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Abstract. The ontology of Leśniewski is commonly regarded as the
most comprehensive calculus of names and the theoretical basis of mere-
ology. However, ontology was not examined by means of proof-theoretic
methods so far. In the paper we provide a characterization of elementary
ontology as a sequent calculus satisfying desiderata usually formulated
for rules in well-behaved systems in modern structural proof theory. In
particular, the cut elimination theorem is proved and the version of sub-
formula property holds for the cut-free version.
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1 Introduction

The ontology of Leśniewski is a kind of calculus of names proposed as a formal-
ization of logic alternative to Fregean paradigm. Basically, it is a theory of the
binary predicate ε understood as the formalization of the Greek ‘esti’. Informally
a formula aεb is to be read as “(the) a is (a/the) b”, so in order to be true a
must be an individual name whereas b can be individual or general name. In the
original formulation Leśniewski’s ontology is the middle part of the hierarchical
structure involving also the protothetics and mereology (see the presentation in
Urbaniak [20]). Protothetics, a very general form of propositional logic, is the
basis of the overall construction. Its generality follows from the fact that, in addi-
tion to sentence variables, arbitrary sentence-functors (connectives) are allowed
as variables, and quantifiers binding all these kinds of variables are involved.
Similarly in Leśniewski’s ontology, we have a quantification over name variables
but also over arbitrary name-functors creating complex names. In consequence
we obtain very expressive logic which is then extended to mereology. The latter,
which is the most well-known ingredient of Leśniewski’s construction, is a theory
of parthood relation, which provides an alternative formalization of the theory
of classes and foundations of mathematics.

Despite of the dependence of Leśniewski’s ontology on his protothetics, we
can examine this theory, in particular its part called elementary ontology, in
isolation, as a kind of first-order theory of ε based on classical first-order logic
(FOL). Elementary ontology, in this sense, was investigated, among others, by
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S�lupecki [17] and Iwanuś [7], and we follow this line here. The expressive power
of such an approach is strongly reduced, in particular, quantifiers apply only to
name variables. One should note however that, despite of the appearances, it
is not just another elementary theory in the standard sense, since the range of
variables is not limited to individual names but admits general and even empty
names. Thus, name variables may represent not only ‘Napoleon Bonaparte’ but
also ‘an emperor’ and ‘Pegasus’. This leads to several problems concerning the
interpretation of quantifiers in ontology, encountered in the semantical treat-
ment (see e.g. Küng and Canty [8] or Rickey [16]). However, for us the problems
of proper interpretation are not important here, since we develop purely syn-
tactical formulation, which is shown to be equivalent to Leśniewski’s axiomatic
formulation.

Taking into account the importance and originality of Leśniewski’s ontol-
ogy it is interesting, if not surprising, that so far no proof-theoretic study was
offered, in particular, in terms of sequent calculus (SC). In fact, a form of natu-
ral deduction proof system was applied by many authors following the original
way of presenting proofs by Leśniewski (see, e.g. his [9–11]). However this can
hardly be treated as a proof-theoretic study of Leśniewski’s ontology but only
as a convenient way of simplifying presentation of axiomatic proofs. Ishimoto
and Kobayashi [6] introduced also a tableau system for part of (quantifier-free)
ontology – we will say more about this system later.

In this paper we present a sequent calculus for elementary ontology and focus
on its most important properties. More specifically, in Sect. 2 we briefly charac-
terise elementary ontology which will be the object of our study. In Sect. 3 we
present an adequate sequent calculus for the basic part of elementary ontology
and prove that it is equivalent with the axiomatic formulation. Then we prove
the cut elimination theorem for this calculus in Sect. 4. In the next section we
focus on the problem of extensionality and discuss some alternative formula-
tions of ontology and some of its parts, as well as the intuitionistic version of it.
Section 6 shows how the basic system can be extended with rules for new pred-
icate constants which preserve cut elimination. The problem of extension with
rules for term constants is discussed briefly in Sect. 7. A summary of obtained
results and open problems closes the paper.

2 Elementary Ontology

Roughly, in this article, by Leśniewski’s elementary ontology we mean stan-
dard FOL (in some chosen adequate formalization) with Leśniewski’s axiom
LA added. For more detailed general presentation of Leśniewski’s systems one
may consult Urbaniak [20] and for a detailed study of Leśniewski’s ontology
see Iwanuś [7] or S�lupecki [17]. In the next section we will select a particular
sequent system as representing FOL and investigate several ways of possible
representation of LA in this framework.

We will consider two languages for ontology. In both we assume a denumer-
able set of name variables. Following the well-known Gentzen’s custom we apply
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a graphical distinction between the bound variables, which will be denoted by
x, y, z, ... (possibly with subscripts), and the free variables usually called param-
eters, which will be denoted by a, b, c, .... These are the only terms we admit, and
both kinds will be called simply name variables. The basic language Lo consists
of the following vocabulary:

– connectives: ¬,∧,∨,→;
– first-order quantifiers: ∀,∃;
– predicate: ε.

As we can see, in addition to the standard logical vocabulary of FOL, the
only specific constant is a binary predicate ε with the formation rule: t ε t′ is
an atomic formula, for any terms t, t′. In what follows we will use a convention:
instead of t ε t′ we will write tt′. The complexity of formulae of Lo is defined as
the number of occurrences of logical constants, i.e. connectives and quantifiers.
Hence the complexity of atomic formulae is 0.

The language Lp, considered in Sect. 6, adds to this vocabulary a number of
unary and binary predicates: D,V, S,G,U,=,≡,≈, ε̄,⊂, �, A,E, I,O.

