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Abstract: People’s perceptions of their intelligence correlate only moderately with objective intelli-
gence measures. On average, people overestimate themselves. According to the popular Dunning–
Kruger effect, this is particularly true for low performers: across many domains, those in the lowest
quartile overestimate their abilities the most. However, recent work using improved statistical ap-
proaches found little support for a Dunning–Kruger effect in general intelligence. We investigated
accuracy and Dunning–Kruger effects for self-estimates of general, verbal, numerical, and spatial
intelligence—domains that differed in how well they can be judged in the past. A total of 281 par-
ticipants completed self-estimates and intelligence measures online. Self-estimates showed mostly
moderate correlational accuracy that was slightly higher for numerical intelligence and lower for ver-
bal intelligence. Across domains, participants rated their intelligence as above average. However, as
their intelligence was indeed high, this was not an overestimation. While standard analyses indicated
Dunning–Kruger effects in general, verbal, and spatial intelligence, improved statistical methods only
yielded some support for one in verbal intelligence: people with lower verbal intelligence tended to
have less self-knowledge about it. The generalizability of these findings is limited to young, highly
educated populations. Nevertheless, our results contribute to a growing literature questioning the
generality of the Dunning–Kruger effect.

Keywords: self-knowledge; accuracy; self-estimates; Dunning–Kruger effect; overestimation; intelli-
gence; cognitive abilities; metacognition

1. Introduction

Do people have an accurate sense of how intelligent they are? Research suggests that
this might not necessarily be the case (for an overview, see Neubauer and Hofer 2020).
Self-estimates of intelligence and other abilities often correlate only moderately with corre-
sponding objective performance criteria (Freund and Kasten 2012; Zell and Krizan 2014).
Looking at the direction of this miscalibration, many studies suggest that people tend to
overestimate themselves (e.g., Gignac and Zajenkowski 2019). A striking example for this
tendency is the often-reported above-average or better-than-average effect, according to
which people, on average, believe their abilities to be above average (Alicke and Govorun 2005).
Other research indicates that the tendency towards overestimation depends on the underlying
ability level with less capable people showing the highest degree of overestimation—a finding
known as the Dunning–Kruger effect (Kruger and Dunning 1999).

There are many good reasons to be interested in the accuracy of self-estimates of
abilities in general and of intelligence in particular: self-estimates are often-used in career
counselling (Holling and Preckel 2005) and can affect career decisions beyond that (see
also Freund and Kasten 2012). Basing one’s life decisions on incorrect self-estimates could
have adverse consequences (see also Ackerman and Wolman 2007): people who have
chosen a job based on an overestimation of their abilities could face constant overload,
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while those who underestimate themselves might not take career opportunities due to
unwarranted fears of failure. Some authors have also reported that more accurate self-
views are related to higher psychological adjustment (Kim et al. 2010; Kim and Chiu 2011),
although others have found overestimation (Dufner et al. 2018; He and Côté 2019) or just
generally positive self-views (Humberg et al. 2019) to be more beneficial. These associations
of self-views and their accuracy/positivity with outcomes as important as decision-making
or psychological adjustment make this an interesting field of study. For these reasons, we
aimed to take a closer look at the different effects related to the accuracy of self-estimates—
that is, correlational accuracy, above-average effects, the direction of misestimation, and
Dunning–Kruger effects. More specifically, we were interested in the accuracy of self-
estimates of general intelligence and three intelligence facets that are included in most
common theories of intelligence (e.g., Cattell 1963; Jäger 1984; Thurstone 1938): verbal,
numerical, and spatial intelligence.

1.1. Correlational Accuracy of Self-Estimates of Intelligence

Considering common effect-size guidelines (Cohen 1992), the correlation between
self-estimated and measured intelligence—sometimes termed “relative accuracy” (Schraw
2009)—is moderate: a meta-analysis across 41 studies estimated it to be r = .33 (Freund
and Kasten 2012), a number that is similar to what was found across meta-analyses on the
accuracy of self-estimates of various abilities (Zell and Krizan 2014). This is surprisingly
low if one considers self-estimates to tap into the same latent construct as performance
tests. Some authors even concluded that self-estimates of abilities might have more in
common with personality traits than with the underlying ability (Herreen and Zajac 2018;
Neubauer and Hofer 2021). However, research also showed that correlational accuracy
differs between intelligence facets: in their meta-analysis, Freund and Kasten found self-
estimates of numerical but not spatial or verbal intelligence to be more accurate than those
of general intelligence. In a similar vein, recent studies reported a correlational accuracy
of between r = .4 and r = .5 for numerical intelligence and smaller—in some cases even
negligible—correlations for spatial and particularly verbal intelligence (Neubauer et al.
2018; Neubauer and Hofer 2021). The reasons for these differences between domains
do not seem to be clear at the moment. Moreover, some have argued that focusing on
correlations alone when studying accuracy is far from optimal, as the insights to be gained
from them are limited (Dunning and Helzer 2014). As an example, correlational accuracy
alone says nothing about the direction of potential miscalibration (or “bias”; (Schraw 2009)
of self-estimates.

