent the sagittal, transaxial and axial views of the XCAT phantom, respectively, after conversion to

MR-like contrast values
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Table 2 Simulated vs real MR values

ROI no. Tissue MR intensity XCAT
[mean ± sd in ROI] values

1 Left ventricle (LV) 8 ± 2 10

2 Lesion 43 ± 6 55

3 Blood 35 ± 3 45

4 Pericardium 50 ± 5 70

5 Lung 8 ± 2 10

6 Soft tissue 24 ± 3 30

7 Fat 78 ± 12 100

8 Bone n.a. 0

Projection of the activity phantom

The activity distribution generated with the XCAT software and corresponding to the

PET gate of interest was forward projected with a ray-tracing projection method using

in-house developed software that simulates an acquisition with the PET component of a

Siemens Biograph 16 PET/CT (Hirez) scanner [2]. Attenuation and a shift-invariant cam-

era resolution were modelled, but scatter and randoms were not. The camera resolution

was modelled as a Gaussian convolution (FWHM = 4.3 and 4.5 mm in the transaxial and

axial direction, respectively). As for attenuation, a sinogram containing the attenuation

correction factors was computed from the forward projection of the image containing

the PET attenuation coefficients, generated by the XCAT software, with a ray-tracing

projection method.

A noise-free sinogram was obtained. In addition, 25 noisy sinograms were gener-

ated by corrupting the noise-free sinogram with Poisson noise, corresponding to a 36-s

acquisition. The scan time of 36 s corresponds to a single gate taken from a doubly

gated 30 min PET scan, using five respiratory and ten cardiac gates. The simulated total

number of counts amounts to 3.9 million, which is in good agreement with what was

observed in previously performed animal and human thorax studies with similar activity

concentrations.

We also simulated the (non-ideal) case where the respiratory motion is not corrected

for. Since, in the clinical practice, the tracking of the breathing motion is much less com-

mon than the tracking of the heart rhythm with an ECG machine, we simulated the case

where the respiratory motion is not corrected and only the cardiac motion is. To do so,

we generated a phantom with 5× more counts by combining the data from all breathing

phases. This corresponds to taking a single cardiac gate from an ECG-gated PET scan

lasting 30 min using ten cardiac gates, for an equivalent scan duration of 180 s (instead of

36 s). In addition, we simulated the case where the respiratory motion is ideally removed

from the initial list-mode dataset (e.g. by list-mode motion compensation of the respira-

tory motion, for example as in [22]), and ECG gating is performed on top of this. As in the

previous case, the equivalent cardiac frame duration would be 180 s, but this case would

result in sharp images as the motion blur due to the respiration has been eliminated.

Reconstruction of the activity phantom

The activity sinogram was reconstructed using several reconstruction algorithms, listed

below. In-house developed software was used to perform reconstruction with a ray-

tracing projection method. The voxel size of the reconstructed PET images was set to
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1.353 mm3. The iteration scheme used for all reconstructions consisted of 3i42s (i, iter-

ations; s, subsets), followed by 2i24s and 2i1s. Where Gaussian post-smoothing was

performed, we used a spatially-invariant Gaussian kernel with FWHM = 5 mm in the

three directions. The same attenuation sinogram as for the forward projection was used

during each iteration of the reconstruction of all the datasets. This excludes the effects

of inaccurate attenuation correction from this simulation study. The same reconstruction

procedure was applied to all the noisy sinograms.

Several reconstruction algorithms were used to reconstruct the activity dataset:

• A 3D ordered-subsets expectation-maximization (OSEM) algorithm without

resolution recovery (OSEM3D ), with and without Gaussian post-smoothing.

• A 3D OSEM algorithm with resolution recovery (OSEM3D+RR), with and without

Gaussian post-smoothing. In this work, resolution recovery was achieved by

modelling the resolution of the camera with a Gaussian smoothing kernel whose

FWHM corresponds to the scanner’s spatial resolution. A perfect modelling of the

resolution was assumed, by using the same kernel (FWHM = 4.3/4.5 mm in the

transaxial and axial directions, respectively) during the simulation and the

reconstruction of the datasets. At each forward and backward projection step of each

iteration of the OSEM reconstruction algorithm, the intermediate reconstructed

volumes were smoothed with such convolution kernel. In this way, the resolution of

the scanner is taken into account during reconstruction and a de-blurred

reconstructed image can eventually be obtained. However, Gibbs artefacts might be

present in the final reconstructed image.

• Two maximum-a-posteriori (MAP) reconstructions with edge-preserving priors

(relative difference (RD) [23] and total variation (TV) [24]) applied during

reconstruction. These priors are one simple way to encourage piecewise smoothness

of the reconstructions, so that the Gibbs artefacts and the noise that affect the

reconstructions with RR can be mitigated or eliminated. However, since they rely on

intensity differences rather than knowing the actual image boundaries, they can

smooth the activity over regions that should be considered as distinct.

• MAP reconstructions with anatomical information (HRCT, isotropic MR or

anisotropic MR). The anatomical information could be perfectly matching (-perf ),

rigidly shifted (-shift ) or mismatched (-mism) relative to the PET dataset. Local

smoothness of the activity image was encouraged (using RD with γ = 0) within the

boundaries of homogeneous regions in the anatomical image during reconstruction,

according to the technique proposed by Bowsher [25] and modified by our group [26].

The general expression for the estimation of the activity distribution �̂ using prior

information is in the form:

�̂ = argmax
�

[ L(�) − P(β , γ ,�)] ,

where L is the log-likelihood of the activity � and P is the penalty term, where the penalty

quantifies how strongly the estimated image disagrees with the prior information. β is the

weight of the priors, and γ controls the edge preservation of the RD-prior (where γ = 0

corresponds to no perservation of edges). All reconstructions with priors were performed

using several parameter sets. For the RD prior, we did reconstructions using β = 4, 10,

30 and 50 and γ = 10 and 100, whereas for the TV prior, we reconstructed using β =
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0.0001, 0.001, 0.003, 0.005, 0.01, 0.05 and 0.1. For each anatomical Bowsher prior, we

tested different weights (β = 0.1, 4, 10, 30 and 50) and a spherical neighbourhood of

3 × 3 × 3 voxels (18 actual neighbours, excluding the eight most distant ones to obtain

an approximately spherical neighbourhood) was chosen. Moreover, a fixed number of

neighbours (n) within the neighbourhood needs to be set, to define over howmany voxels

the smoothing is applied. We tested the case where n = 3, 6, 9 and 13.