In Lo and Lp we have name variables, which range over all names (individ-
ual, general and empty), as the only terms. However Leśniewski considered also
complex terms built with the help of specific term-forming functors. We will
discuss briefly such extensions in the setting of sequent calculus in Sect. 7 and
notice important problems they generate for decent proof-theoretic treatment.

The only specific axiom of elementary ontology is Leśniewski’s axiom LA:

∀xy(xy ↔ ∃z(zx) ∧ ∀z(zx → zy) ∧ ∀zv(zx ∧ vx → zv))

LA→, LA← will be used to refer to the respective implications forming LA,
with dropped outer universal quantifier. Note that:

Lemma 1. The following formulae are equivalent to LA:

1. ∀xy(xy ↔ ∃z(zx ∧ zy) ∧ ∀zv(zx ∧ vx → zv))
2. ∀xy(xy ↔ ∃z(zx ∧ zy ∧ ∀v(vx → vz)))
3. ∀xy(xy ↔ ∃z(∀v(vx ↔ vz) ∧ zy))

We start with the system in the language Lo, i.e. with ε (conventionally
omitted) as the only specific predicate constant added to the standard language
of FOL.

3 Sequent Calculus

Elementary ontology will be formalised as a sequent calculus with sequents Γ ⇒
Δ which are ordered pairs of finite multisets of formulae called the antecedent
and the succedent, respectively. We will use the calculus G (after Gentzen) which
is essentially the calculus G1 of Troelstra and Schwichtenberg [19]. All necessary
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(AX) ϕ ⇒ ϕ (Cut)
Γ ⇒ Δ, ϕ ϕ, Π ⇒ Σ

Γ, Π ⇒ Δ, Σ

(W⇒)
Γ ⇒ Δ

ϕ, Γ ⇒ Δ
(⇒W )

Γ ⇒ Δ

Γ ⇒ Δ, ϕ

(C⇒)
ϕ, ϕ, Γ ⇒ Δ

ϕ, Γ ⇒ Δ
(⇒C)

Γ ⇒ Δ, ϕ, ϕ

Γ ⇒ Δ, ϕ

(¬⇒)
Γ ⇒ Δ, ϕ

¬ϕ, Γ ⇒ Δ
(⇒¬) ϕ, Γ ⇒ Δ

Γ ⇒ Δ, ¬ϕ

(∧⇒)
ϕ, ψ, Γ ⇒ Δ

ϕ ∧ ψ,Γ ⇒ Δ
(⇒∧) Γ ⇒ Δ, ϕ Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ ∧ ψ

(∨⇒)
ϕ, Γ ⇒ Δ ψ, Γ ⇒ Δ

ϕ ∨ ψ, Γ ⇒ Δ
(⇒∨) Γ ⇒ Δ, ϕ, ψ

Γ ⇒ Δ, ϕ ∨ ψ

(→⇒)
Γ ⇒ Δ, ϕ ψ, Γ ⇒ Δ

ϕ → ψ, Γ ⇒ Δ
(⇒→)

ϕ, Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ → ψ

(↔⇒)
Γ⇒ Δ, ϕ, ψ ϕ, ψ, Γ⇒ Δ

ϕ↔ψ,Γ⇒ Δ
(∀⇒)

ϕ[x/b], Γ⇒ Δ

∀xϕ, Γ⇒ Δ

(⇒↔)
ϕ, Γ⇒ Δ, ψ ψ, Γ ⇒ Δ, ϕ

Γ⇒ Δ, ϕ↔ψ
(⇒∀) Γ⇒ Δ, ϕ[x/a]

Γ⇒ Δ, ∀xϕ

(∃⇒)
ϕ[x/a], Γ⇒ Δ

∃xϕ, Γ⇒ Δ
(⇒∃) Γ⇒ Δ, ϕ[x/b]

Γ⇒ Δ, ∃xϕ

where a is a fresh parameter (eigenvariable), not present in Γ, Δ and ϕ, whereas b is
an arbitrary parameter.

Fig. 1. Calculus G

structural rules, including cut, weakening and contraction are primitive. The
calculus G consists of the rules from Fig. 1:

Let us recall that formulae displayed in the schemata are active, whereas
the remaining ones are parametric, or form a context. In particular, all active
formulae in the premisses are called side formulae, and the one in the conclusion
is the principal formula of the respective rule application. Proofs are defined in
a standard way as finite trees with nodes labelled by sequents. The height of a
proof D of Γ ⇒ Δ is defined as the number of nodes of the longest branch in D.
�k Γ ⇒ Δ means that Γ ⇒ Δ has a proof of the height at most k.

G provides an adequate formalization of the classical pure FOL (i.e. with no
terms other than variables). However, we should remember that here terms in
quantifier rules are restricted to variables ranging over arbitrary names (includ-
ing empty and general). This means, in particular, that quantifiers do not have
an existential import, like in standard FOL.
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Let us call G+LA an extension of G with LA as an additional axiomatic
sequent. The following hold:

Lemma 2. The following sequents are provable in G+LA:
ab ⇒ ∃x(xa)
ab ⇒ ∀x(xa → xb)
ab ⇒ ∀xy(xa ∧ ya → xy)
∃x(xa),∀x(xa → xb),∀xy(xa ∧ ya → xy) ⇒ ab

The proof is obvious. In fact, these sequents together allow us to derive LA
so we could use them alternatively in a characterization of elementary ontology
on the basis of G.

G+LA is certainly an adequate formalization of elementary ontology in the
sense of S�lupecki and Iwanuś. However, from the standpoint of proof theoretic
analysis it is not an interesting form of sequent calculus and it will be used only
for showing the adequacy of our main system called GO.