1.2. Above-Average Effects and the Miscalibration of Self-Estimates of Intelligence

According to a large body of research, people likely have a general tendency to be
overly confident of their abilities. To state some examples, people, on average, rate their
abilities in a variety of domains including sense of humor (Horrey et al. 2015), and also
driving skills (Kruger and Dunning 1999), to be above average (for a discussion of above-
average effects, see Alicke and Govorun 2005). These effects are also present for intellectual
abilities: based on two large and representative data sets, Heck et al. (2018) reported that
65% of Americans think that their general intelligence is above average. In another study,
college students rated themselves to be above the average student on all of Gardner’s (1999)
multiple intelligences—including linguistic, logical-mathematical, and spatial intelligence
(Visser et al. 2008). When comparing self-estimated to measured intelligence, one study
found that people overestimated themselves by as much as 30 IQ-points (Gignac and Za-
jenkowski 2019). However, if everybody was to overestimate themselves to a similar degree,
this should still result in high correlational accuracy as self-estimates would keep their
rank-order validity (i.e., highly intelligent people would still rate themselves as more intel-
ligent than less-intelligent people; see also (Vazire 2010). Thus, there are likely individual
differences in the strength and direction of miscalibration, raising the question of poten-



J. Intell. 2022, 10, 10 3 of 18

tial moderators: what characterizes people who underestimate themselves, overestimate
themselves, or have an accurate view of their own abilities?

1.3. Dunning–Kruger Effects

The probably most discussed moderator of the miscalibration of self-estimates of
abilities is the person’s underlying ability level in the domain in question (see also Gignac
and Zajenkowski 2020; for discussions of other moderators, see Freund and Kasten 2012;
Zell and Krizan 2014). Kruger and Dunning (1999) proposed that the individuals with
the lowest abilities in a domain are also the ones showing the strongest tendency towards
overestimation (i.e., the Dunning–Kruger effect). According to the authors, low performers
lack the metacognitive competence to correctly assess their shortcomings: “Not only do
they reach mistaken conclusions and make regrettable errors, but their incompetence robs
them of the ability to realize it” (Kruger and Dunning 1999, p. 1132). The effect has
received a lot of attention, both from the scientific community and the general public:
Dunning–Kruger effects were reported in many studies across a variety of domains (for a
summary, see Dunning 2011), including intelligence (von Stumm 2014). In popular media,
the Dunning–Kruger effect has been widely discussed in connection with topics such as
the Trump presidency (e.g., Devega 2020; Pressler 2017) or conspiracy theories related to
the COVID-19 pandemic and climate change (e.g., Shepherd 2020).

Notably, research on the Dunning–Kruger effect has also faced quite some criticism for
its data-analytical methods. In their seminal study, Kruger and Dunning (1999) first split
their sample into quartiles based on participants’ objective performance and then compared
the average self-estimated and measured performance within each quartile (for comparable
approaches, see, e.g., Ehrlinger et al. 2008; von Stumm 2014; West and Eaton 2019). The
authors’ results indicated that people in the lowest quartile overestimated their performance
greatly, while those in the top quartile underestimated themselves slightly. Several authors
have proposed that these results could also be due to statistical artifacts (e.g., Krajč and
Ortmann 2008; Nuhfer et al. 2016). Specifically, some have proposed that result patterns
indicative of a Dunning–Kruger effect could be driven by a combination of the above-
average effect and regression to the mean (Ackerman et al. 2002; Krueger and Mueller
2002). Based on regression to the mean (e.g., Campbell and Kenny 1999), in imperfectly
correlated variables—such as self-estimated and measured intelligence—extreme values
on one variable (e.g., measured intelligence) are often accompanied by values that are
closer to the mean on the other variable (e.g., self-estimated intelligence). In the case of
self-estimates of abilities, this mean is also elevated (above-average effect). Thus, not
only will low performers overestimate and high performers underestimate themselves
(regression to the mean), but the degree of miscalibration will also be higher for low
performers (Krueger and Mueller 2002). Simulation studies showed that regression to the
mean alone (Ackerman et al. 2002) or in conjunction with an above-average effect (Gignac
and Zajenkowski 2020) could indeed produce results that many would consider supportive
of Dunning–Kruger effects.