Choice of the reconstruction parameters

Bias-noise plots

As described at the end of the previous section, several parameters were tested for the

MAP reconstructions, but only a few parameter sets were used for the full analysis of

the lesions. The bias-noise plots and the contrast-noise plots for the LV and the non-

transmural lesion (L1), respectively, were used to select the parameter sets to be used

for subsequent further analysis. In other words, the parameter selection has to be seen

as preparatory work for the main investigation. The Bowsher reconstructions with the

MR were used to assess the bias, the contrast and the noise of the reconstructions with

anatomical priors.

To generate bias-noise plots, the bias was calculated as:

biasLV = LV recon − LV true

The contrast was computed as:

contrastL1 = 1 −
L1

LV
,

and the noise was computed as:

noiseLV = stddev(LV ),

where LV and L1 represent themean activities calculated in the LV and in L1 over 20 noise

realizations, respectively. stddev(LV ) is obtained by calculating the standard deviation on

the activity in every voxel in the LV over all noise realizations and then taking the average

over all voxels in the LV. Both LV and L1 were defined by thresholding the re-sampled

original phantom. All voxels whose value (after the resampling of the phantom) was at

least 70 % of the original activity value of the LV (or L1) were used to create the mask for

the two regions.

Image profiles

The profiles through the middle slice of each reconstruction were also analysed, in order

to verify if the parameters chosen based on the bias-noise plots could perform well

enough also for what edge preservation is concerned. Figure 4 illustrates the profile, cross-

ing over the non-transmural lesion, over which the intensity profile was computed. The

profile in the septal-lateral direction was considered. The profiles of the various noise-

free anatomy (MR)-enhanced images, obtained by reconstructing the same dataset with

different weights and different numbers of neighbours, were plotted against the ground

truth.
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septum lateral

lesion (L1)

Fig. 4 Line segment over which profiles were computed. The bottom pane shows the true line profile

Evaluation of results

The bias-noise plots and the line profiles allowed us to choose which parameter

sets were the best compromise in terms of intensity preservation, noise properties

of the reconstructions and ability to preserve the edges. Once the reconstructions

that yielded the best compromise between these three properties were selected, the

images were carefully evaluated by an experienced nuclear medicine cardiologist, who

visually chose the reconstruction (among those with the best bias-noise-edge compro-

mise) believed to be the most clinically acceptable. Once the optimal reconstruction

parameters were chosen for all the selected algorithms (Bowsher, RD, TV), the analy-

sis of the lesion areas was performed. The resulting images were evaluated against the

ground truth represented by the resampled original datasets generated with the XCAT

software.

Figures of merit

A quantitative evaluation of the reconstructions was performed. Three figures of merit

were used to analyse the quantitative accuracy and give an indication of the diagnostic

value of the reconstructions:
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• The recovery coefficient (RC) is defined as follows:

RCr =
r̄recon

rtrue
, r = LV ,RV , L1,

where r̄ represents the mean activity in the volume of interest r, averaged over the 25

noise realizations, and LV, RV and L1 are the volumes of interest containing the left

ventricle, the right ventricle and the non-transmural lesion, respectively (see Fig. 1).

The RC was not calculated for the transmural lesion L2, as its true mean value is zero.

• The contrast recovery coefficient (CRC) was used to identify the algorithm that best

preserves the contrast between the region of interest r and the background region b,

when compared to the ground truth contrast. The CRC was computed as in [27]:

CRCr =
contrastreconr

contrasttruer

, r = LV ,RV , L1, L2,

where

contrastr =

⎧

⎨

⎩

r̄
BP

− 1 if r = LV, RV

1 − r̄
LV

if r = L1, L2.

BP and L2 are volumes of interest containing the blood pool and the transmural

lesion, respectively (see Fig. 1).

• The contrast-to-noise ratio (CNR) is another common measure for determining the

performance of an algorithm. In fact, while the CRC indicates how well the intensity

values of a region are recovered compared to a background region, it does not give

any indication on how well the regions are visible when the noise corrupts the

reconstructions. In other words, if e.g. a contrast of 10 units is observed between a

lesion and the background, but the noise has a comparable magnitude, the lesion will

be basically invisible despite the good contrast recovery indicated by the CRC. The

CNR was defined as in [28]:

CNRr =
contrastreconr

noisereconb

, r = LV ,RV , L1, L2,

where

noiseb =
stddev(b)

b
,

b =

{

BP if r = LV, RV

LV if r = L1, L2.

A paired t test was performed to identify the significant differences in CRC and CNR of

the various reconstructions, compared to TV. To this end, a significance level of 0.01 was

chosen for all evaluations.

Bull’s eye plots (polarmaps)

17-segments polar maps (PMs) or bull’s eye plots of the LV were created to further evalu-

ate the visibility and the quantification of the lesions, using a tool commonly adopted by

nuclear medicine physicians. For each of the reconstructed datasets and for the ground
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truth, the bull’s eye plots were created as described in [29]. The delineation of the LV was

automatically performed by in-house software. A fixed thickness of the LV of 6 mm was

imposed, which was verified to fit the simulated LV shape well.

