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ABSTRACT
In recent years, research on the Quality of Experience (QoE) of
smartphone applications has received attention from both industry
and academia due to the complexity of quantifying and managing
it. This paper proposes a smartphone-embedded system able to
quantify and notify smartphone users of the expected QoE level
(high or low) during their interaction with their devices. We con-
ducted two in the wild studies for four weeks each with Android
smartphones users.The first study enabled the collection of the QoE
levels of popular smartphone applications’ usage rated by 38 users.
We aimed to derive an understanding of users’ QoE level. From this
dataset, we also built our own model that predicts the QoE level for
application category. Existing QoE models lack contextual features,
such as duration of the user interaction with an application and the
user’s current physical activity. Subsequently, we implemented our
model in an Android application (called expectQoE) for a second
study involving 30 users to maximize high QoE level, and we repli-
cated a previous study (2012) on the factors influencing the QoE
of commonly used applications. The expectQoE, through emoji-
based notifications, presents the expected application category QoE
level. This information enable the user’s to make a conscious choice
about the application to launch. We then investigated whether if
expectQoE improved the user’s perceived QoE level and affected
their application usage. The results showed no conclusive user-
reported improvement of their perceived QoE due to expectQoE.
Although the participants always had high QoE application usage
expectations, the variation in their expectations was minimal and
not significant. However, based on a time series analysis of the
quantitative data, we observed that expectQoE decreased the appli-
cation usage duration. Finally, the factors influencing the QoE on
smartphone applications were similar to the 2012 findings. How-
ever, we observed the emergence of digital wellbeing features as
facets of the users’ lifestyle choices.
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1 INTRODUCTION
Smartphones are an integral part of modern life. They enable users
to access online services to communicate and exchange information
around the world. They allow them to create or consume content
in different contexts; however, the experience can be impacted by
the smartphone user’s context. This context often changes due to
circumstances such as the physical activity of the user, varying the
smartphone application user experience as a result [13]. As such,
the term Quality of Experience (QoE) was coined to mirror the
known Quality of Service (QoS, [37]) concept from the telecommu-
nication and networking domains. Whereas the QoS only focuses
on quantitative information. The QoE measurement is an expan-
sion of the QoS and includes qualitative information related to the
experience itself, and thus prioritizes the end user. QoS focused on
metrics obtained on user-end device and networking device (e.g.,
jitter, amount of packet error and dropped) which transport content.
Contrary to QoE, which focuses on the experience encompassed in
the content. The QoE is defined by the Qualinet White Paper [23]
as ”an application or service user’s degree of delight or annoyance”.

Many previous works [7, 10, 16] have only focused on quanti-
fying the smartphone applications and web browsing QoE based
on QoS metrics within laboratory settings where the authors simu-
lated external factors (e.g., a bandwidth limitation or reduced video
bitrate), missing important contextual factors such as user’s habits
and current activity. To bridge this gap, we first aimed to quantify
the QoE of smartphone applications. As such, we employed a mixed-
methods approach and collected application usage QoE ratings via
an in the wild study (S1) with 38 participants over four weeks. Dur-
ing this study, we deployed an Android logger application, named
mQoL-Lab [4], that collected context information. The users had
the opportunity to rate their application usage through Ecological
Momentary Assessment (EMA; [34]). From the collected dataset,
we built a QoE classification model that predicts the application
category QoE level between two labels: high or low. The labels cor-
respond to the level of acceptability from the end-user perspective
[32]. The QoE classification model is based on features from three
different perspectives: user (e.g., intent to accomplish), system (e.g.,
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Figure 1: Study S1 and S2 Timeline and Research Methods

QoS metrics) and context (e.g., user physical activity). Related pre-
vious works only went as far as estimating the QoE level of video
or social media applications on smartphones [8], to help telecom-
munication providers offer better network conditions through core
network parameters. This information was often processed after
the study and thus retained from the end users.

Moreover, the telecommunication providers continuous upgrade
of network equipment leading to a better user experience will
always be limited by the users’ current smartphone hardware, the
network protocols, and the physics of wireless broadband.There are
techniques to reduce user annoyance based on hardware technology
upgrades or architectural system design (e.g., microservices and
edge computing). However, these techniques could fail when the
service provider and the network are inaccessible, or when the
user’s intent is unpredictable and requires real-time access to the
content (i.e., the content is impossible to cache). Hence, software
approaches based on human-computer interaction (HCI) technics
could be a potential solution which have not been employed to
grand extend yet. One of the solution in place is the indicator
on smartphone which always presents the user’s network state.
Accordingly, users expect internet-enabled applications to be slow
when no bars are shown.

We conducted our study with the hypothesis that an intervention
approach could influence smartphone users’ behaviour. The users
would attempt to avoid annoying experiences and limit their applica-
tion usage duration. Previous studies have shown that notifications
are capable of influencing smartphone users by communicating
information about the intervention topic [25, 26, 30] (e.g. reducing
exposure to low interest notification or pushing user to engage less
in certain games). Thus, we approached maximizing users’ QoE
by providing notifications that aimed at limiting their exposure to
applications with a low predicted QoE level. We implemented our
QoE level prediction model (expectQoE) into our mQoL-Lab and
conducted a second four-week study (S2) with 30 participants to
investigate the model’s influence with notifications to present to
the user the predicted QoE level.