Gignac and Zajenkowski (2020) recently proposed that future studies on the Dunning–
Kruger effect should apply analyses that do not rely on artificial categorization of continu-
ous data and that are not confounded by regression to the mean and the above-average
effect. The authors have suggested that at least two types of analyses fulfill these criteria: in
the first approach, one tests the residuals from a linear regression where self-estimates are
predicted from performance for heteroscedasticity. If participants on the lower end of the
ability spectrum were indeed to show higher miscalibration, their absolute residuals should
also be higher than those of participants on the higher end of the ability spectrum. As a
second approach, the authors proposed to look at nonlinear effects: for a Dunning–Kruger
effect, the association between measured and self-estimated ability should be higher the
more capable people are, that is, there should be a positive quadratic effect. Gignac and
Zajenkowski (2020) also collected data on self-estimated and measured general intelligence
to compare these statistical approaches to the classical quartile-based approach. While
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their data were indeed indicative of a Dunning–Kruger effect when analyzed with the
classical approach, the effect of measured intelligence on self-estimated intelligence was
essentially linear with no significant heteroscedasticity of residuals. This raises the question
of how robust Dunning–Kruger effects truly are. Moreover, despite the often-reported
differences in correlational accuracy between intelligence facets, we are not aware of any
study that distinguished between facets when investigating Dunning–Kruger effects. As
both Dunning (2011) and Gignac and Zajenkowski (2020) proposed that some domains
might be more susceptible to Dunning–Kruger effects than others, we think that such a
comparison between intelligence facets could provide interesting insights.

1.4. The Present Study

In the present, preregistered, study, we investigated the accuracy of self-estimates of
general, verbal, numerical, and spatial intelligence. Following other authors’ recommenda-
tions (e.g., Dunning and Helzer 2014; Schraw 2009), we considered different operational-
izations of accuracy. Specifically, we investigated correlational accuracy, above-average
effects, the direction of miscalibration, and Dunning–Kruger effects. We anticipated posi-
tive correlations between self-estimates and respective objective measures, with a medium
relationship for general intelligence (e.g., Freund and Kasten 2012), a medium-to-large
relationship for numerical intelligence, and a small relationship for verbal and spatial
intelligence (e.g., Neubauer et al. 2018; Neubauer and Hofer 2021). We also predicted
above-average effects, that is, that, on average, people would self-estimate all aspects of
their intelligence to be above 100 IQ-points (e.g., Heck et al. 2018; Visser et al. 2008). We
further expected that people would overestimate themselves on all intelligence measures
(e.g., Gignac and Zajenkowski 2019). Additionally, we wanted to know whether Dunning–
Kruger effects can be found for the different aspects of intelligence when using (1) the
conventional statistical methods applied in this line of research (e.g., Kruger and Dunning
1999; West and Eaton 2019), and (2) the statistical methods suggested by Gignac and Za-
jenkowski (2020). We had no specific expectations for this research question. In a final
(exploratory) research question, we wanted to analyze how people who are more intelligent
in one area than another derive their self-estimate of general intelligence: do they think of
their strengths (i.e., the area in which they have the highest IQ) or rather their weaknesses
when estimating their overall IQ? Such a focus on one’s strengths would be in line with
findings that people base their self-judgments in a given trait on their own, self-serving
definitions of said trait (Dunning and Cohen 1992; Dunning and McElwee 1995).

2. Materials and Methods

We follow current standards (Simmons et al.) in reporting how we determined our
sample size, all data exclusions, and all measures in the study. The preregistration (https:
//doi.org/10.17605/OSF.IO/HMJSW) as well as code, data, and an appendix containing
additional analyses (https://doi.org/10.17605/OSF.IO/MJD8E) are available via the OSF.

2.1. Participants

Based on sample-size recommendations by Gignac and Zajenkowski (2020), we aimed
to test at least 200 participants, but we also decided to collect data for as long as time
constraints would permit. This resulted in a total of 298 participants. Nine participants
were excluded because they used unauthorized resources (e.g., a calculator) during the
intelligence tests, and another six because they used an incorrect response format for the
test of numerical intelligence. We excluded two additional participants because their self-
estimates (possible range 55 to 145 IQ-points) were outside of the possible range of the
intelligence tests (verbal: 59.5–131.5 IQ-points; numerical: 68.5–131.5 IQ-points; spatial
65.5–140.5 IQ-points), even though they solved all or none of the items correctly.1 Thus, the
final sample consisted of 281 participants (67.3% female, 31.3% male, 1.4% diverse) between
18 and 40 years (M = 23.77, SD = 4.96). The sample—consisting mainly of university
students (85.1%; 45.2% psychology students)—was recruited via the university mailing list
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and social media. The level of education within our sample was high: 68.3% had a high-
school degree and another 27.8% already had a college/university degree. All participants
were offered written ipsative feedback on their self-estimates and their performance on
the intelligence tests. This entailed a general description of the different intelligence facets
as well as two plots (one for self-estimated and one for measured abilities), depicting the
participant’s (self-estimated/measured) individual strengths and weaknesses as compared
to their mean score across all intelligence facets. Psychology students could additionally
gain course credits. Participants gave their informed consent prior to participating and the
study procedure had been approved by the ethics committee of our university.