To obtain the basic GO we add the following four rules to G:

(R)
aa, Γ ⇒ Δ

ab, Γ ⇒ Δ
(T )

ac, Γ ⇒ Δ

ab, bc, Γ ⇒ Δ
(S)

ba, Γ ⇒ Δ

ab, bb, Γ ⇒ Δ

(E)
da, Γ ⇒ Δ, dc dc, Γ ⇒ Δ, da ab, Γ ⇒ Δ

cb, Γ ⇒ Δ

where d in (E) is a new parameter (eigenvariable), and a, b, c are arbitrary.
The names of rules come from reflexivity, transitivity, symmetry and exten-

sionality. In case of (R) and (S) it is a kind of prefixed reflexivity and symmetry
(ab → aa, bb → (ab → ba)). Why (E) comes from extensionality will be explained
later.

We can show that GO is an adequate characterization of elementary ontology.

Theorem 1. If G+LA � Γ ⇒ Δ, then GO � Γ ⇒ Δ.

Proof. It is sufficient to prove that the axiomatic sequent LA is provable in GO.

aa ⇒ aa(R)
ab ⇒ aa(⇒ ∃)

ab ⇒ ∃x(xa)

cb ⇒ cb (T )
ca, ab ⇒ cb

(⇒→)
ab ⇒ ca → cb (⇒ ∀)

ab ⇒ ∀x(xa → xb)
(⇒ ∧)

ab ⇒ ∃x(xa) ∧ ∀x(xa → xb)

(⇒ ∧) with:

cd ⇒ cd (T )
ca, ad ⇒ cd

(S)
ca, da, aa ⇒ cd

(R)
ca, da, ab ⇒ cd

(∧ ⇒)
ab, ca ∧ da ⇒ cd

(⇒→)
ab ⇒ ca ∧ da → cd (⇒ ∀)

ab ⇒ ∀xy(xa ∧ ya → xy)
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yields LA→ after (⇒→). A proof of the converse is more complicated (for read-
ability and space-saving we ommited all applications of weakening rules neces-
sary for the application of two- and three-premiss rules; this convention will be
applied hereafter with no comments):

ca ⇒ ca

da ⇒ da ca ⇒ ca
(⇒ ∧)

da, ca ⇒ da ∧ ca dc ⇒ dc
(→⇒)

da, ca, da ∧ ca → dc ⇒ dc
(∀ ⇒)

da, ca, ∀xy(xa ∧ ya → xy) ⇒ dc

da ⇒ da
(T )

dc, ca ⇒ da ab ⇒ ab
(E)

cb, ca, ∀xy(xa ∧ ya → xy) ⇒ ab
(→⇒)

ca, ca → cb, ∀xy(xa ∧ ya → xy) ⇒ ab
(∀ ⇒)

ca, ∀x(xa → xb), ∀xy(xa ∧ ya → xy) ⇒ ab
(∃ ⇒)∃x(xa), ∀x(xa → xb), ∀xy(xa ∧ ya → xy) ⇒ ab

It is routine to prove LA. �
Note that to prove LA→ the rules (R), (T ), (S) were sufficient, whereas in

order to derive the converse, (E) alone is not sufficient - we need (T ) again.

Theorem 2. If GO � Γ ⇒ Δ, then G+LA � Γ ⇒ Δ.

Proof. It is sufficient to prove that the four rules of GO are derivable in G+LA.
For (T ):

bc ⇒ ∀x(xb → xc)

ab ⇒ ab ac ⇒ ac (→⇒)
ab → ac, ab ⇒ ac

(∀ ⇒)∀x(xb → xc), ab ⇒ ac
(Cut)

ab, bc ⇒ ac ac, Γ ⇒ Δ
(Cut)

ab, bc, Γ ⇒ Δ

where the leftmost leaf is provable in G+LA (Lemma 2).

For (S):

bb ⇒ ∀xy(xb ∧ yb → xy)

bb ⇒ bb ab ⇒ ab (⇒ ∧)
bb, ab ⇒ bb ∧ ab ba ⇒ ba

(→⇒)
bb ∧ ab → ba, bb, ab ⇒ ba

(∀ ⇒)∀xy(xb ∧ yb → xy), bb, ab ⇒ ba
(Cut)

bb, bb, ab ⇒ ba
(C ⇒)

bb, ab ⇒ ba

where the leftmost leaf is provable in G+LA (Lemma 2). By cut with the premiss
of (S) we obtain its conclusion.

For (R):

ab ⇒ ∀xy(xa ∧ ya → xy)

ab ⇒ ∃x(xa) S
(Cut)∀xy(xa ∧ ya → xy), ∀x(xa → xa), ab ⇒ aa
(Cut)∀x(xa → xa), ab, ab ⇒ aa

(C ⇒)∀x(xa → xa), ab ⇒ aa
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where S := ∃x(xa),∀xy(xa ∧ ya → xy),∀x(xa → xa) ⇒ aa and all leaves are
provable in G+LA (Lemma 2); in particular S is the fourth sequent with b
replaced with a. By cut with ⇒ ∀x(xa → xa) and the premiss of (R) we obtain
its conclusion.