Besides QoE models, we focus on understanding the factors
influencing users’ experiences as they vary through context and
time. The 2012 study of Ickin et al. [18] on this subject identified
these factors through a user study. Hence, we replicated part of their
work for S2. We focused on previously defined factors influencing
the QoE of smartphones and the factors current evolution.

2 RELATED WORK
Assessing users’ perceived experience of smartphone applications
in the wild has been performed by Casas et al. [7, 9].The researchers
focused on the QoE of smartphone applications in cellular networks.
They labeled their data in the field, but their participants were in-
structed to accomplish a specific task. Such study design can impact
participants’ annotation process. In a later work, the authors mod-
eled smartphone application QoE [6] with success (95% accurate),
although they did not deploy or test their models outside a labo-
ratory setting. Furthermore, they limited their focus to video and
audio streaming only.

Schwind et al. [33] used the MONROE [1] hardware platform
to collect network and audio and video streaming metadata from
online services on public transport (trains and buses) nodes in
European countries. The study focused on video streaming and
modeling the QoE based on video streaming bitrates. However, this
work did not represent real user and smartphone interactions but
only the results of multiple network tests in different contexts (i.e.,
mobility induced cell tower changes). Other researchers attempted
to measure and predict network quality on trains [22] by measuring
QoS metrics. However, they did not factor the user’s context, the
application used, or previous user’s experience into their models.
Moreover, their model was based on a dataset collected on a specific
train ride. Summarizing, the previous listed works focused on QoE
estimation only.

We propose to use intervention to limit the smartphone users’
exposure to annoying application experience. Interventions on
smartphones are primarily present in health-based research. For
instance, a smartphone-based intervention showed success in moti-
vating physical activity in a student population [29], to change the
participants’ behavior through notifications [28]. Notifications are
considered as an intervention tool due to their unexpected nature
and informational content [26]. Additionally, smartphone-based
interventions studies have employed notification to promote digital
wellbeing [27, 40] with some success. While QoE modeling has
been researched for smartphone applications, maximizing the QoE
through notifications has not. Our work addresses this research
gap, offering a solution via a notification to reduce user annoyance
preemptively.

3 METHODOLOGY
3.1 Study Protocols (S1, S2)
Figure 1 depicts our approach and the study protocol for S1 (2018)
and S2 (2021). As defined, S1 was for building the QoE model, while
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S2 was for model validation. The participant’s information is pre-
sented respectively in Section 3.2.1 for S1 and Section 4.1 for S2. The
participants were recruited on the university’s campus via flyers,
mailing lists, and social network posts. We focused on Android
smartphone users who had lived at least five years in the Great
Geneva region, at the border of France and Switzerland. Participants
were required to use a minimum of four target applications daily,
and a maximum of all, and have the most recent OS version on
their smartphones.We focused on popular smartphone applications:
Instagram, WhatsApp, Spotify, Facebook, Chrome, Facebook Mes-
senger, and Google Maps. These applications were selected due to
their high installation number from the Google Play Store and their
previous selection in past work [7]. Once selected, the participants
were invited to our laboratory for a demonstration of the logger and
of the tasks to accomplish during the studies. Each participant gave
consent before enrolling in the study and downloading the mQoL-
Lab application. This Android logger was employed in both studies
to collect passive information on the user context. Tables 1 presents
the data collected during S1 and the data used for estimating the
QoE level during S2. Since S2 was more recent (2021 versus 2018),
the availability of the data had changed. Previously available infor-
mation like low-level network statistics were removed. mQoL-Lab
also enables the collection of smartphone usage QoE level ratings
(i.e., via EMAs) in situ [12]. In S1, the participants annotated the
QoE level of their last application usage through a 5-point Mean
Opinion Score (MOS) [19]. This method was previously used in
QoE smartphone studies [9, 18, 31]. An EMA was triggered by an
application events (i.e., closing or switching). The question “How
was your last usage session of {‘app name’} at {‘time’}?” enabled
the participants to know what application they were rating. The
MOS scale contained the followings scores: poor (1), bad (2), fair
(3), good (4), and excellent (5). The EMA also contained multiple
choice questions about the intent the user wished to accomplish
with the application: consume content, share or create content, read
text message, write text message, control an app (e.g., start or stop
music), video call, or audio call. We limited the number of EMAs
to 12 per day during waking hours between 7:00 and 21:00, and
included a 20-minute timeout between consecutive EMAs to reduce
the study burden. We categorized the obtained data in the studies
into three perspectives (Table 1) (i) User centric: qualitative data ob-
tained from the user; (ii) System centric: quantitative data obtained
from smartphone sensors linked to the smartphone hardware and
software state (e.g., network QoS); (iii) Context centric: quantitative
data obtained from smartphone sensors and characterized by a
strong in-situ nature.