2.2. Materials and Methods
2.2.1. Intelligence

Verbal, numerical, and spatial intelligence were each assessed with a 20-item-subtest
of the German intelligence test Intelligenz-Struktur-Analyse (ISA; (Fay et al. 2001). We used
commonalities (time limit: 6 min) to measure verbal intelligence, number series (time limit:
11 min) to measure numerical intelligence, and figure completion (time limit: 7 min) to
measure spatial intelligence. To obtain IQ scores, we converted the number of correctly
solved items to T-scores for each intelligence domain using the original test norms for
the total sample and then transformed the resulting T-scores. We averaged across the
three specific IQs to calculate general intelligence. Reliabilities (Cronbach’s α; internal
consistency) were good for general (α = .85), numerical (α = .86), and spatial (α = .78)
intelligence, and lower but still acceptable for verbal intelligence (α = .65).

2.2.2. Self-Estimated Intelligence

We applied two different methods to measure self-estimates of intelligence. First,
participants had to estimate their own verbal, numerical, and spatial intelligence on a multi-
item questionnaire (Neubauer et al. 2018; Neubauer and Hofer 2021). Here, participants
responded to statements such as “Compared to others, I have a very broad vocabulary.”
(verbal intelligence) on a Likert scale ranging from 1 (not true at all) to 5 (exactly true).
The different items (10 items for verbal intelligence; 9 items each for numerical and spatial
intelligence) referred to different aspects of the respective intelligence facet; the last item of
each subscale referred to a global self-estimate in the respective domain (e.g., “I am very
talented in the verbal domain.”). Internal consistencies were good to excellent (αverbal = .83;
αnumerical = .95; αspatial = .89). We used scale means for testing our research questions.

Another common approach to measure self-estimates of intelligence is to let partici-
pants directly estimate their IQ (e.g., Furnham 2001; von Stumm 2014), which offers the
advantage of allowing for a direct comparison to measured IQ. Thus, participants also
self-estimated their general IQ as well as their verbal, numerical, and spatial IQ, each on
a single item ((Hofer et al. 2022;) for the items, see our OSF project). Before doing so,
participants read a brief text explaining the intelligence distribution in the population. In
addition, we presented this distribution on a graph including the labels “slightly impaired”,
“below average”, “average”, “above average”, and “highly gifted”. Participants were then
asked to rate their IQ—compared to the general population—on a slider ranging from 55
IQ-points (slightly impaired) to 145 IQ-points (highly gifted).

2.3. Procedure

We implemented this online-study with the survey software Unipark. Participants
first read and confirmed the consent form as well as a note stating that they are not allowed
to distribute any of the tests. After responding to socio-demographic questions (age,
gender, education, and current employment), participants estimated their own intelligence,
first with the multi-item questionnaires and then with the single items. Like Gignac and
Zajenkowski (2020; however, cf. Kruger and Dunning 1999), we presented the intelligence
measures—in our case the tests commonalities, number series, and figure completion—
after the self-estimate questionnaires. Finally, participants answered five control questions
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regarding the use of unauthorized tools (dictionary, search engines, other people, calculator,
or other tools) when taking the intelligence tests. A single test session took between 45 and
60 min.

3. Results

We conducted all our analyses in R (R Core Team 2021). As there were doubts re-
garding the normality of some variables (for histograms see Figures A1 and A2 in the
Appendix on the OSF) and some of the distributional regression assumptions (see Figures
A3–A10 in the Appendix), we reported bootstrapped confidence intervals for 2000 samples
wherever possible.

3.1. Descriptive Statistics and Intercorrelations

Table 1 displays descriptive statistics and intercorrelations of all main variables. Ob-
jective intelligence measures, single-item IQ estimates, and multi-item intelligence self-
estimates each showed mostly small-to-medium correlations among the different domains.
For all three types of measures, these correlations were descriptively somewhat higher
between the numerical and spatial domain than between the two and the verbal domain.
Notably, single- and multi-item self-estimates within the same domain correlated at be-
tween .65 and .76 with each other.

Table 1. Descriptive statistics and intercorrelations of measured IQs, single-item self-estimated IQs,
and multi-item intelligence self-estimates.

Variable Min-Max M (SD) 1 2 3 4 5 6 7 8 9 10

1. General IQ 80.00–128.00 108.78 (9.06)
2. Verbal IQ 67.00–131.50 110.96 (10.27) .57
3. Numerical IQ 68.50–131.50 113.28 (13.10) .77 .22
4. Spatial IQ 65.50–140.50 102.11 (14.46) .78 .16 .38
5. SE General IQ 75.00–138.00 109.29 (9.40) .25 .18 .24 .11
6. SE Verbal IQ 70.00–140.00 109.15 (11.28) .09 .10 .12 −.02 .64
7. SE Numerical IQ 68.00–144.00 103.35 (12.24) .40 .19 .40 .26 .63 .18
8. SE Spatial IQ 70.00–137.00 102.90 (10.58) .32 .20 .18 .29 .55 .17 .54
9. SE Verbal Multi-Item 1.70–4.90 3.49 (.61) .14 .18 .15 −.01 .40 .65 .11 .08
10. SE Numerical Multi-Item 1.00–5.00 3.03 (.98) .40 .16 .40 .28 .34 −.09 .76 .39 .12
11. SE Spatial Multi-Item 1.22–5.00 3.16 (.80) .15 .11 .01 .20 .19 −.07 .21 .66 .14 .38

Note: SE = Self-estimated. With n = 281, all r ≥ .12 are significant at p < .05 and all r ≥ .19 are significant at p < .001.