Each pixel in the polar map represents a small transmural portion of the LV wall,

enclosed by the endocardial and epicardial contours, for each angular location and at each

position along the long axis of the LV. The intensity assigned to each pixel can be com-

puted in two ways, as illustrated in Fig. 5. On the one hand, the maximum count over the

delineated LV can be taken. This method produces polar plots (max-count polar maps)

that are less affected by delineation errors or inaccuracies, but they can reflect the noise

or the artefacts introduced by the reconstruction algorithm (e.g. Gibbs over-shoots). In

addition, this method will consistently take the maximum value over the thickness of

the myocardium, thus possibly hiding the presence of e.g. a non-transmural lesion. Con-

versely, it is possible to take the mean value over the thickness of the LV, at each angular

location and at each position along the long axis, and assign that mean value to the

corresponding voxel in the polar map. The mean-count polar maps are more prone to

delineation errors but, if the delineation is reliable, have the advantage of depicting more

accurately the distribution of activity in the LV region considered.

Both polar map types were generated in this work. When the mean-count polar maps

were computed, the delineation coming from the Bowsher reconstructions with the MR

as anatomical prior information was used as delineation also for all other reconstructions.

The mean value of each of the 17 segments that composed each polar map was computed,

for each of the noisy reconstructions. Three regions were additionally identified in each

polar map: L1 (segment 11, corresponding to the location of the non-transmural lesion),

L2 (segment 13, corresponding to the location of the transmural lesion) and normal tissue

(all other segments). The mean values of the normal vs lesion regions were calculated and

compared to verify which algorithm best preserved the lesion contrast and best reflected

the values obtained from the polar map of the ground truth.

Application to an animal dataset

As a proof of concept, we applied some of the techniques described in this simula-

tion study (OSEM3D, OSEM3D+RR, TV) retroactively on a previously measured animal

(sheep) dataset, where a lesion in the right ventricle and a lesion in the apical portion of

the left ventricle had acutely formed before the PET scan. No Bowsher reconstructions

were performed for this dataset due to the lack of the appropriate anatomical information.

The anaesthetised sheep was injected with 257 MBq of 18F-FDG and scanned 30 min

post-injection for 30 min. During the scan, the breathing of the animal was mechanically

controlled by a ventilating machine. The cardiac and respiratory traces were recorded

during the PET scan, using an ECG tracking device and a respiratory belt (AZ-733V,

ANZAI Medical Co.). Triggers corresponding to the peak R-wave of the ECG and to the

peak-inspiration of the breathing signal were inserted into the PET list-mode by these

external tracking devices. They were then exploited to perform off-line phase-based gat-

ing of the PET dataset using in-house developed software (five respiratory gates and

ten cardiac gates). After the gating, the list-mode corresponding to end-expiration and

end-diastole was reconstructed using OSEM3D, OSEM3D+RR and the TV prior (w =

0.005).

A qualitative comparison of the images at the lesion sites was performed.
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Fig. 5 Creation of a polar map (PM) of the LV. The polar maps, or bull’s eye plots, are 2D representations of a

3D cone-shaped object (the left ventricle) (1). By using polar maps, we lose the information related to the

distribution of activity within the wall thickness, as only one activity value can be assigned to each angular

and longitudinal position of the LV (2). The value that is commonly assigned to each pixel of a bull’s eye plot

can be the maximum, or the mean value over the LV wall at that angular and longitudinal position (3). Other

values can be assigned, too, but the mean or the maximum along the wall thickness are the most commonly

used when bull’s eye plots are considered. This assigned value is an approximation of the activity over the LV

thickness. In most cases, it manages to convey an acceptable, general idea of the myocardial distribution of

activity. However, in some cases, it might come in defect: for example, when overshoots of activity appear in

the reconstructed images as a side effect of resolution modelling during reconstruction, or when images are

extremely noisy, the max-count polar maps would assign to the PM values that are an overestimation of the

actual mean activity within the LV. On the other hand, the use of mean-count polar maps might be incorrect

if the delineation of the myocardial walls is not accurate (e.g. due to the blurring caused by PVE). No matter

the method used to select the polar map values, the resulting image is a 2D map of the activity distribution of

the LV (4), where the different sections (or segments) can be identified using different conventions. In (4) the

“17-segment” subdivision is used, as it is the most widespread in nuclear medicine analyses (used in this work)

Results

Choice of the reconstruction parameters

We made use of the combined information from the bias-noise and contrast-noise plots,

alongside with the line profiles through the middle slice of the heart and the opinion of an
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experienced nuclear medicine clinician, to define which of the Bowsher reconstructions

was best to proceed with for the full subsequent analysis of the recovery and visibility of

the simulated lesions.

Figure 6 shows the bias-noise plot for the LV and the contrast-noise curve for L1, for the

different reconstruction algorithms and parameter choices. The curves are produced by

varying the weight of the priors. Initially, by visually analysing the same reconstructions

at different noise levels, we empirically selected those corresponding to a noise level of

3000–4500 (highlighted in blue in Fig. 6). The bias- and contrast-noise plots confirmed

that this was an acceptable compromise between the noise and the bias levels, both of

which should be as low as possible. Most of the curves in the plots bend towards worse

contrast/bias values when going below this noise level. In other words, by further lowering

the noise, the LV bias would become excessive, and the lesion contrast would start to

decrease. We verified that these conclusions were in agreement with the opinion of our

nuclear medicine expert.

To supplement the results of the bias-noise and contrast-noise analysis, the profiles

through the middle slice of the heart (Fig. 7) were also considered. The Bowsher recon-

L1

LV

Fig. 6 Bias-noise plot for the LV (top pane) and contrast-noise plot for the non-transmural lesion L1 (bottom

pane). When the Bowsher prior is indicated, the MR is used as anatomical information during reconstruction.

Twenty noise realizations per reconstruction were used. The light-blue stripe represents the noise range

designated as clinically acceptable
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Fig. 7 Profiles through the middle slice of the heart. Noise-free reconstructions

structions with 13 neighbours and high weights were discarded, as they appear artificially

smooth and they fail to correctly restore both the activity peaks and the sharp intensity

transitions. The reconstructions with three neighbours show the best edge preservation,

but the noise pattern they display looks unnatural especially at higher weights. The recon-

structions with six and nine neighbours appeared the best for the structures of interest,

featuring a less artificial look and yet fairly good preservation of the edges. After a visual

inspection of the reconstructed images, performed by an experienced nuclear medicine

physician, a weight of 10 and a n = 9 was chosen for the Bowsher reconstructions. For the

TV prior, a weight of 0.005 was chosen to match the selected noise level. For the same rea-

son, the paramenters chosen for the RD prior were β = 4 and γ = 10. The markers of the

final selected reconstructions are in bold and crossed in the bias-noise and contrast-noise

plots (Fig. 6).