The protocol for S2 differed, as shown in Figure 1. S2 timeline is
composed of three distinct periods, T0 was the baseline period, it
contains the participants’ application usage habits (i.e., passive col-
lection). Then T1 marked the beginning of the intervention period
with expectQoE. T1 was composed of two periods, T2 in which the
participants were notified with the real output of our QoE model.
Contrary to T3, in which the participants received random QoE
level. The periods in the S2 timeline enable us to capture the sup-
posed influence of expectQoE on the participant’s application usage.
T0 represents the baseline data. T1 focus on the influence of expec-
tQoE across T2 (real model output) and T3 (random output).The
predicted QoE levels in T2 were estimated using our model built

Table 1: Information Collected per Study (mQoL-Lab)

Perspective Domain Raw Features Available S1 S2

User Intent Intent the user tried to accomplish
by launching an application ✔

Application Name of the application launched
by the user ✔ ✔

Session Duration of the application
usage session (ms) ✔

System Network

Cell and Wi-Fi signal strength,
Wi-Fi speed, Cellular up and
down bandwidth,

✔ ✔

Active ping test to measure
the round-trip time to the University
server, handover, IP version,
aggregated traffic packet statistics

✔

Netstats (i.e., TCP states per socket) ✔

Battery Energy level from the battery
(capacity in %) ✔ ✔

Context Physical
Activity

User’s physical activity from
Google Activity Recognition
(walking, running, still, on bicycle, in vehicle)

✔ ✔

from the data collected in S1. S2 study also included three types
of questionnaires [18]: weekly Day Reconstruction Method (DRM)
[21], semi-structured interviews, daily online QoE surveys at the
end of the day at a random time between 19:30 and 20:00, and noti-
fications that presented the expectQoE level of the four application
categories which the participants could rate (12 maximum per day
from 8:00 to 21:00, 5 minutes minimum between two notifications).
The question was asked as follows: ”Did your application usage ses-
sions meet your expectations?”. A slider was used to answer from 1
(not at all) to 5 (enormously). The weekly remote DRM interviews
were conducted to discuss their previous 24 hours of smartphone
usage and any other recent annoying experience on participants’
smartphones. With the daily surveys, we queried the participants
about their overall QoE, expectations, stress level, and usefulness
of the expectQoE system. We used an MOS scale from 1 to 5 for
each indicator except for the stress level, which used a scale from
0 to 10 [3]. For S2 study, we developed a notification-based EMA.
The expectQoE presented the application categories and predicted
QoE level via emojis. Emojis surrogate plain text [24] and have
been heavily used to generate notification-to-application interac-
tions [36]. We mapped each application category to a specific emoji:
communication and social , music and audio , video , and
travel and local . In notification buttons were used to provide
feedback with the thumbs-up and thumbs-down emoji. The
QoE level was indicated via the slightly-smiling-face emoji for a
predicted high-level QoE and the worried emoji for a predicted
low-level QoE. The expectQoE notification content contained the
dyad ”category, predicted QoE” concatenated for all the categories
in an emoji sequence (e.g., Figure 1). To preemptively limit partici-
pants’ fatigue from seeing the same content in the notification area,
we randomized the order of the four dyads. The notification was
triggered after an application usage started and disappeared once
the user rated it. The emojis were not updated due to a limitation
from the Android notification’s nature. Each update would have
created a new notification which could have visually disturbed the
participant. Moreover, they were only available beginning Day 7
(T2) of the study. Furthermore, after Day 18 (T3) of the study, the
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QoE levels presented were randomized, thus enabling us to test the
impact of our model (T2) versus a balanced distribution of random
QoE level as output (T3, assumed 50%/50% for low/high QoE).

3.2 Modeling QoE (S1)
3.2.1 S1 Dataset. In S1, the age distribution of the 38 participants is
as follows. Thirteen were young adults (two between 18-20 y.o. and
eleven between 21-29 y.o.), followed by ten participants between
30-39 y.o., two between 40 and 49 y.o., two participants between
50-59 y.o. and two non-disclosed. The gender distribution is as fol-
lows: fifteen were women, twenty-one men and one non-disclosed.
Furthermore, the participants’ education level (i.e., last successful
diploma obtained) was as follow, and five participants had a PhD
degree, followed by fifteen participants who had a master’s degree,
then four had a bachelor’s degree, twelve had a high school diploma
or equivalent, and finally two participants had no diploma.

We collected 6,308 ratings (166 ± 89 per participant) of appli-
cation usage QoE. Only five participants triggered the maximum
possible number of EMAs. At the end of the study, the participants
answered 75±2% of the triggered EMAs. In general, the participants
rated their QoE as good (MOS > 4). The QoE ratings were mapped
into two groups: high and low in accordance with Schatz et al.’s
user accessibility threshold [32], and due to the ratings’ imbalance.
More than two categories would lead to an even more imbalanced
dataset than binary setting, impacting the model performances.
Also, the choice of the threshold’s values between the categories
would have to be validated. The binary classification approach en-
ables the construction of a robust model metrics wise (i.e., AUC).
Ratings higher than or equal to 3.5 were classified as high; all other
ratings were classified as low. The prevalence of high QoE levels
was 93.5% versus 6.5% for low QoE levels.

3.2.2 ExpectQoE Features. We identified features to build a QoE-
level prediction model based on the data collected during S1. Con-
trary to previous works, we required that the model had to make
predictions directly on the devices. Accordingly, some aggregated
information was inaccessible due to time constraints (e.g. time-
based aggregated feature: application usage duration). We aimed at
classifying the QoE levels of the following application categories:
communication (e.g., WhatsApp and Facebook Messenger) and so-
cial (e.g., Instagram, Twitter, and Facebook), music and audio (e.g.,
Spotify), video (e.g., YouTube and Netflix), and travel and local (e.g.,
Google Maps). These categories represent more than 60% of the ap-
plications launched on smartphones [5]. We selected other features
that were accessible on-the-fly on Android 12. The selected features
were presented in Table 1 column labeled S2.