3.2. Linear Associations between Self-Estimated and Measured Intelligence

We first analyzed the correlational accuracy of self-estimates of intelligence. In a
secondary research question, we were further interested in potential differences in accuracy
between intelligence self-estimates with social comparison (i.e., the self-estimated IQs) and
without social comparison (i.e., the multi-item self-estimates). Due to the higher number
of underlying items, the multi-item self-estimates benefited from higher reliability, thus
allowing for higher possible correlations (e.g., Epstein 1983). For better comparability, we
also report correlations for the last item of each multi-item scale, which was a global estimate
of the respective intelligence facet. As shown in Table 2, self-estimates generally showed
positive correlations with the respective measured intelligence facet. These correlations
were significant in all cases but one (self-estimated verbal IQ). Most correlations were
small to medium, with the highest correlations for numerical intelligence and the lowest
correlations for verbal intelligence. Table 2 further depicts that, within the same domain,
the different self-estimate measures showed similar levels of correlational accuracy. We
conducted two-sided Williams’ t-tests (Williams 1959; Steiger 1980) between correlations
within the cocor-package (Diedenhofen and Musch 2015) to test for differences in accuracy
between self-estimate measures. None of these tests reached significance (all p ≥ .065; for
detailed statistics, see Table A2 in the Appendix A). As an additional measure of accuracy,
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we also computed absolute agreement between self-estimated and measured IQs (i.e., two-
way mixed intraclass correlation coefficients; see Koo and Li 2016). Results were similar to
those of Pearson correlations: general intelligence: ICC (280, 280) = .25, 95% CI [.15; .34],
p < .001; verbal intelligence: ICC (280, 280) = .10, 95% CI [.00; .20], p = .045; numerical
intelligence: ICC (280, 280) = .40, 95% CI [.31; .48], p < .001; spatial intelligence: ICC (280,
280) = .28, 95% CI [.19; .37], p < .001.

Table 2. Correlational accuracy of different self-estimate measures.

Domain SE
(IQ)

SE
(Multi-Item)

SE
(Last Item)

General .25
[.12, .38]
p < .001

Verbal .10 .19 .17
[−.02, .23] [.08, .28] [.05, .28]

p = .100 p < .001 p = .001
Numerical .40 .40 .34

[.27, .49] [.28, .49] [.21, .44]
p = .003 p = .001 p = .002

Spatial .29 .20 .30
[.18, .40] [.08, .32] [.18, .40]
p = .001 p = .001 p = .001

Note: n = 281. SE (IQ) = self-estimated IQ (Bonferroni-correction .05/4: p < .013). SE (Multi-Item) = mean of item
responses to the multi-item self-estimate scale (Bonferroni-correction .05/3: p < .017). SE (Last Item) = response to
last, global item of the multi-item self-estimate scale (Bonferroni-correction .05/3: p < .017). Values in brackets are
95% BCa confidence intervals based on 2000 bootstrap samples.

3.3. Above-Average Effects and Miscalibration

Comparing the self-estimated IQs from Table 1 to the population average of 100
with one-sample t-tests indicated above-average effects across all domains, people self-
estimated their verbal (M = 109.15; t(280) = 13.61, p < .001, d = 0.81, 95% BCa CI [0.67;
0.95]), numerical (M = 103.35; t(280) = 4.59, p < .001, d = 0.27, 95% BCa CI [0.16; 0.39]),
spatial (M = 102.9; t(280) = 4.60, p < .001, d = 0.27, 95% BCa CI [0.16; 0.38]), and general
(M = 109.29; t(280) = 16.56, p < .001, d = 0.99, 95% BCa CI [0.84; 1.13]) IQs to be significantly
above 100 points. Of note, participants’ measured IQs were also significantly above 100
across domains (verbal IQ: M = 11.96, t(280) = 17.89, p < .001, d = 1.07, 95% BCa CI [0.86;
1.26]; numerical IQ: M = 113.28, t(280) = 16.99, p < .001, d = 1.01, 95% BCa CI [0.85; 1.18];
spatial IQ: M = 102.11, t(280) = 2.44, p = .015, d = 0.15, 95% BCa CI [0.03; 0.26]; general IQ:
M = 108.78, t(280) = 16.25, p < .001, d = 0.97, 95% BCa CI [0.81; 1.13]).