Visual analysis and septum-lateral profiles

As Fig. 8 shows the HRCT-based prior moderately outperformed the non-anatomy-

based priors in terms of contrast recovery of the ventricles and volume delineation,
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Bowsher (CT) –perf 

Bowsher (CT) –shift 

Bowsher (CT) – mism

ground truth

Bowsher (MR) –perf 

Bowsher (MR) –shift 

Bowsher (MR) – mism

Bowsher (MR-aniso) – perf 

Bowsher (MR-aniso) – mism

RD priorOSEM3D OSEM3D + RR

TV priorOSEM3D + RR + FWHM=5mmOSEM3D + FWHM=5mm

Bowsher : β = 10 – n=9 

RD prior  : β = 4 - γ = 10

TV prior  : β = 0.005 - iter = 5 

Bowsher (MR-aniso) –shift

Fig. 8 Zoomed in images of the lesions reconstructed using the different reconstruction algorithms (example

of 1 noise realization). 3i42s + 2i24s + 2i1s iteration scheme. The RD and the TV priors represent a good choice

in case no anatomical information is available, if the anatomical information does not highlight the lesions or if

the anatomical information is mismatched (see Bowsher (HRCT) or Bowsher (MR)-shift). When the anatomical

image is matching the PET dataset and it clearly differentiates between healthy and scarred tissue, then it is

definitely the preferred choice (Bowsher(MR)-perf). Please note that the OSEM3D reconstructions suffer more

than others from severe noise; this is due to the long iteration scheme, applied to ensure convergence and

consistency with the other reconstructions. The suffix -shift indicates the case where the anatomy is displaced

by 2 mm in the x and z direction, while -mism represents the case where the heart in the anatomical

information has the same morphology but it is in a slightly different cardiac phase relative to the PET dataset

provided that the anatomical information was well aligned to the corresponding PET

image. There was no improvement in terms of lesion visualisation, due to the fact that

the HRCT does not show any intensity difference between lesions and healthy tissue.

The edge-preserving priors, on the other hand, produced visually appealing images,

with better contrast-to-noise ratios than the current standard for PET reconstruction

(OSEM3D+RR+post-smoothing). The use of MR as anatomical information led to bet-

ter delineation of the lesions. If, however, the anatomical information was shifted or
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mismatched when compared to the activity image, the delineation of the LV and of the

lesions was affected and artefactual hypo-perfused areas appear in the LV. The use of

anatomical information with non-ideal resolution (i.e. anisotropic MR) slightly affected

the image quality. However, in most cases, the anisotropic resolution of the MR was not

the bottleneck for the reconstruction with anatomical information.

The profiles computed through the middle plane of the heart (Fig. 9) confirmed these

observations. If perfectly aligned to the PET dataset, both HRCT and MR performed

equally well as anatomical priors (leftmost part of the profile), except when the lesion was

considered (rightmost part). There, again, the CT-based anatomical prior suffered from

the fact that no information on the lesion was present, and therefore blurred the activity

of the LV over it. The MR-based prior, on the contrary, managed to correctly recover

the activity. The use of MRs that were not perfectly aligned to the PET dataset was not

particularly deleterious for the mid-ventricular profile (not shown).

Figures of merit

The CRC and CNR were calculated for all the selected reconstructions. As a first

step, we compared the results obtained with the current standard for reconstruction

20 40 600

5e3

10e3

15e3

Pixel index

Intensity [Bq/cc]
A

A

B

C

B

C

Bowsher (MR)

ground truth
OSEM3D
OSEM3D + RR (---)
RD
TV
Bowsher (HRCT)

Fig. 9 Profiles of the LV activity computed through the middle plane of the heart. The OSEM3D, OSEM3D+RR

(both with a 5-mm post-smoothing), the two edge-preserving priors (TV with w = 0.005, RD with w = 4 and

γ = 10) and the two anatomy-based priors (both with w = 10 and n = 9) are compared. These profiles are

the mean over 20 noise realizations. In the bottom part, a zoomed-in version of the most interesting areas is

shown. a and b demonstrate that a similar behaviour can be expected between MR-based and CT-based

anatomical information, where no lesions are considered. In pane c, the MR reconstruction is the one that

best follows the contours of the lesion
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(OSEM3D+RR+post-smoothing) to the images obtained with the edge-preserving, non-

anatomical prior (TV) and the two types of anatomical prior (perfectly matching HRCT

and MR, respectively). Figure 10 describes the findings. When the lesion is not visible

in the anatomy (i.e. HRCT), the use of anatomical priors does not improve the contrast

recovery of the lesions, when compared to results obtained with the non-anatomical pri-

ors. However, the superior noise performance of the anatomy-based prior makes the

lesions slightly better visible in such reconstructions (Fig. 10, Bowsher(HRCT) columns,

CRC vs CNR). The same Figure and the results of the t test indicate that the improve-

ment of the CNR is moderate (but significant) for Bowsher(HRCT) compared to TV,

CRC

CNR

* * * *
*

* *
*

*
*

*

*

TV Bowsher (MR)Bowsher (HRCT)
OSEM3D+RR+

post-smoothing 

(5 mm)

0.2

0.4

0.6

0.8

1.0

1.2

2

4

6

8

0

0

*
*

TV Bowsher (MR)Bowsher (HRCT)
OSEM3D+RR+

post-smoothing 

(5 mm)

Fig. 10 CRC and CNR comparison, edge-preserving prior (TV) vs ideal anatomical priors, calculated on 25 noise

realizations. Mean values and min/max error bars. *Significantly better than TV. TV was chosen as reference as

it yielded the overall best RC, CRC and CNR in comparison to all other non-anatomy-based reconstructions



Turco et al. EJNMMI Physics  (2016) 3:9 Page 20 of 32

particularly when a non-transmural lesion (red column) is concerned. When the lesion is

visible in the anatomy (i.e., MR), the anatomical prior significantly improves both contrast

recovery and noise properties of all the anatomies.