3.2.3 ExpectQoE Building. The model we applied follows the on-
device model construction presented by De Masi et al. [14]. Our
model could be subject to overfitting since the S1 dataset contains
a higher amount of high-level QoE annotation than low. Hence, we
undersampled the S1 dataset, resulting in maintaining 386 samples
for each class. We split the dataset into a training set (70%) and a
testing set (30%). We applied ten-fold cross-validation and trained
the model with the XGBoost algorithm [11], which has been proven
to perform efficiently with tabular data. We repeated the same
process 10 times. During each fold, the undersampling selected

different samples from the majority class. We obtained an average
Area Under the Curve (AUC) 75 ± 7% (higher is better) on the test
dataset to classify the QoE level (high/low). We exported the model
with the highest AUC (82%) into our logger application for S2.

4 EXPECTQOE EVALUATION AND USER
STUDY RESULTS (S2)

4.1 Demographic: S2
The age distribution of the 30 participants is as follows. Four were
young adults (two between 18-20 y.o. and 11 between 21-29 y.o.),
followed by eleven participants between 30-39 y.o., one between
40 and 49 y.o., one participant between 50-59 y.o. and one non-
disclosed. The gender distribution is as follows. Nine were women,
followed by nineteen men and two non-disclosed. Furthermore, the
participants’ education level is as follows: four participants had a
PhD degree, followed by nine participants who had a master’s de-
gree, then seven had a bachelor’s degree. Finally, seven participants
had a high school diploma or equivalent, and only one participant
did not have any degree. Two participants chose to not answers
this question.

4.2 Factors Influencing QoE
In 2012, Ickin et al. [18] ran a study with 29 Android smartphone
users for four weeks focusing on understanding smartphone QoE.
The authors employed the DRM method to analyze the relations
and causality between QoE annotations collected during the study,
QoS, and context. Two independent coders clustered the terms
with the most affinity. In the end, they distinguished seven factors
influencing QoE. We used the seven factors as a template during
our S2 weekly interviews. Overall, we collected 120 expressions
from the 30 participants. Two researchers familiar with the QoE
and smartphones domain coded the expressions, and the measure
of agreement was greater than 96%. Overall, we found similarities
with the past work, yet the factor meanings have changed with
time.

4.2.1 Application interface design. The application’s interface de-
sign was commented on often. The participants enjoyed the in-
terface of the notification bar. Contrary to [18], the participants
complained about the content of the applications versus their mood
at that time (e.g., announcement of the death of a family member
via an application).

4.2.2 Application performance. Twenty-four participants reported
problems with sharing photos and streaming videos for example:
”the videos were not loading” (P22), ”it’s problematic, the connec-
tion is bad, on YouTube I have to wait a lot for a video to load”
(P26). The participants were also conscious of the capacity of the
network to which they were connected. In particular, twenty-three
participants commented on roaming between countries and the
time needed for their smartphone to connect to a new network. One
participant experienced low QoE due to network roaming problems
(P15). Two participants had to set up the cell network manually due
to their proximity to a foreign cell tower (at the border). Only three
participants reported playing video games on their devices. Overall,
the participants were able to discern whether the performance of
an application was due to the application itself or to an underlying
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Table 2: S2: Participants Ratings to ExpectQoE Predictions

Participant QoE Level Response Answered Triggered / / /
T0 [%] T1 T1 T1 T1 [%] T2 [%] T3 [%]

ID High/Low Rate [%] [n] [n] S2 Total [%] Model [%] Random [%]