Next, we tested the direction of miscalibration in separate analyses for general intel-
ligence and intelligence in the three domains. To see whether potential effects of miscali-
bration differed across the content domains, we analyzed them together in a 3 (domain:
verbal, numerical, and spatial) × 2 (measure: IQ and self-estimated IQ) repeated-measures
ANOVA with Greenhouse–Geisser correction. It resulted in two significant main effects
(domain: F(1.96, 550.07) = 70.97, p < .001, η2

g = .067; measure: F(1, 280) = 39.48, p < .001,
η2

g = .022) and a significant interaction (F(1.93, 540.61) = 50.10, p < .001, η2
g = .035). We

probed the interaction with pairwise comparisons (Bonferroni-adjusted alpha: .05/3 = .017)
to investigate the degree of over- or underestimation in the different domains. Interestingly,
people underestimated their numerical intelligence (t(280) = −11.95, p < .001, d = −0.71,
95% BCa CI [−0.87; −0.55]). While they also showed a small underestimation effect for
their verbal intelligence, it was not significant after applying the Bonferroni correction
(t(280) = −2.10, p = .037, d = −0.13, 95% BCa CI [−0.25; −0.00049]). Finally, there was no
significant miscalibration for spatial intelligence (t(280) = 0.87, p = .384, d = 0.05, 95% BCa
CI [−0.06; 0.18]). An additional pairwise t-test also showed no significant miscalibration
for general intelligence (t(280) = 0.75, p = .455, d = .04, 95% BCa CI [−0.07; 0.16]).
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3.4. Dunning–Kruger Effects
3.4.1. Conventional Statistical Approach

We based our first test of the Dunning–Kruger effect on the approach followed by the
original authors (Kruger and Dunning 1999). Like them, we split our sample into quartiles
based on participants’ objective IQ. The original authors then derived their conclusions
from a set of t-tests that compared the self-estimated and measured performance within
each group—they only reported this for lowest and highest quartile—and a plot. Recent
studies have used a comparable but more comprehensive ANOVA approach (e.g., West and
Eaton 2019). Following them, we conducted one 2 (within: type of measure; self-estimated
IQ vs. actual IQ) × 4 (between: performance quartile) ANOVA per domain. The relevant
measure × quartile interaction effect was significant for all four domains (all p < .001, all η2

g
≥ .15; for full ANOVA results, see Table 3). Table 4 holds statistics on pairwise comparisons
at the quartile-level. As can also be seen in Figure 1, the data showed a pattern indicative
of a Dunning–Kruger effect for the majority of domains. That is, people in the lowest
quartile showed the largest overestimation effects, while people in higher and particularly
the highest quartiles tended to underestimate themselves. Only numerical intelligence
exhibited a different pattern: here, self-estimates by those in the lowest quartile did not
differ significantly from measured intelligence; people in the other three quartiles showed
considerable effects of underestimation.
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Table 3. Dunning–Kruger effects: main and interaction effects of 2 (measure: self-estimated vs.
measured IQ) × 4 (IQ quartile) analyses of variance.

Domain Effect F df 1 df 2 p η2
g

General Quartile 116.69 3 277 <.001 .391
Measure 0.78 1 277 .378 .001

Quartile × Measure 37.86 3 277 <.001 .168
Verbal Quartile 84.46 3 277 <.001 .296

Measure 5.78 1 277 .017 .011
Quartile × Measure 30.21 3 277 <.001 .150

Numerical Quartile 174.02 3 277 <.001 .501
Measure 200.55 1 277 <.001 .253

Quartile × Measure 38.72 3 277 <.001 .164
Spatial Quartile 178.22 3 277 <.001 .516

Measure 1.54 1 277 .216 .002
Quartile × Measure 96.01 3 277 <.001 .318

Note: n = 281.

Table 4. Dunning–Kruger effects: pairwise comparisons of self-estimated vs. measured IQ per
IQ quartile.

Domain Quartile t df Mdiff 95% BCa CI p d

General 80–103 6.78 72 8.32 [5.95; 10.68] <.001 * 0.79
103.5–109 2.93 68 3.33 [1.20; 5.65] <.001 * 0.35
109.5–116 −2.01 73 −2.20 [−4.39; 0.03] .055 −0.23
116.5–128 −7.46 64 −8.18 [−10.38; −6.12] <.001 * −0.92

Verbal 67–106 4.76 96 7.20 [4.36; 10.09] <.001 * 0.48
106.5–113.5 −2.45 74 −3.44 [−6.09; −0.86] .012 * −0.28
114–116.5 −2.68 42 −4.64 [−7.92; −1.08] .018 −0.41
117–131.5 −9.22 65 −11.36 [−13.71; −8.86] <.001 * −1.13

Numerical 68.5–103 0.74 77 1.05 [−1.58; 3.96] .442 0.08
103.5–116.5 −6.90 76 −9.31 [−11.97; −6.64] <.001 * −0.79
117–122.5 −10.13 58 −16.04 [−19.13; −12.91] <.001 * −1.32
123–131.5 −14.41 66 −18.02 [−20.26; −15.60] <.001 * −1.76