Secondly, we further analysed the behaviour of the best anatomy-based reconstruction

when the conditions are not ideal, i.e. the alignment between the anatomical and the PET

dataset is disrupted or the anatomical information is acquired with anisotropic resolu-

tion (Fig. 11). The use of a shifted or mismatched anatomy affects both quantification

and detectability, with more errors caused by rigid shift than cardiac phase mismatch.

The use of a shifted or mismatched anatomy also introduced small, artefactually hypo-

perfused areas (not shown), which could possibly be interpreted as false positives. The

use of anatomical information with non-ideal resolution (i.e. anisotropic MR) does affect

CRC andCNR.However, inmost cases it still outperforms the non-anatomy-based priors.

A comparison of all the CRCs (Fig. 12, top) and the CNRs (not shown) of the

Bowsher(MR)-based reconstructions with varying shifts was also performed, to verify

the robustness of the findings to different degrees of misalignment. If the overall shift

in the three directions is small enough (≤2 mm), the contrast recovery of the lesions is

still acceptable and improved when compared to images obtained using a non-anatomical

prior during reconstruction. On the other hand, particular attention needs to be paid

when the shifts are greater than 2 mm. In this case, both the CRC and the CNR of the

lesions worsen, when compared to TV. Similar conclusions can be drawn for the differ-

ent mismatches (Fig. 12, bottom graph). If the misalignment between the image used as

anatomical information and the PET image is small enough (e.g. mism1-ph1), the good

performances of the anatomical prior are maintained. The stronger the mismatches, the

higher the decrease in both CRC and CNR, particularly those of the lesions.

TV
MR- perfMR-

mism

MR-shiftMR

(aniso) -

perf

MR

(aniso) -

mism

MR

(aniso) - 

shift

CNR

Fig. 11 CNR comparison, edge-preserving prior (TV) vs non-ideal anatomical priors, calculated on 25 noise

realizations. Mean values and min/max error bars. All reconstructions are significantly better than the

edge-preserving prior (TV). The suffix -shift indicates the case where the MR is shifted by 2 mm in the x and z

direction, whereas -mism indicates the case where the MR is in a slightly different cardiac phase relative to

the PET)
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Fig. 12 CRC comparison with different shifts or mismatches. Contrast recovery coefficients (CRC) for the

different cardiac regions when different shifts (top) or mismatches (bottom) are applied to the MR before

using it as anatomical information during reconstruction. The values here presented are the mean, maximum

and minimum values over ten shift directions per shift magnitude and over ten noise realizations per

mismatched MR, respectively. The MR-mism and MR-shift reconstructions are the same as in Fig. 11 (MR-shift

is shifted by 2 mm in the x and z direction, MR-mism is in a slightly different cardiac phase)

The effect of motion correction is clear in Fig. 13. If the respiratory motion correc-

tion is neglected and only ECG gating is performed on the original list-mode dataset

(ECG bars in the Figure), the lesions are hardly distinguishable due to the motion blur.

On the other hand, the use of images with better noise properties and perfectly com-

pensated for respiratory motion (ECG+R bars in the Figure) demonstrate that the better

noise level improves the CNR as expected, and that the correct recovery of the contrast is

independent of the noise level.

Bull’s eye plots

The bull’s eye plots add insight into the activity distribution in both lesions. An in-depth

analysis of the LV quantification is out of the scope of this work.



Turco et al. EJNMMI Physics  (2016) 3:9 Page 22 of 32

CRC

CNR

TV, w= 0.005OSEM3D+RR

+post-smooth

Bowsher (MR) -

perf

D
U

A
L

D
U

A
L

D
U

A
L

D
U

A
L

D
U

A
L

D
U

A
L

0.4

0

0.8

4

0

8

Fig. 13 Effect of motion correction on CRC and CNR. The top plot shows the changes in contrast recovery

when motion compensation is fully performed (DUAL, as in dual-gated studies), or only ECG gating is

performed (ECG, one cardiac gate blurred by the respiratory motion) or if ECG gating is performed starting

from a dataset where the respiratory motion has been compensated (ECG+R, one cardiac gate, less noisy)

The transmural lesion is clearly identifiable in the bull’s eye plots of all reconstructions.

The non-transmural lesion, on the other hand, should only be visible in the mean-count

PMs, while it should be fully hidden in the max-count PMs, given the fact that such plots

have been generated by taking the maximum intensity over the thickness of the LV.

The right column of Fig. 14 illustrates what is actually obtained. In the max-count polar

maps, the healthy tissue situated close to the non-transmural lesion is often reconstructed

with decreased intensity due to PVE or to incorrect PVC. Therefore, the bull’s eye plots

will show an area of decreased activity, as if the segment contained a fully transmural

lesion. In the ideal-case scenario, however, the better the healthy portion of the LV is

reconstructed, the less we should notice the presence of the non-transmural lesion in the

max-count PM. This is the case for the reconstructions with the MR used as anatomical

prior, which is the one that most accurately reproduces the polar map of the ground truth.

On the other hand, this result, despite correct, might hide the presence of a non-

transmural lesion to the clinician’s eye. In order to overcome this inconvenience and keep

track of the non-transmural lesion in the bull’s eye plots, the use of a mean-count polar
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11227

11721

12675

12665

11148

11120

12710

12378

13833

17067

14549

16112

13762

15340

13365

14242

Fig. 14 Mean-count vs max-count Bull’s eye plots. Segmental 17-segments polar maps obtained from the

reconstructions of one noise realization. Left column: mean-count polar maps of a selection of the

reconstructions performed. The Bowsher reconstruction with MR is overall the most similar to the ground

truth, both in absolute and relative terms. In the right column, the max-count polar maps for the same

reconstructions are presented. Again, the Bowsher reconstruction with MR produces the polar map with the

best intensity preservation, when compared to all other reconstructions

map is advised. The anatomical prior allows an accurate delineation of the LV, thus avoid-

ing errors due to incorrect definition of the LV boundaries. At the same time, the presence

of a hypo-perfused area is correctly revealed.