Since (R), (T ), (S) are all derivable in G+LA we use them in the proof of the
derivability of (E) to simplify matters. Note first the following three proofs with
weakenings omitted:

cc ⇒ cc(R)
cb ⇒ cc ca ⇒ ca(↔⇒)

ca ↔ cc, cb ⇒ ca
(⇒ ∃)

ca ↔ cc, cb ⇒ ∃x(xa)
(∀ ⇒) ∀x(xa ↔ xc), cb ⇒ ∃x(xa)

da ⇒ da
db ⇒ db (T )

dc, cb ⇒ db
(↔⇒)

da ↔ dc, cb, da ⇒ db
(∀ ⇒) ∀x(xa ↔ xc), cb, da ⇒ db

(⇒→) ∀x(xa ↔ xc), cb ⇒ da → db
(⇒ ∀) ∀x(xa ↔ xc), cb ⇒ ∀x(xa → xb)

and

da ⇒ da

ea ⇒ ea

de ⇒ de (T )
ce, dc ⇒ de

(S)
ec, dc, cc ⇒ de

(R ⇒)
ec, dc, cb ⇒ de

(↔⇒)
dc, ea ↔ ec, cb, ea ⇒ de

(∀ ⇒)
dc,∀x(xa ↔ xc), cb, ea ⇒ de

(↔⇒)
da ↔ dc,∀x(xa ↔ xc), cb, da, ea ⇒ de

(∀ ⇒) ∀x(xa ↔ xc),∀x(xa ↔ xc), cb, da, ea ⇒ de
(C ⇒) ∀x(xa ↔ xc), cb, da, ea ⇒ de

(∧ ⇒) ∀x(xa ↔ xc), cb, da ∧ ea ⇒ de
(⇒→) ∀x(xa ↔ xc), cb ⇒ da ∧ ea → de

(⇒ ∀) ∀x(xa ↔ xc), cb ⇒ ∀xy(xa ∧ ya → xy)

By three cuts with ∃x(xa),∀x(xa → xb),∀xy(xa ∧ ya → xy) ⇒ ab and
contractions we obtain a proof of S := ∀x(xa ↔ xc), cb ⇒ ab. Then we finish in
the following way:

da, Γ ⇒ Δ, dc dc, Γ ⇒ Δ, da
(⇒↔)

Γ ⇒ Δ, da ↔ dc
(⇒ ∀)

Γ ⇒ Δ,∀x(xa ↔ xc) S
(Cut)

cb, Γ ⇒ Δ, ab ab, Γ ⇒ Δ
(Cut)

cb, Γ ⇒ Δ
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Note that to prove derivability of (E) we need in fact the whole LA. We
elaborate on the strength of this rule in Sect. 5. �

4 Cut Elimination

The possibility of representing LA by means of these four rules makes GO a
calculus with desirable proof-theoretic properties. First of all note that for G
the cut elimination theorem holds. Since the only primitive rules for ε are all
one-sided, in the sense that principal formulae occur in the antecedents only, we
can easily extend this result to GO. We follow the general strategy of cut elim-
ination proofs applied originally for hypersequent calculi in Metcalfe, Olivetti
and Gabbay [13] but which works well also in the context of standard sequent
calculi (see Indrzejczak [5]). Such a proof has a particularly simple structure and
allows us to avoid many complexities inherent in other methods of proving cut
elimination. In particular, we avoid well known problems with contraction, since
two auxiliary lemmata deal with this problem in advance. Note first that for GO
the following result holds:

Lemma 3 (Substitution). If �k Γ ⇒ Δ, then �k Γ [a/b] ⇒ Δ[a/b].

Proof. By induction on the height of a proof. Note that (E) may require similar
relettering like (∃ ⇒) and (⇒ ∀). Note that the proof provides the height-
preserving admissibility of substitution. �

Let us assume that all proofs are regular in the sense that every parameter
a which is fresh by side condition on the respective rule must be fresh in the
entire proof, not only on the branch where the application of this rule takes
place. There is no loss of generality since every proof may be systematically
transformed into a regular one by the substitution lemma. The following notions
are crucial for the proof:

1. The cut-degree is the complexity of cut-formula ϕ, i.e. the number of connec-
tives and quantifiers occurring in ϕ; it is denoted as dϕ.

2. The proof-degree (dD) is the maximal cut-degree in D.

Remember that the complexity of atomic formulae, and consequently of cut-
and proof-degree in case of atomic cuts, is 0. The proof of the cut elimination
theorem is based on two lemmata which successively make a reduction: first on
the height of the right, and then on the height of the left premiss of cut. ϕk, Γ k

denote k > 0 occurrences of ϕ, Γ , respectively.

Lemma 4 (Right reduction). Let D1 � Γ ⇒ Δ,ϕ and D2 � ϕk,Π ⇒ Σ with
dD1, dD2 < dϕ, and ϕ principal in Γ ⇒ Δ,ϕ, then we can construct a proof D
such that D � Γ k,Π ⇒ Δk, Σ and dD < dϕ.
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Proof. By induction on the height of D2. The basis is trivial, since Γ ⇒ Δ,ϕ
is identical with Γ k,Π ⇒ Δk, Σ. The induction step requires examination of
all cases of possible derivations of ϕk,Π ⇒ Σ, and the role of the cut-formula
in the transition. In cases where all occurrences of ϕ are parametric we simply
apply the induction hypotheses to the premisses of ϕk,Π ⇒ Σ and then apply
the respective rule – it is essentially due to the context independence of almost
all rules and the regularity of proofs, which together prevent violation of side
conditions on eigenvariables. If one of the occurrences of ϕ in the premiss(es) is
a side formula of the last rule we must additionally apply weakening to restore
the missing formula before the application of the relevant rule.

In cases where one occurrence of ϕ in ϕk,Π ⇒ Σ is principal we make use of
the fact that ϕ in the left premiss is also principal; for the cases of contraction
and weakening it is trivial. Note that due to condition that ϕ is principal in the
left premiss it must be compound, since all rules introducing atomic formulae
as principal are working only in the antecedents. Hence all cases where one
occurrence of atomic ϕ in the right premiss would be introduced by means
of (R), (S), (T ), (E) are not considered in the proof of this lemma. The only
exceptions are axiomatic sequents Γ ⇒ Δ,ϕ with principal atomic ϕ, but they
do not make any harm. �
Lemma 5 (Left reduction). Let D1 � Γ ⇒ Δ,ϕk and D2 � ϕ,Π ⇒ Σ with
dD1, dD2 < dϕ, then we can construct a proof D such that D � Γ,Πk ⇒ Δ,Σk

and dD < dϕ.