0 0.66/0.34 86 19 22 0.26/0.74 0.25/0.75 0.27/0.73
1 0.75/0.25 80 202 252 0.49/0.51 0.76/0.24 0.19/0.81
2 0.77/0.23 48 121 252 0.66/0.34 0.62/0.38 0.89/0.11
3 0.96/0.04 48 122 252 0.48/0.52 0.38/0.62 0.63/0.37
4 0.82/0.18 69 24 35 1.00/0.00 1.00/0.00 0.00/0.00
5 0.98/0.02 79 200 252 0.99/0.01 0.99/0.01 0.00/0.00
6 0.89/0.11 73 185 252 0.53/0.47 0.54/0.46 0.52/0.48
7 0.86/0.14 69 173 252 0.32/0.68 0.74/0.26 0.10/0.90
8 0.89/0.11 87 219 252 0.57/0.43 0.57/0.43 0.57/0.43
9 0.69/0.31 90 226 252 0.49/0.51 0.35/0.65 0.66/0.34
10 0.92/0.08 98 118 120 0.98/0.02 1.00/0.00 0.98/0.02
11 0.92/0.08 87 219 252 0.97/0.03 0.96/0.04 0.97/0.03
12 0.99/0.01 62 155 252 0.56/0.44 0.70/0.30 0.44/0.56
13 0.95/0.05 77 59 77 0.49/0.51 0.56/0.44 0.40/0.60
14 0.96/0.04 99 128 129 0.23/0.77 0.35/0.65 0.19/0.81
15 0.90/0.10 60 131 220 0.43/0.57 0.79/0.21 0.06/0.94
16 0.91/0.09 100 252 252 0.98/0.02 0.98/0.02 0.99/0.01
17 0.88/0.12 41 104 252 0.99/0.01 1.00/0.00 0.98/0.02
18 0.89/0.11 54 135 252 0.72/0.28 0.72/0.28 0.00/0.00
19 1.00/0.00 92 88 96 0.9/0.1 0.89/0.11 0.91/0.09
20 0.9/0.1 78 197 252 0.59/0.41 0.57/0.43 0.64/0.36
21 0.92/0.08 98 135 138 0.16/0.84 0.19/0.81 0.11/0.89
22 0.9/0.1 52 92 178 0.36/0.64 0.48/0.52 0.12/0.88
23 0.83/0.17 100 252 252 0.56/0.44 0.54/0.46 0.60/0.40
24 0.97/0.03 86 96 111 0.45/0.55 0.60/0.40 0.34/0.66
25 0.82/0.18 60 152 252 0.47/0.53 0.77/0.23 0.32/0.68
26 1.0/0.0 97 68 70 0.96/0.04 0.92/0.08 1.00/0.00
27 0.92/0.08 98 52 53 0.81/0.19 0.84/0.16 0.75/0.25
28 0.9/0.10 65 165 252 0.83/0.17 0.88/0.12 0.78/0.22
29 0.92/0.08 86.0 217.0 252.0 0.18/0.82 0.14/0.86 0.23/0.77
ALL 0.88/0.11 77±18 144±65 193±82 0.61/0.29 0.67/0.33 0.48/0.52

network problem. That is different from the 2012 study, where such
distinction was not made by the participants.

4.2.3 Battery. The batteries were able to sustain the smartphones
for more than a day with high utilization from the participants.
However, one participant reported carrying an extra battery when
travelling in another country as their smartphone was used to guide
their group and thus consumed more energy due to using GPS (P26).

4.2.4 Phone features. The participants reported enjoying the cam-
era quality. Four participants used the hotspot function to share
through their 4G connection with their friends or other devices
(e.g., laptop or game console) when their home Internet delivered
low QoE.

4.2.5 Applications and data connectivity cost. More than half the
participants (17) mentioned having an unlimited mobile data sub-
scription, hence their use of the hotspot feature. Overall, they were

satisfied with the free applications available. However, four par-
ticipants paid for application subscriptions that enhanced the ap-
plication features. Contrary to [18], when this services were not
available on smartphone, seven participants subscribed to multiple
streaming services. Overall, we found that Spotify (11 participants)
and Netflix (11 participants) were among the most used services.

4.2.6 Routine. Twenty-five participants reported following an iden-
tical routine in the morning and in the evening. In both cases, they
used a set of applications, often communication (e.g., WhatsApp,
email), before starting or finishing their day, which corresponds to
the findings of [18] regarding user routines.

4.2.7 Lifestyle. We observed a trend in the lifestyle factor that was
not seen in 2012 [18]. Namely, participants limited their interac-
tion with smartphones during work and at night. We identified
four levels of this digital wellbeing behavior: (i) Smartphone physi-
cally inaccessible (1 participant): The device is placed outside the
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bedroom at night, limiting accessibility; (ii) Plane mode (3 partici-
pants): All access to any network is disabled; (iii) Data network off
(4 participants): The Wi-Fi and cell data access are turned off; the
smartphone user can still receive a call, but Internet applications are
unavailable; (iv) Smartphone enabled (7 participants): The ”Do not
disturb” mode stops all notifications from appearing on the screen,
removes its signaling modalities (vibration and sound), and limits
application usage based on time: ”I put the phone on silence when I
arrive at work” (P20). The applications run and are synchronized in
the background. Additionally, contrary to past work, we found that
many participants used more diverse applications that supported
their lifestyle such as finance, spirituality, and health applications.

4.3 ExpectQoE Model Evaluation Dataset
Overall, we collected 64,179 application usage sessions from the
thirty participants with 464 unique applications. The participants
used mostly communication applications throughout the study
which corresponds to the findings of Bohmer et al. [5] at the be-
ginning of the smartphone revolution. The ten most launched ap-
plications by the participants were WhatsApp (13.7%), Instagram
(7.4%), Chrome (6.1%), Telegram (6%), Snapchat (3.8%), Gmail (3.7%),
Phone dialer (2.9%), YouTube (2.9%), Message (SMS and MMS, 2.4%)
and Facebook (2.3%). These applications represent 52% of the total
launch application during S2. The top ten applications in which
participants spend the most time correspond partially to the ten
most launched applications [5].

The Table 2 summarized the participants interactions with expec-
tQoE in T1. Overall, they triggered on average 193±82 expectQoE
notifications due to their application usage. Only twenty partic-
ipants used their smartphones enough to trigger the maximum
amount of expectQoE notifications (252) throughout the study, im-
pacting the amount of rating collected. However, the participants
rated expectQoE on average 144±65 times. The categories for which
expectQoE provided the QoE level prediction in T2 and T3 were
communication and social, music and audio, travel and local and
video player. Overall, these categories represent on average 65±15%
of the total application usage of S2 participants (T0+T1).