In both cases, the use of bull’s eye plots needs to be accompanied by a thorough obser-

vation of the corresponding short and long axis slices, especially if anatomy-based PVC is

performed during reconstruction, in order to correctly differentiate between transmural

and non-transmural lesions.

Figure 15 shows the mean values of the normal and lesioned regions, computed on the

corresponding segments of the polar maps, for 25 noise realizations.

When the max-count polar maps are used and the non-transmural lesion is consid-

ered (top-left pane of Fig. 15), the mean intensity of the segment corresponding to the

non-transmural lesion (L1) is, in the ground truth, very close to the mean intensity of the
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Fig. 15 The mean, minimum and maximum values (over 25 noise realizations) of the normal and lesioned

regions, computed on the corresponding segments of the polar maps, are compared. On the two graphs

from the top, the values computed from the max-count polar maps are illustrated. On the two bottom graphs,

the values computed from the mean-count polar maps are presented. For each type of polar map, the top

parts (first and third graph) compare the intensity of the normal region to the intensity of the non-transmural

lesion (L1), using the different reconstruction algorithms, whereas the bottom parts (second and fourth graph)

show the same information for the transmural lesion (L2). The solid lines represent the mean values computed

in the ground truth in the normal (red) and lesioned (yellow) tissues. The light-blue stripe highlights the

reconstruction algorithm (MR-perf) that performs best in terms of similarity of the mean to the ground truth.

To be noted that the mean-count polar maps of the OSEM3D+RR, despite being a good approximation of

the ground truth on average, have very large error bars indicating that it can have very poor values for

individual noise realisations

surrounding normal tissue. As expected, this behaviour is best reproduced when the Bow-

sher with a perfectly matching MR is used as anatomical information (light blue stripe).

This is the reconstruction technique that gets closest to the segmental values of the L1
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and L2 in ground truth, too. All other reconstruction algorithms artificially increase the

contrast between the L1-segment and the normal tissue, due to the incorrect recovery

of the surrounding healthy tissue (e.g., when the CT or the non-anatomical priors are

used). The OSEM3D and OSEM3D+RR without smoothing are extremely noisy; hence,

the mean segmental values of the max-count polar maps are all over-estimated. A post-

smoothing applied to such reconstructions preserves the contrast between normal and

lesioned segments (anyway higher than what it should be), and it underestimates the

segmental value for the non-transmural lesion L1.

When the transmural lesion is considered (bottom-left pane of Fig. 15), all MAP recon-

structions behave similarly and preserve both contrast and actual values. This is consis-

tent with the fact that the maximum count over the thickness is anyway zero, regardless

the alignment of the anatomical information or the prior used during reconstruction.

If a better representation of the ground truth values is aimed at, the use of mean-

count polar maps is recommended. In this case, the mean intensity of the normal tissue

decreases for almost all reconstruction algorithms except the Bowsher-MR and the

OSEM3D with RR. In the case of OSEM3D+RR, the computation of a mean polar map

(using the LV delineation obtained from the Bowsher(MR)-PET) does mitigate the sharp

peaks of activity at the centre of the LV of the OSEM3D+RR reconstructions, which are

the Gibbs artefacts due to the process of RR. This holds true as long as a correct delin-

eation (in this case, the one from the MR-based reconstructions) is used. As far as the

non-transmural lesion L1 is concerned (top-right pane of Fig. 15), the mean segmental

values reflect the mean intensity of the ground truth when both a perfectly matching MR

or edge-preserving priors are used. The use of a misaligned MR does hamper the quan-

tification of both normal and lesioned regions, similarly to what the use of an HRCT does.

The HRCT does not produce correct results due to the absence of pericardium and of the

lesion in the anatomical image. The transmural lesion, again, suffers less frommismatches

or incorrect lesion delineation in the anatomical image (bottom-right pane of Fig. 15).

These results are confirmed by the visual inspection of the polar maps. A selection of

the bull’s eye plots compared to the ground truth is on Fig. 14.

Proof of concept: animal dataset

The images resulting from the reconstruction of the animal dataset are in Fig. 16. The

overall image quality improves when using the TV prior, with a noise-suppression and

contrast-enhancement effect that is similar to the one observed in the simulation study.

The boundaries of both lesions are also more clearly defined when using TV.

Discussion

In the first place, it is important to emphasize the reason why a single cardiac and respi-

ratory PET frame, obtained by double gating the original dataset, was considered here for

PVC instead of a motion-corrected PET dataset (using all available data). Several meth-

ods to obtain motion fields with which the PET dataset could be corrected for motion

have been proposed in the past: using a dynamic CT acquisition [30], via estimation of

the motion fields directly from the PET dataset [5, 6] or using motion fields derived

from a truly simultaneous PET/MR acquisition [7]. In the case of a shorter scan, for

example, using a single cardiac gate from a study with motion correction would increase

the fraction of the counts that are used to create the motion-free image. However, the
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Fig. 16 Animal dataset: a proof of concept. OSEM3D, OSEM3D+RR and TV reconstructions were retroactively

performed on a measured animal dataset, after motion correction is applied. Both lesions are more clearly

identifiable in the TV reconstruction. From left to right: short axis, horizontal and vertical long-axis views

additional radiation burden associated with the CT acquisition, the possibly inaccurate

and non-trivial motion estimation from the PET dataset and the non-availability of truly-

simultaneous PET/MR devices in most of the PET centres, made us opt for simulating the

worst-case scenario where a simple double-gating pass was applied to the PET dataset. In

this way, all PET datasets are equally noisy and are equally unaffected by possibly inac-

curate motion-correction issues, and a fair comparison of the MR-based and CT-based

PVC could be performed. In addition, the results obtained in the simulated, worst-case

scenario are also representative for the case where the cardiac uptake was limited, or if

the PET scan time was further reduced to optimize the clinical workflow or to limit gross

patient motion during the scan [31]. We believe that most of the findings of this work

would also apply to reconstructed PET datasets with better statistics and/or accurately

corrected for motion.