Proof. By induction on the height of D1 but with some important differences.
First note that we do not require ϕ to be principal in ϕ,Π ⇒ Σ so it includes
the case with ϕ atomic. In all these cases we just apply the induction hypothesis.
This guarantees that even if an atomic cut formula was introduced in the right
premiss by one of the rules (R), (S), (T ), (E) the reduction of the height is done
only on the left premiss, and we always obtain the expected result. Now, in cases
where one occurrence of ϕ in Γ ⇒ Δ,ϕk is principal we first apply the induction
hypothesis to eliminate all other k − 1 occurrences of ϕ in premisses and then
we apply the respective rule. Since the only new occurrence of ϕ is principal we
can make use of the right reduction lemma again and obtain the result, possibly
after some applications of structural rules. �

Now we are ready to prove the cut elimination theorem:

Theorem 3. Every proof in GO can be transformed into cut-free proof.

Proof. By double induction: primary on dD and subsidiary on the number of
maximal cuts (in the basis and in the inductive step of the primary induction).
We always take the topmost maximal cut and apply Lemma 5 to it. By successive
repetition of this procedure we diminish either the degree of a proof or the
number of cuts in it until we obtain a cut-free proof. �

As a consequence of the cut elimination theorem for GO we obtain:
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Corollary 1. If � Γ ⇒ Δ, then it is provable in a proof which is closed under
subformulae of Γ ∪ Δ and atomic formulae.

So cut-free GO satisfies the form of the subformula property which holds for
several elementary theories as formalised by Negri and von Plato [14].

5 Modifications

Construction of rules which are deductively equivalent to axioms may be to
some extent automatised (see e.g. Negri and von Plato [14], Braüner [1], or
Marin, Miller, Pimentel and Volpe [12]). Still, even the choice of the version of
(equivalent) axiom which will be used for transformation, may have an impact
on the quality of obtained rules. Moreover, very often some additional tuning is
necessary to obtain rules, which are well-behaved from the proof-theoretic point
of view. In this section we will focus briefly on this problem and sketch some
alternatives.

In our adequacy proofs we referred to the original formulation of LA, since
rules (R), (T ), (S) correspond directly in a modular way to three conjuncts of
LA→. Our rule (E) however, is modelled not on LA← but rather on the suitable
implication of variant 3 of LA from Lemma 1. As a first approximation we can
obtain the rule:

Γ⇒ Δ,∃z(∀v(va ↔ vz) ∧ zb)
Γ ⇒ Δ, ab

which after further decomposition and quantifier elimination yields:

da, Γ⇒ Δ, dc dc, Γ⇒ Δ, da Γ ⇒ Δ, cb

Γ ⇒ Δ, ab

(where d is a new parameter) which is very similar to (E) but with some active
atoms in the succedents. This is troublesome for proving cut elimination if ab
is a cut formula and a principal formula of (R), (S) or (T ) in the right premiss
of cut. Fortunately, (E) is interderivable with this rule (it follows from the rule
generation theorem in Indrzejczak [5]) and has the principal formula in the
antecedent.

It is clear that if we focus on other variants then we can obtain different rules
by their decomposition. In effect note that instead of (E) we may equivalently
use the following rules based directly on LA, or on variants 2 and 1 respectively:

(ELA)
da, Γ⇒ Δ, db da, ea, Γ⇒ Δ, de ab, Γ ⇒ Δ

ca, Γ ⇒ Δ

(E2)
da, Γ⇒ Δ, dc da, Γ⇒ Δ, cd ab, Γ ⇒ Δ

ca, cb, Γ ⇒ Δ

(E1)
da, ea, Γ⇒ Δ, de ab, Γ ⇒ Δ

ca, cb, Γ,⇒ Δ

where d, e are new parameters (eigenvariables).
Note, that each of these rules, used instead of (E), yields a variant of GO for

which we can also prove cut elimination. However, as we will show by the end
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of this section, (E) seems to be optimal. Perhaps, the last one is the most eco-
nomical in the sense of branching factor. However, since its left premiss directly
corresponds to the condition ∀xy(xa ∧ ya → xy) it introduces two different new
parameters to premisses which makes it more troublesome in some respects. In
fact, if we want to reduce the branching factor it is possible to replace all these
rules by the following variants:

(E′)
da, Γ⇒ Δ, dc dc, Γ⇒ Δ, da

cb, Γ ⇒ Δ, ab

(E′
LA)

da, Γ⇒ Δ, db da, ea, Γ⇒ Δ, de

ca, Γ ⇒ Δ, ab

(E′
2)

da, Γ⇒ Δ, dc da, Γ⇒ Δ, cd

ca, cb, Γ ⇒ Δ, ab

(E′
1)

da, ea, Γ⇒ Δ, de

ca, cb, Γ ⇒ Δ, ab

with the same proviso on eigenvariables d, e. Their interderivability with the
rules stated first is easily obtained by means of the rule generation theorem too.
These rules seem to be more convenient for proof search. However, for these
primed rules cut elimination cannot be proved in the constructive way, for the
reasons mentioned above, and it is an open problem if cut-free systems with
these rules as primitive are complete.

We finish this section with stating the last reason for choosing (E). Let us
explain why (E), the most complicated specific rule of GO, was claimed to be
connected with extensionality. Consider the following two principles:

WE ∀x(xa ↔ xb) → ∀x(ax ↔ bx)
WExt ∀x(xa ↔ xb) → ∀x(ϕ(x, a) ↔ ϕ(x, b))

where ϕ(x, a) denotes arbitrary formula with at least one occurrence of x (not
bound by any quantifier within ϕ) and a.