We examined the distribution of the expectQoE predictions for
the real model output (T2) and the random model (T3). Overall,
we observed that during the random model period (T3), the high
and low QoE-level predictions were equally distributed among
the participants (high QoE level: 49±5%; low QoE level: 51±5%).
However, when the real model predicted the QoE (T2), the standard
deviation was much higher (high QoE level: 48±24%; low QoE
level: 52±24%), indicating a high variation in QoE level for the
participants during T2. As such, eleven participants had a low
QoE level distribution higher than 60%, contrary to only eight
participants with a high QoE level with the same threshold.

4.4 QoE Model Performance (T2)
To investigate the validity of the QoE model predictions, we com-
pare the daily reported QoE from the participants against the
model’s aggregated output per day in T2.

We employ the Kolmogorov-Smirnov test [2], a non-parametric
and distribution-free test. We found that for twenty participants

the predicted QoE distribution and reported daily QoE were simi-
lar (p<0.04). Indicating that over the day, the model prediction is
consistent with the real the participants’ feedback. However, for
ten participants theses distributions are not statistically significant
(p>0.7); the model output does not match their experience.

4.5 ExpectQoE Ratings Analysis
Table 2 presents the ratings given by the participants for each expec-
tQoE notification they received during S2. Overall, the participants
rated the expectQoE prediction an average of 77±18% of the time.
Their ratings were more positive (thumbs-up, 61%) than negative
(thumbs-down, 29%) during the total duration of S2. Only 13 partic-
ipants rated the expectQoE notification more negatively. This can
be explained by the participants’ expectation or experience were
different from expectQoE notification (i.e., expectQoE misclassified
the QoE level).

We compared the ratings for two distinct periods T2 and T3.
We observed a higher mean of thumbs-up (67 ± 25%) during T2
than during T3 (48 ± 35%). Both ratings in T2 and T3 are normally
distributed (T2 ? < 0.033, and T3 ? < 0.006). However, three
participants did not provide any ratings during T3 and their data
were discarded. Then, we applied a Student’s t-test [15] to verify
the statistical significant of this difference, and we found ? < 0.025;
hence, we affirmed that the model performance (T2) was better
than a random process (T3) from the end user point of view.

4.6 ExpectQoE Notification Effectiveness
Above we analyzed the answers from our participants regarding
the notification’s effectiveness. However, a quantitative analysis
of application usage collected by the logger could assess it better.
Therefore, we employed the Multiple Convergent Cross Mapping
(MCCM; [39]) from van Berkel et. al. to analyze the causality be-
tween the notifications from expectQoE and smartphone use in
terms of application usage duration. This method was developed to
better understand the interactions between users and technology
over time by differentiating causality from correlation based on
quantitative data obtained in the wild. MCCM is built on the Con-
vergent Cross Mapping (CCM; [35]) method and extended from the
ecology domain based on empirical dynamic modelling methods
(EDM; [41]). EDM allows conceptualizing multiple users’ behavior
as complex nonlinear dynamical systems. CCM is used to investi-
gate the causal relationship between two variables in a time series
(i.e., which variable drives the other one) from a complex system.
We looked for a positive convergence of the CCM values to deter-
mine whether the values were above direct correlation (difference
in correlation greater than 0, means the correlation is significant).
Then, we were able to establish which variable had a stronger effect
by looking at how well one variable forecasts the other. By doing
so, we established the direction of causality between the two vari-
ables. MCCM enables the aggregation of multiple CCM analyses
graphically, processed with each participant time series, by com-
paring the difference in correlation and asymptotes (convergence
point between the two variables forecast) from the CCM results
indicating the effect size.
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Figure 2: S2: Effect size and Amount of Valid Analysis for Causality Between Application Usage Duration and ExpectQoE
Notifications During T1

Table 3: S2: Causality Between Application Usage Duration
and expectQoE Notifications

expectQoE Notification: Effect Size (and STD)

All High Low

T2 Model
7/30 Valid

0.197
(0.14)

5/30 Valid
0.053
(0.15)

7/30 Valid
0.107
(0.098)

T3 Random
9/30 Valid

0.214
(0.139)

8/30 Valid
0.155
(0.116)

10/30 Valid
0.158
(0.088)

We repeated the MCCM analysis for two time periods (T2, T3)
during which we tested three expectQoE notification-based vari-
ables (all QoE, high only, low only) against the participants’ appli-
cation usage durations. Figure 2 presents the MCCM visualization.
Each point represents a participant, and only the blue points (for
valid analysis of a participant) are used to compute the mean effect
size. The orange points indicate participants for whom the MCCM
analysis failed. The thin dashed line corresponds to the mean effect
size. Figure 2 shows that the notification received during the entire
S2 duration had an impact on application usage duration for eight
participants of thirty. The ”invalid” participants’ MCCM analysis
are explained by the auto-correlated nature of their data (i.e., the
application usage duration and the notifications are correlated, but
not significant). Thus, the MCCM results are not exploitable on
their dataset.

We present the overall results in Table 3, we include the amount
of valid participants for each analysis. We observe that expectQoE
had an impact on the application usage duration since the effect size
is positive (Figure 2 X-axis). The effect size is overall higher with
the random model (T3) than with the real model (T2). However,

for both models, the expectQoE notifications with low QoE level
have a stronger driving effect (0.107 and 0.158) than the high QoE
level (0.053 and 0.155). The effect size is stronger in T2 for low QoE
level comparing to high QoE level. Hence, the notification impacted
more the the application usage duration in T2. Overall, we observed
a decrease in application duration usage from 33.7 ± 8[s] in T0 to
28 ± 8[s] in T2.