A second point of interest emerges from the analysis of the preparatory results of

this study. The correct choice of the prior parameters (weight, amount of edge preser-

vation, number of neighbours considered) is the first fundamental task that needs to

be performed before any reconstruction-based PVC. Despite being cumbersome (mul-

tiple trial reconstructions are needed, in order to find the best parameters to be used),

this step is crucial for obtaining images that represent an acceptable compromise

between intensity bias and noise suppression, and, most importantly, that are clinically

acceptable.
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Once the optimal parameters for reconstruction have been found, PVC of doubly-gated

cardiac PET images with anatomical information is a delicate task that requires careful

evaluation. The use of anatomical information that does not highlight scar tissue (e.g.

HRCT or MR reconstructions where the lesion-to-LV contrast is absent) is not worth

the effort and the extra radiation burden for the patient, particularly for lesion detection.

If its alignment to the PET dataset was perfect, it would effectively suppress noise and

make transmural lesions clearer, provided that the weight of the prior information was

not too strong and the appropriate number of neighbours was chosen for the reconstruc-

tion. The visibility of the non-transmural lesions would be only marginally improved. If

only anatomical information that does not highlight the scars can be made available, the

improvement in lesion contrast and recovery would be so marginal that its acquisition

would not be worth the effort. A non-anatomical, edge-preserving prior applied during

reconstruction would be the best alternative.

If the anatomical image does differentiate between normal and scar tissue (e.g. via a

properly chosen MR sequence), then its use is advisable for both absolute quantifica-

tion and improved lesion detectability. However, it is of extreme importance to accurately

align (≤2mmmismatch) the anatomical and activity images before proceeding with PVC.

If such alignment is not fully achieved, the risk of artefacts in the reconstructions is

high and might compromise the diagnostic accuracy. The anisotropic resolution of the

anatomical information decreases the performances of the MR-based PVC, particularly if

the structures of interest are below the spatial resolution of the anatomical information.

However, the anisotropy of the MR does not seem to represent a bottleneck for PVC with

anatomical information, as long as a correct alignment is achieved.

The analysis of the polar plots suggests that any of the evaluated MAP algorithms

would produce a fairly good preservation of lesion-to-normal tissue contrast. The use of

misaligned or shifted anatomical information is not harmful if polar maps are used, par-

ticularly if the mismatches are reasonably small. In fact, even if the absolute quantification

of the segments might be affected by the use of the wrong anatomy, the contrast between

the lesioned segments and the normal segments is not degraded. Therefore, for the sole

purpose of identification of segments with lesions in the Bull’s eye plots of the LV, the

use of any of these MAP algorithms would be acceptable but the anatomical information

would not introduce any significant improvement in lesion detection. The polar maps

also confirm what was previously noticed in the reconstructed images. If the anatomical

information is used, the absolute quantification of all the segments improves when com-

pared to all other algorithms. However, to achieve such improvements, the anatomical

image (MR) needs to be perfectly aligned to the PET dataset. In case the alignment is dis-

rupted, the performances of the anatomy-based reconstructions are comparable to those

of the reconstructions simply enhanced with an edge-preserving prior.

This simulation study analyses the effects of a badly aligned anatomical image relative

to the PET dataset for the purpose of PVC of lesions in PET cardiac datasets. A few limi-

tations of this study come from the ideal-case scenario we are currently considering. First

of all, we utilize a single cardiac and respiratory PET gate, assuming that a perfect motion

correction of the PET dataset is performed. We believe that this is the best way to clearly

assess the effect of the different partial volume correction techniques, without confound-

ing the effect of the motion blur with the partial volume effect. This said, we acknowledge

that the breathing and beating motion are a tangible and cumbersome issue when cardiac
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datasets are of interest and that in the current clinical practice, there is often no time nor

means to perform a fully dual-gated PET reconstruction. For this reason, we performed

an additional simulation study where we purposely did not correct for the respiratory

motion (i.e. only ECG gating is performed, which can be easily done in clinical practice)

and we just applied the PVC techniques on such datasets. With this additional study, we

demonstrated that the heart motions (both due to breathing and beating) need to be cor-

rected for in order for PVC to successfully take place. The optimal compensation of one

of the two motions would improve the noise properties of the resulting reconstructions,

in all cases. However, a further improvement in lesion visibility can always be observed

when the prior information is used. In addition, even in the best-case scenario where

dual gating can be performed, sometimes a perfect motion correction simply cannot be

achieved. This can be due to delays or imperfections in the insertion of the triggers in

the PET dataset, or to gross patient motion that can occur during the scan and is not

corrected for, or to the violated assumption of correlation between the external motion

tracked by the external tracking devices (e.g. respiratory belts) and the internal motion

of the heart, or to the unpredictable motion pattern of a real, patient heart (e.g. defor-

mations occurring during the breathing), or to the too simplistic gating method used

for motion correction. In all these non-ideal situations, the gating process can only be

correct to a certain extent. If the heart does not behave as modelled by the gating soft-

ware, part of the activity will be misplaced, and any of the PVC techniques presented

would simply smooth over activity regions regardless of how well motion correction was

performed.

We believe that the PVC should to be performed only when motion, randoms, scatter

and attenuation correction are performed in the most accurate possible way. If this was

not the case, the activity distribution before PVC would not be correct in the first place,

and hence, any PVC technique would obviously not improve our knowledge on the actual,

underlying activity distribution (on the contrary, it would even possibly emphasize areas

of wrongly placed activity).

In this regard, it is important to discuss the need for random and scatter correction.

Both corrections are necessary for a correct and artefact-free estimation of themyocardial

distribution of activity. In our case, we simplify the scenario by assuming the absence

of random and scatter from our simulated datasets. The results here presented would

change, in the direction of a worsening of the image bias, if these corrections were not

correctly applied. An analysis of the effects of a wrong random and scatter correction was

out of the scope of this study.