Lemma 6. WE is equivalent to WExt.

Proof. That WE follows from WExt is obvious since the former is a specific
instance of the latter. The other direction is by induction on the complexity of
ϕ. In the basis there are just two cases: ϕ(x, a) is either xa or ax; the former is
trivial and the latter is just WE. The induction step goes like an ordinary proof
of the extensionality principle in FOL. �
Lemma 7. In G (E) is equivalent to (WE).

Proof. Note first that in G the following sequents are provable:

– ∀x(ax ↔ cx), cb ⇒ ab
– ∀x(xa ↔ xc), da ⇒ dc
– ∀x(xa ↔ xc), dc ⇒ da
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we will use them in the proofs to follow.

For derivability of (E):

da, Γ ⇒ Δ, dc dc, Γ ⇒ Δ, da
(⇒↔)

Γ ⇒ Δ, da ↔ dc
(⇒ ∀)

Γ ⇒ Δ,∀x(xa ↔ xc) D
(Cut)

Γ ⇒ Δ,∀x(ax ↔ cx) ∀x(ax ↔ cx), cb ⇒ ab
(Cut)

cb, Γ ⇒ Δ, ab

where D is a proof of ∀x(xa ↔ xc) ⇒ ∀x(ax ↔ cx) from WE and the rightmost
sequent is provable. The endsequent by cut with ab, Γ ⇒ Δ yields the conclusion
of (E).

Provability of WE in G with (E):

∀x(xa ↔ xc), da ⇒ dc ∀x(xa ↔ xc), dc ⇒ da ab ⇒ ab
(E) ∀x(xa ↔ xc), cb ⇒ ab

In the same way we prove ∀x(xa ↔ xc), ab ⇒ cb which by (⇒↔), (⇒ ∀) and
(⇒→) yields WE.

�
This shows that we can obtain the axiomatization of elementary ontology

by means of LA→ and WE (or WExt). Also instead of LA→ we can use three
axioms corresponding to our three rules (R), (S), (T ). Note that if we get rid
of (E) (or WE) we obtain a weaker version of ontology investigated by Takano
[18]. If we get rid of quantifier rules we obtain a quantifier-free version of this
system investigated by Ishimoto and Kobayashi [6].

On the basis of the specific features of sequent calculus we can obtain here
for free also the intuitionistic version of ontology. As is well known it is sufficient
to restrict the rules of G to sequents having at most one formula in the succedent
(which requires small modifications like replacement of (↔⇒) and (⇒ ∨) with
two variants having always one side formula in the succedent) to obtain the
version adequate for the intuitionistic FOL. Since all specific rules for ε can be
restricted in a similar way, we can obtain the calculus GIO for the intuitionistic
version of elementary ontology. One can easily check that all proofs showing the
adequacy of GO and the cut elimination theorem are either intuitionistically
correct or can be easily changed into such proofs. The latter remark concerns
these proofs in which the classical version of (↔⇒) required the introduction of
the second side formula into succedent by (⇒ W ); the intuitionistic two versions
of (↔⇒) do not require this step.

6 Extensions

Leśniewski and his followers were often working on ontology enriched with defi-
nitions of special predicates and name-creating functors. In this section we focus
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on a number of unary and binary predicates which are popular ontological con-
stants. Instead of adding these definitions to GO we will introduce predicates
by means of sequent rules satisfying conditions formulated for well-behaved SC
rules. Let us call Lp the language of Lo enriched with all these predicates and
GOP, the calculus with the additional rules for predicates. The definitions of the
most important unary predicates are:

Da := ∃x(xa) V a := ¬∃x(xa)
Sa := ∃x(ax) Ga := ∃xy(xa ∧ ya ∧ ¬xy)

D,V, S,G are unary predicates informing that a is denoting, empty (or void),
singular or general. D and S are Leśniewski’s ex and ob respectively. He preferred
also to apply sol(a) which we symbolize with U (for unique):

Ua := ∀xy(xa ∧ ya → xy) [or simply ¬Ga]

The additional rules for these predicates are of the form:

(D ⇒)
ba, Γ⇒ Δ

Da, Γ⇒ Δ
(⇒ D)

Γ⇒ Δ, ca

Γ⇒ Δ,Da
(S ⇒)

ab, Γ⇒ Δ

Sa, Γ⇒ Δ

(⇒ S)
Γ⇒ Δ, ac

Γ⇒ Δ,Sa
(V ⇒)

Γ⇒ Δ, ca

V a, Γ⇒ Δ
(⇒ V )

ba, Γ⇒ Δ

Γ⇒ Δ,V a

where b is new and c arbitrary in all schemata.

(G ⇒)
ba, ca, Γ⇒ Δ, bc

Ga, Γ⇒ Δ
(⇒ G)

Γ⇒ Δ, da Γ⇒ Δ, ea de, Γ ⇒ Δ

Γ⇒ Δ,Ga

(⇒ U)
ba, ca, Γ⇒ Δ, bc

Γ⇒ Δ,Ua
(U ⇒)

Γ⇒ Δ, da Γ⇒ Δ, ea de, Γ ⇒ Δ

Ua, Γ⇒ Δ

where b, c are new, and d, e are arbitrary parameters.
The binary predicates of identity, (weak and strong) coextensiveness, nonbe-

ing b, subsumption and antysubsumption are defined in the following way:

a = b := ab ∧ ba aε̄b := aa ∧ ¬ab
a ≡ b := ∀x(xa ↔ xb) a ⊂ b := ∀x(xa → xb)
a ≈ b := a ≡ b ∧ Da a � b := ∀x(xa → ¬xb)