4.7 Expectation Impact
We explored the expectQoE notification’s influence on the partici-
pants’ daily application usage expectations (in T0, T2 and T3). The
average reported answer was 4 ± 0.49 overall, and 4 ± 0.04 in T0,
3.8 ± 0.05 in T2 and 4 ± 0.06 in T3. We focused the analysis on the
participant’s mean ratings during three different periods: before
any use of expectQoE (T0), during expectQoE use with the real QoE
model outputs (T2) and finally during expectQoE use with the ran-
dom model outputs (T3). A one-way Analysis of Variance (ANOVA)
of the reported satisfaction expectation ratings was carried out
for each period to test if expectQoE influenced the participants’
satisfaction. The distribution of the ratings within each period is
normally distributed (T0: p < 0.006, T2: p <0.05 , T3: p < 0.005). The
results show that the period (T0, T2, T3) has an impact on the partic-
ipant’s ratings, with F(3, 90) = 3.57, p < 0.03. A Tukey post-hoc test
(by setting the U = 0.05) revealed that the participant’s satisfaction
increased significantly from T0 to T2. However, there is no statisti-
cally significant difference between the other two pairs of periods
(T0, T3 and T2, T3). Hence, we conclude that expectQoE output
during T2 has a significant impact on the participant expectations.

4.8 Impact of ExpectQoE on Application Usage
Duration

The MCCM results have shown a partial driving force from the
expectQoE system on the application usage duration of the partici-
pants after a close inspection of valid and invalid participants. We
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did not find other participant specific characteristics. Both subgroup
of participants shared similar mean application session duration
(p<0.03, with one-way ANOVA) with overlapping standard devi-
ation (valid: 97 ± 421[s], invalid: 109 ± 475[s]). We extended our
analysis based on those findings. We gathered all the application
sessions from S2’s participants and filtered out the applications not
in the category presented by expected QoE (kept 41585 sessions
from a total of 63529 sessions). Then, we grouped the sessions by
periods: T0, T2, and T3. Interestingly, we found that 64% of the
participants decreased the duration of their application session
during T2 for all the application categories (p<0.02, decrease of
−1.2 ± 178[s]) compared to T0 (59.3 ± 121[B]). Additionally, only
the communication and social category applications were used less
in T3 than T0. However we found that the other categories of appli-
cation were used more (p< 0.001, increase of +39.2±190[s]). Finally,
we observed an increase in application session duration for 65% of
the participants (p<0.01, increase of +40.5± 217[s]) between T2 and
T3. The increase is an unexpected outcome. However, it could be
explained by the participant’s fatigue in the study or the random
QoE level shown during T3, negatively influencing their attitude
despite expectQoE.

4.9 ExpectQoE Model: QoE Levels and Features
(S2)

The expectQoE model achieved high accuracy for the majority of
the S2 participants (i.e., Section 4.7). Hence, we quantified the QoE
of all the application usage sessions (63529 sessions in S2) using the
features previously selected (Table 1). Table 2 shows the QoE level
per participants in T0. We found that overall in S2 the majority of
the session was of high QoE level (86% ± 7) and a minority of low
QoE (13% ± 7).

In order to better understand our results, the statistical signifi-
cance was derived using a one-way ANOVA test, as both high and
low median QoE level follow a normal distribution (high: p<0.002,
low: p< 0.008). Our analysis revealed that the median application
duration was lower in low QoE sessions, 26±9 seconds, contrary to
29±10 seconds for high QoE sessions (p<0.001). Hence, the partici-
pants spend more time in sessions rated as high QoE across all S2
sessions.

Furthermore, we explored the impact of the participant’s physical
activity and network state on the QoE level. The Radio Access
Technology (RAT, e.g., Wi-Fi, LTE, UMTS, …) does not influence
the QoE level, and twenty-four participants had the same top RAT
distribution for high and low QoE sessions. Then, we focused on
the cell signal strength and the Wi-Fi signal (dBm). There were no
significant differences between high and low QoE sessions based
on cell signal strength values (dBm). Further analysis showed that
the median Wi-Fi signal strength was lower in low QoE session
-72±3 dBm (weak, one bar on screen) than in high QoE session
-65±3 dBm (fair, two bars on screen) (p<0.01). Finally, on average,
the participants obtained a high QoE when their physical activity
was ”still” (64%±19) and lower on the other activities (36%±16) like
walking. However, these results were not significant (p>0.1).

5 DISCUSSION AND LIMITATIONS
In summary, our research aimed to explore the influence of a QoE
level notification system (expectQoE) on smartphone application
users. We verified expectQoE influence through qualitative and
quantitative data. The second aim was to ascertain whether the fac-
tors influencing the QoE of smartphones have changed in the last
decade. First, the analysis of the real model QoE predictions against
the participants’ reported QoE level yielded significant results: ex-
pectQoE influenced the participants’ application usage duration.
However, a the relatively low performance was reported by the
participants, which is different from the performance obtained dur-
ing the model building phase. It could be caused by several aspects:
limited training data which incorporate all the possible features’
combination; bias caused by model generalization; model structure
and parameter tuning. A personalized participant model could be
another approach to enhance the model performance. The model
would be fine-tuned for each participant via reinforcement learn-
ing or hyperparameters optimization. The resulting models would
embody one’s way of perceiving the level of QoE. The user’s intent
may play a role in this context, where the utilitarian needs to satisfy
their intent is ranked higher than their needs of hedonic satisfaction
[20] and the knowledge that QoE is going to be low.