It is also necessary to underline that this study uses a perfectly matching attenuation

image to correct for attenuation during the PET measurement. In a previous study [10],

we proved that the use of a mismatched attenuation image can affect the subsequent PVC

of the PET dataset with anatomical information in two ways. Firstly, the use of a mis-

matched attenuation correction can create fake, hypo-active areas in the LV depending

on the direction and the amount of the displacement of the AC CT relative to the PET

dataset. This could result by itself in errors in the quantification of the (lesions in the) LV.

In addition, the correction of the PET dataset with a mismatched attenuation image can

mislead the registration of the anatomical image for PVC to the activity image. This, in

turn, would result in wrong PVC (as in one of our simulated cases where the anatomy is

mismatched relative to the activity image). Therefore, the results presented in this work
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have to be considered as the best-case scenario, where the attenuation map used does not

hamper the registration nor the quantification and image quality.

Investigating ways to improve the alignment between the PET and the anatomical

dataset was out of the scope of this work. In the cases where the PET and the anatom-

ical images are slightly misaligned, a registration of the anatomical information to the

PET datasets might mitigate the issue, but the registration process is not straightforward.

Rigid-registration algorithms normally have an accuracy of 3–4 mm if inter-modality reg-

istration is performed [32]. However, we here observed that these mismatch values are

not acceptable if the PET dataset needs to be reconstructed with anatomical information.

The use of non-rigid registration to correct for small deformations, despite appealing,

appears difficult due to the often high level of noise in the PET dataset. One possible

solution would be to correct the PET dataset with an edge-preserving prior first, then

align it to the anatomical information image of choice and, once a correct alignment is

achieved, proceed with a new reconstruction of the PET dataset with the help of anatom-

ical information. We briefly investigated this alternative, but the first results obtained

did not represent an improvement to the reconstructions with the original misalignment

(not shown). A more in-depth investigation will be needed, to find the optimal regis-

tration algorithm and parameters that could lead to a more encouraging result in this

direction.

Finally, we would like to conclude with a comment on the feasibility of the acquisition

of gated anatomical information of sufficient quality for PVC. As for the acquisition of

an HRCT, while hybrid PET/CT devices do not have the necessary resolution for obtain-

ing CT images for PVC, dedicated CT scanners with high spatial and temporal resolution

are nowadays part of the clinical practice. With these scanners, it is possible to obtain a

‘frozen’ image of the heart in a specific cardiac and respiratory phase, with a very low radi-

ation burden for the patient [33]. When the patient requirements asked by the developers

of such scanners are met (e.g. the heartbeat of the patient has to be below 70 bpm for opti-

mal image quality), the images obtained with these dedicated CT devices are suited for

PVC of healthy (non-lesioned) cardiac tissue. However, the usage of separate or dedicated

HRCT scanners for the acquisition of anatomical images for cardiac PVC seems imprac-

tical for several reasons. Firstly, in a HRCT, the lesions are not well visible, thus limiting

the applicability of the PVC method using HRCT to a better recovery of healthy tissue.

Secondly, the fact of moving the patient from one scanner (the PET/CT) to the other

(HRCT) for the acquisition of the anatomical information could increase the chances of

small motions and deformations of the heart between the two scans, which would in

turn increase the chances of incorrect PVC. This would be an issue both for the use of

a dedicated HRCT and MR scanner. Additionally, for what dedicated MRI scanners are

concerned, the acquisition of images with sufficient temporal and spatial resolution for

PVC would be problematic, due to the limited allocated time for such scans. For all these

reasons, great interest goes in the recent development of integrated, truly simultaneous

PET/MR devices, which we believe could foster the application of anatomy-based PVC

techniques in the clinical practice. The use of these scanners would allow the acquisition

of an MR image of sufficient resolution, as its acquisition could be performed simulta-

neously with the PET scan (and, therefore, last at least several minutes). Moreover, the

problem of moving the patient from one scanner to the other (or, even worse, to scan

the patient on two different days, for the PET and the MR scan separately) would be
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fully avoided. Navigators, self-navigated methods and acceleration methods for obtain-

ing MR images with a good temporal resolution, accurately corrected for the periodic

cardiac motion and with less motion artefacts (e.g. ghosting) are successfully being used

nowadays and are under continuous improvement [34, 35]. We believe that the ongoing

research in the field of simultaneous PET/MR (which includes solving the problem of

attenuation correction of the PET datasets, using only the MR or the PET information

[36]) would not only be useful for improved diagnosis, but it could be the only clinically

feasible way to apply anatomy-based PVC on cardiac (and potentially other non-brain)

PET datasets.

Conclusions

The aim of this work was to assess the performances of edge-preserving priors for the

purpose of lesion detection in cardiac 18F-FDG PET, in comparison with anatomy-based

priors. We also aimed at highlighting the possible risks of anatomy-based PVC on lesion

detection and quantification, which occur when the anatomical image is mismatched or

shifted when compared to the corresponding PET dataset, and at comparing MR-based

and CT-based PVC on lesion quantification.

This study concludes that, as far as lesions are concerned, the use of anatomical

information in the form of HRCT is not worth the acquisition and use, as it only

marginally improves the noise properties of the images at the price of reduced con-

trast recovery of the lesions and of an increased radiation burden for the patient. The

quantitative evaluations (bull’s eye plots, CRC, RC, profiles) show that its performances

are equal or inferior to a well-tuned edge-preserving prior. If an MR image acquired

with a sequence that well differentiates between the various tissue types is available,

and its alignment to a previously reconstructed PET image is optimal (≤2 mm), the

recovery and visibility of the lesions does improve when a new, anatomy-based PET

reconstruction using such well-aligned anatomical information is performed. However,

great care needs to be taken in choosing the correct set of parameters for reconstruc-

tion and in verifying the correct alignment of the two datasets. If the correct alignment

between the anatomical and the PET dataset is in doubt and cannot be otherwise

improved, it is recommended to proceed with a non-anatomical prior (e.g. TV) applied

during reconstruction. This is also recommended when only the bull’s eye plots are

of interest.
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