Finally note that Aristotelian categorical sentences can be also defined in
Leśniewski’s ontology:

aAb := a ⊂ b ∧ Da aEb := a � b ∧ Da
aIb := ∃x(xa ∧ xb) aOb := ∃x(xa ∧ ¬xb)

The rules for binary predicates:

(=⇒)
ab, ba, Γ ⇒ Δ

a = b, Γ ⇒ Δ
(⇒=)

Γ ⇒ Δ, ab Γ ⇒ Δ, ba

Γ ⇒ Δ, a = b

(≡⇒)
Γ ⇒ Δ, ca, cb ca, cb, Γ ⇒ Δ

a ≡ b, Γ ⇒ Δ
(⇒≡)

da, Γ ⇒ Δ, db db, Γ ⇒ Δ, da

Γ ⇒ Δ, a ≡ b

(≈⇒)
da, Γ ⇒ Δ, ca, cb ca, cb, da, Γ ⇒ Δ

a ≈ b, Γ ⇒ Δ
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(⇒≈)
da, Γ ⇒ Δ, db db, Γ ⇒ Δ, da Γ ⇒ Δ, ca

Γ ⇒ Δ, a ≈ b

(ε̄ ⇒)
aa, Γ ⇒ Δ, ab

aε̄b, Γ ⇒ Δ
(⇒ ε̄)

Γ ⇒ Δ, aa ab, Γ ⇒ Δ

Γ ⇒ Δ, aε̄b

(⊂⇒)
Γ ⇒ Δ, ca cb, Γ ⇒ Δ

a ⊂ b, Γ ⇒ Δ
(⇒⊂)

da, Γ ⇒ Δ, db

Γ ⇒ Δ, a ⊂ b

(�⇒)
Γ ⇒ Δ, ca Γ ⇒ Δ, cb

a � b, Γ ⇒ Δ
(⇒�)

da, db, Γ ⇒ Δ

Γ ⇒ Δ, a � b

(A ⇒)
da, Γ ⇒ Δ, ca cb, da, Γ ⇒ Δ

aAb, Γ ⇒ Δ
(⇒ A)

da, Γ ⇒ Δ, db Γ ⇒ Δ, ca

Γ ⇒ Δ, aAb

(E ⇒)
da, Γ ⇒ Δ, ca da, Γ ⇒ Δ, cb

aEb, Γ ⇒ Δ
(⇒ E)

da, db, Γ ⇒ Δ Γ ⇒ Δ, ca

Γ ⇒ Δ, aEb

(I ⇒)
da, db, Γ ⇒ Δ

aIb, Γ ⇒ Δ
(⇒ I)

Γ ⇒ Δ, ca Γ ⇒ Δ, cb

Γ ⇒ Δ, aIb

(O ⇒)
da, Γ ⇒ Δ, db

aOb, Γ ⇒ Δ
(⇒ O)

Γ ⇒ Δ, ca cb, Γ ⇒ Δ

Γ ⇒ Δ, aOb

where d is new and c arbitrary (but c can be identical to d in rules for ≈, A,E).
Proofs of interderivability with equivalences corresponding to suitable defi-

nitions are trivial in most cases. We provide only one for the sake of illustration.
The hardest case is ≈.

da, ca ⇒ ca, cb da, ca, cb ⇒ cb
(≈⇒)

a ≈ b, ca ⇒ cb

da, ca ⇒ ca, cb da, ca, cb ⇒ ca

a ≈ b, cb ⇒ ca
(⇒↔)

a ≈ b ⇒ ca ↔ cb(⇒ ∀)
a ≈ b ⇒ ∀x(xa ↔ xb)

and

ca ⇒ ca, aa, ab
(⇒ ∃)

ca ⇒ ∃x(xa), aa, ab

ca, aa, ab ⇒ ca
(⇒ ∀)

ca, aa, ab ⇒ ∃x(xa)
(≈⇒)

a ≈ b ⇒ ∃x(xa)

by (⇒ ∧) yield one part. For the second:

∀x(xa ↔ xb), da ⇒ db ∀x(xa ↔ xb), db ⇒ da ca ⇒ ca
(⇒≈) ∀x(xa ↔ xb), ca ⇒ a ≈ b

(∃ ⇒) ∀x(xa ↔ xb),∃x(xa) ⇒ a ≈ b
(∧ ⇒) ∀x(xa ↔ xb) ∧ ∃x(xa) ⇒ a ≈ b

where the left and the middle premiss are obviously provable by means of (∀ ⇒),
(↔⇒). We omit proofs of the derivability of both rules in GO enriched with the
axiom ⇒ ∀x(xa ↔ xb) ∧ ∃x(xa) ↔ a ≈ b.

We treat all these predicates as new constants hence their complexity is fixed
as 1, in contrast to atomic formulae, which are of complexity 0. Of course we
can consider ontology with an arbitrary selection of these predicates according
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to the needs. Accordingly we can enrich GO also with arbitrary selection of
suitable rules for predicates. All the results holding for GOP are correct for any
subsystem. Let us list some important features of these rules and enriched GO:

1. All rules for predicates are explicit, separate and symmetric, which are usual
requirements for well-behaved rules in sequent calculi (see e.g. [5]). In this
respect they are similar to the rules for logical constants and differ from spe-
cific rules for ε which are one-sided (in the sense of having principal formulae
always in the antecedent).