Spatial 65.5–91 11.26 79 13.98 [11.67; 16.36] <.001 * 1.26
91.5–103 3.91 75 5.03 [2.54; 7.56] <.001 * 0.45

103.5–113.5 −6.12 77 −6.69 [−8.90; −4.54] <.001 * −0.69
114–140.5 −10.15 46 −16.09 [−19.15; −12.95] <.001 * −1.48

Note: n = 281. * = significant after Bonferroni-correction (.05/4: p < .013). Values for quartile show the upper
and lower bound of each quartile in IQ-points. Confidence intervals are based on 2000 bootstrap samples.
Positive values for mean differences, t, and d indicate that self-estimated IQ is higher than measured IQ (i.e.,
overestimation).

3.4.2. Heteroscedasticity

To further test for potential Dunning–Kruger effects, we used the recently proposed
analyses methods proposed by Gignac and Zajenkowski (2020). The first analysis they
suggested was the Glejser correlation (Glejser 1969)—an indicator of heteroscedasticity of
residuals. To compute Glejser correlations, we predicted self-estimated from objectively
measured IQs in linear regressions, converted the resulting residuals into absolute values,
and ran correlations between these absolute residuals and objective IQs. According to
Gignac and Zajenkowski (2020), a significantly negative Glejser correlation would indicate
a Dunning–Kruger effect, as this would mean that smaller values in objectively measured
intelligence are associated with larger absolute residuals. As depicted in Figure 2, we
observed such a significant negative correlation for verbal intelligence (r = −.17, 95% BCa
CI [−.29; −.05], p = .003) but none of the other domains (general intelligence: r = −.06, 95%
BCa CI [−.22; .06], p = .308; numerical intelligence: r = .04, 95% BCa CI [−.16; .16], p = .668;
spatial intelligence: r = .03, 95% BCa CI [−.08; .15], p = .551).
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3.4.3. Nonlinear Regression

The second method that Gignac and Zajenkowski (2020) proposed as an adequate test
of the Dunning–Kruger effect is nonlinear regression. Thus, for each domain, we conducted
hierarchical regression analyses with self-estimated IQ being predicted by the linear term
of the objectively measured IQ in the first step and the quadratic term of the objectively
measured IQ being added in the second step. Here, a Dunning–Kruger effect would be
supported by a significant R2 increase between steps and a significantly positive quadratic
effect. Note that in this type of analysis, β-weights are not straightforwardly interpretable
and semi-partial correlations should be considered instead (Gignac 2019). As visualized
in Figure 3, for verbal and numerical intelligence there was some support for positive
quadratic effects of IQ on self-estimates. Table 5 shows that, for both of these domains,
the inclusion of the quadratic term led to significant increases in explained variance. The
squared semi-partial correlations associated with the quadratic terms were also positive,
indicating that the association between measured and self-estimated intelligence is larger at
higher levels of measured intelligence. However, in both cases the bootstrapped confidence
intervals around the regression weights crossed zero, questioning the robustness of these
effects. For numerical intelligence, this quadratic effect was potentially driven by a single
influential case (see Figure 3). After excluding this participant, neither the R2 change
nor the semi-partial correlation of the quadratic term were significant (for full results see
Appendix A).
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3.5. Exploratory Research Question

In our final research question, we wanted to explore whether people rather think
of their strengths or their weaknesses when estimating their overall IQ. To test this, we
correlated self-estimates of general intelligence with (1) the measured IQ in the domain in
which participants had their personal best score, and (2) the measured IQ in the domain in
which participants had their personal lowest score. In the majority of cases, the difference
between participants’ best and worst domain was considerable: 74.38% showed a difference
of more than 15 IQ-points. Across the whole sample, participants also seemed to rely more
strongly on their best domain (r = .29, 95% BCa CI [.18; .42], p < .001) than on their weakest
one (r = .12, 95% BCa CI [.00; .26], p = .053) when self-estimating their general intelligence.
This difference was statistically significant (Williams’ t(278) = −3.05, p = .002). Arguably,
small differences in people’s IQs between domains might not necessarily reflect strengths
or weaknesses but could be due to measurement error. For this reason, we repeated the
analysis for a sub-sample (n = 131) with an IQ difference between their best and weakest
domain above the sample mean (M = 21.40). Here, the differences of correlations between
the best (r = .23, 95% BCa CI [.05; .37], p = .009) and weakest (r = .15, 95% BCa CI [−.01; .32],
p = .062) domains was smaller and no longer significant (Williams’ t(128) = −1.21, p = .230).
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Table 5. Hierarchical regressions with linear and quadratic effects of measured intelligence in different
domains on respective self-estimates of intelligence.