Second, we found a statistical difference in the system perception
on the participants between the real model predictions (T2) and than
the random model (T3), validating the model performance. Third,
the MCCM analysis found that the expectQoE notifications drive
their application usage duration. Also, the effect size is stronger
when the notifications contain low QoE indications. On one hand,
this could be explained by smartphone’s users preemptively limiting
the time they spend in an application to reduce their predicted
annoyance. On the other hand, the MCCM results are difficult to
generalize (from only 17 valid participants over 30,Table 3).

Four, we found a significant trend in the application usage dura-
tion once the intervention started (i.e., decrease application dura-
tion). However, this effect is unsustainable in time due the partici-
pant fatigue in the study or the impact of the random notification
(T3), decreasing their trust in expectQoE. Additionally, the QoE
level was high overall. Hence, the need for expectQoE interactions
may be only suitable and useful for specific contexts (e.g., physical
activity changes, roaming, and optimizing smartphone use dura-
tion to satisfy the user’s intent faster and reduce their smartphone
usage).

Fifth, the factors influencing the QoE of popular smartphone
applications remain unchanged since documented in 2012. However,
we found that smartphone users are more network conscious and
care about the impact of their smartphone usage on their digital
wellbeing. Also, they subscribe to multiple streaming services and
often have unlimited internet access (no data cap). These changes
can be linked to the smartphone entering the plateau of productivity
(i.e., mainstream adoption) [17], in contrast to 2012 [18], in which
smartphones were on the rise of adoption.

Finally, we expect the implications of our work can help smart-
phone application developers to enhance their software by going
beyond simple network state indications, and include a QoE aware
system, which is capable to preemptively notify to their users an
approaching low QoE event. Application developers could learn
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from our work by making context an intrinsic information source in
their application performance evaluation. Hence, enabling them to
build a better experience metric than scroll jank (e.g., visual hiccup
and artifact) and startup latency.

Most limitations in the work presented in this paper arise from
our choice to collect data in the wild with limited disturbance to
our participants. Moreover, the dataset gathered in S1 and used for
S2 modeling efforts was limited by the application usage collected
and rated, mostly communication applications. We believe that
in our case, the impact is limited due to communication being
the most used application category. Nonetheless, the categories
may not be sufficient as such applications contain services that
depend on distinct network models, e.g. a video chat and a voice
call have different network needs [38]. Hence, the category may
be good for a small-scale study focusing on popular applications
used for the main service (e.g., WhatsApp for text message and
not for video conference). We believe that user’s intent within the
application should be the focus in future studies. As well, the root
cause of low QoE events should be explored. Although we found an
impact of expectQoE on our participants’ application use duration,
the interaction model we used (dyad of emoji with randomized
placement) could have influenced the participants if they expected
to observe the categories’ emojis in the same place. Furthermore,
the applications observed in S1 were all internet-enabled. Thus,
the model implemented in S2 focuses on this type of application.
However, the method to collect data, build and deploy a QoE model
presented could be applied to the non-internet application. The
network quality indicator (bars) are insufficient for the user to
assess its expected QoE level for offline application due to the
multiple factors influencing their experience. Finally the timing of
S1 and S2; S1 happened in 2018 and S2 in 2021. During these three
years, the Android system evolved.The system upgrades could have
impacted our results. However, the habits of the S2 participants
were always compared with the data gathered in T0 (baseline usage).
Hence, our overall findings are valid and the impact of this time
difference is limited.

6 CONCLUSIONS
Through a mixed method of qualitative and quantitative data col-
lection in which the participants were active in the research by
providing information directly and indirectly, we presented our
research regarding the effectiveness of a QoE-based notification
system to limit smartphone users’ burden in case of low QoE. First,
this required gathering application usage QoE levels in situ (S1).
Second, it required building a QoE classifier from the data obtained
during S1. This classifier was then included in our smartphone
logger, providing the participants in S2 with the expected QoEs
through notification. Our results showed that the participants re-
ported higher satisfaction when expectQoE showed the real model
predictions (T2) rather than random QoE level (T3). However, a
global model have limited prediction capabilities. Hence, our future
work includes building dynamically personalized QoE model based
on the user application usage and context habits. Additionally, we
investigated whether the expectQoE notifications had an impact
on participant application usage by employing a MCCM analysis
on a time series constructed from different periods of S2. Overall,

we found that expectQoE decreased application usage duration for
some participants. The influence was stronger when low QoE noti-
fication was shown. We also identified some features (e.g., Wi-Fi
strength and physical activity) that impacted the overall QoE level
of the participants during S2. Third, we presented changes in the
factors influencing the QoE of the smartphone. We found that all
factors are still applicable. However, they have evolved with new
smartphone usages (e.g., streaming audio and video content). Addi-
tionally, smartphone users are now more network and wellbeing
conscious than ever.
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