2. All these new rules satisfy the subformula property in the sense that side
formulae are only atomic.

3. The substitution lemma holds for GO with any combination of the above
rules.

4. All rules are pairwise reductive, modulo substitution of terms,

We do not prove the substitution lemma, since the proof is standard, but
we comment on the last point, since cut elimination holds due to 3 and 4. The
notion of reductivity for sequent rules was introduced by Ciabattoni [2] and it
may be roughly defined as follows: A pair of introduction rules (⇒ �), (� ⇒) for
a constant � is reductive if an application of cut on cut formulae introduced by
these rules may be replaced by the series of cuts made on less complex formulae,
in particular on their subformulae. Basically it enables the reduction of cut-
degree in the proof of cut elimination. Again we illustrate the point with respect
to the most complicated case. Let us consider the application of cut with the
cut formula a ≈ b, then the left premiss of this cut was obtained by:

ca, Γ ⇒ Δ, cb cb, Γ ⇒ Δ, ca Γ ⇒ Δ, da
(⇒≈)

Γ ⇒ Δ, a ≈ b

where c is new and d is arbitrary. And the right premiss was obtained by:

ea,Π ⇒ Σ, fa, fb ea, fa, fb,Π ⇒ Σ
(≈⇒)

a ≈ b,Π ⇒ Σ

where e is new and f is arbitrary.
By the substitution lemma on the premisses of (⇒≈), (≈⇒) we obtain:

1. fa, Γ ⇒ Δ, fb
2. fb, Γ ⇒ Δ, fa
3. da,Π ⇒ Σ, fa, fb
4. da, fa, fb,Π ⇒ Σ

and we can derive:

Γ ⇒ Δ, da da,Π ⇒ Σ, fa, fb
(Cut)

Γ,Π ⇒ Δ,Σ, fa, fb fb, Γ ⇒ Δ, fa
(Cut)

Γ, Γ,Π ⇒ Δ,Δ, fa, fa
(C)

Γ,Π ⇒ Δ,Σ, fa D
(Cut)

Γ, Γ,Π,Π ⇒ Δ,Δ,Σ,Σ
(C)

Γ,Π ⇒ Δ,Σ
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where D is a similar proof of fa, Γ,Π ⇒ Δ,Σ from Γ ⇒ Δ, da, 4 and 1 by cuts
and contractions. All cuts are of lower degree than the original cut. It is routine
exercise to check that all rules for predicates are reductive and this is sufficient
for proving Lemma 4 and 5 for GOP. As a consequence we obtain:

Theorem 4. Every proof in GOP can be transformed into cut-free proof.

Since the rules are modular this holds for every subsystem based on a selec-
tion of the above rules.

7 Conclusion

Both the basic system GO and its extension GOP are cut-free and satisfy a form
of the subformula property. It shows that Leśniewski’s ontology admits standard
proof-theoretical study and allows us to obtain reasonable results. In particular,
we can prove for GO the interpolation theorem using the Maehara strategy
(see e.g. [19]) and this implies for GO other expected results like e.g. Beth’s
definability theorem. Space restrictions forbid to present it here. On the other
hand, we restricted our study to the system with simple names only, whereas
fuller study should cover also complex names built with the help of several name-
forming functors. The typical ones are the counterparts of the well-known class
operations definable in Leśniewski’s ontology in the following way:

ab̄ := aa ∧ ¬ab a(b ∩ c) := ab ∧ ac a(b ∪ c) := ab ∨ ac

It is not a problem to provide suitable rules corresponding to these definitions:

(− ⇒)
aa, Γ ⇒ Δ, ab

ab̄, Γ ⇒ Δ
(⇒ −)

ab, Γ ⇒ Δ Γ ⇒ Δ, aa

Γ ⇒ Δ, ab̄

(∩ ⇒)
ab, ac, Γ ⇒ Δ

a(b ∩ c), Γ ⇒ Δ
(⇒ ∩)

Γ ⇒ Δ, ab Γ ⇒ Δ, ac

Γ ⇒ Δ, a(b ∩ c)

(∪ ⇒)
ab, Γ ⇒ Δ ac, Γ ⇒ Δ

a(b ∪ c), Γ ⇒ Δ
(⇒ ∪)

Γ ⇒ Δ, ab, ac

Γ ⇒ Δ, a(b ∪ c)

Although their structure is similar to the rules provided for predicates in the
last section, their addition raises important problems. One is of a more general
nature and well-known: definitions of term-forming operations in ontology are
creative. Although it was intended in the original architecture of Leśniewski’s
systems, in the modern approach this is not welcome. Iwanuś [7] has shown that
the problem can be overcome by enriching elementary ontology with two axioms
corresponding to special versions of the comprehension axiom but this opens a
problem of derivability of these axioms in GO enriched with special rules.

There is also a specific problem with cut elimination for GO with added
complex terms and suitable rules. Even if they are reductive (and the rules
stated above are reductive, as a reader can check), we run into a problem with
quantifier rules. If unrestricted instantiation of terms is admitted in (⇒ ∃), (∀ ⇒)
the subformula property is lost. One can find some solutions for this problem,
for example by using two separated measures of complexity for formula-makers
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and term-makers (see e.g. [3]), or by restricting in some way the instantiation
of terms in respective quantifier rules (see e.g. [4]). The examination of these
possibilities is left for further study.

The last open problem deserving careful study is the possibility of application
for automated proof-search and obtaining semi-decision procedures (or decision
procedures for quantifier-free subsystems) on the basis of the provided sequent
calculus. In particular, due to modularity of provided rules, one could obtain in
this way decision procedures for several quantifier-free subsystems investigated
by Pietruszczak [15], or by Ishimoto and Kobayashi [6].
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In: Leśniewski [11]]
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20. Urbaniak, R.: Leśniewski’s Systems of Logic and Foundations of Mathematics.

Springer, Cham (2014). https://doi.org/10.1007/978-3-319-00482-2

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-00482-2
http://creativecommons.org/licenses/by/4.0/

	Leśniewski's Ontology – Proof-Theoretic Characterization
	1 Introduction
	2 Elementary Ontology
	3 Sequent Calculus
	4 Cut Elimination
	5 Modifications
	6 Extensions
	7 Conclusion
	References