Domain Predictor b 95% CIb β 95% CIβ sr2 95% CIsr2 r R2

[95% CI]
∆R2

[95% CI]

General Step 1
(Intercept) 81.42 ** [66.74, 95.86] .061 **

IQ 0.26 ** [0.13, 0.39] .25 [.12, .37] .06 [.02, .13] .25 ** [.02, .13]
Step 2

(Intercept) 39.01 [−108.62, 220.43] .063 ** .002
IQ 1.05 [−2.25, 3.85] 1.02 [−2.21, 3.63] .00 [.00, .04] .25 ** [.02, .16] [.00, .04]
IQ2 −0.00 [−0.02, 0.01] −.77 [−3.38, 2.42] .00 [.00, .04] .24 **

Verbal Step 1
(Intercept) 96.81 ** [79.90, 112.15] .010

IQ 0.11 [−0.02, 0.26] .10 [−.02, .23] .01 [.00, .05] .10 [.00, .05]
Step 2

(Intercept) 197.07 ** [68.37, 281.14] .028 * .018 *
IQ −1.79 * [−3.31, 0.54] −1.63 [−3.00, .46] .02 [.00, .05] .10 [.01, .07] [.00, .06]
IQ2 0.01 * [−0.00, 0.02] 1.73 [−.28, 3.12] .02 [.00, .06] .11

Numerical Step 1
(Intercept) 61.24 ** [48.65, 74.45] .158 **

IQ 0.37 ** [0.25, 0.48] .40 [.28, .50] .16 [.08, .25] .40 ** [.08, .25]
Step 2

(Intercept) 148.79 ** [42.72, 268.27] .173 ** .015 *
IQ −1.26 [−3.43, 0.66] −1.35 [−3.70, .69] .01 [.00, .07] .40 ** [.11, .27] [.00, .08]
IQ2 0.01 * [−0.00, 0.02] 1.75 [−.25, 4.06] .02 [.00, .08] .41 **

Spatial Step 1
(Intercept) 81.06 ** [72.00, 90.31] .085 **

IQ 0.21 ** [0.12, 0.30] .29 [.17, .40] .09 [.03, .16] .29 ** [.03, .16]
Step 2

(Intercept) 72.94 ** [18.86, 121.24] .086 ** .000
IQ 0.38 [−0.58, 1.44] .51 [−.82, 1.96] .00 [.00, .03] .29 ** [.03, .17] [.00, .02]
IQ2 −0.00 [−0.01, 0.00] −.22 [−1.67, 1.12] .00 [.00, .02] .29 **

Note: n = 281. IQ = Intelligence Quotient. Values in brackets represent 95% percentile bootstrap confidence
intervals based on 2000 samples. Significant bs also indicate significant βs and sr2s. * indicates p < .05. ** indicates
p < .01.

4. Discussion

In the present study, we aimed to investigate the accuracy of self-estimates of general,
verbal, numerical, and spatial intelligence from various angles, but with a particular
focus on potential Dunning–Kruger effects. In line with our preregistered expectations,
self-estimates of intelligence showed mostly moderate correlational accuracy that was
slightly higher in the numerical domain and lower in the verbal domain (see also Freund
and Kasten 2012; Neubauer et al. 2018; Neubauer and Hofer 2021). This correlational
pattern was virtually the same across three different operationalizations of self-estimates
(a multi-item Likert-like scale covering multiple aspects of the respective intelligence facet,
global Likert-like items from this scale, and single IQ-estimates) and two types of analyses
(Pearson and intraclass correlations). As predicted, participants also rated their general
intelligence as well as their intelligence on the three sub-facets to be above average (see
also Heck et al. 2018; Visser et al. 2008). Somewhat unexpectedly, these high self-estimates
did not constitute an overestimation: across the sample, participants underestimated
their numerical intelligence and showed no significant over- or underestimation of their
general, verbal, and spatial intelligence. Importantly, participants had to self-estimate
their intelligence quotients with reference to the general population. As they were mostly
highly educated, it stands to reason that their tendency to rate their intelligence as above
average was in many cases not an overestimation but a rather accurate assessment (Heck
et al. 2018; Visser et al. 2008). This corresponds to another study in which college students’
self-estimated performance on a variety of cognitive tests was rather close to their actual
performance or constituted a slight underestimation (Ackerman and Wolman 2007).

Our participants’ knowledge about their own intelligence depended on their standing
on the underlying ability—at least when operationalized as intelligence quartile: when
it came to assessing their general, verbal, and spatial intelligence, those in the lowest
respective intelligence quartile overestimated themselves the most, while particularly
those in the highest quartile underestimated themselves. These findings are indicative of
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Dunning–Kruger effects (Kruger and Dunning 1999) and in line with studies across many
ability domains (e.g., Kruger and Dunning 1999; von Stumm 2014; West and Eaton 2019).
In our study, only numerical intelligence exhibited a different pattern, with rather accurate
estimates in the lowest quartile and underestimation by the remaining groups. Based on
participant feedback, we suspect that this could be due to the fact that, when self-estimating
their numerical intelligence, many were considering more complex mathematical problems
than the number series we applied as accuracy criterion. Of note, as people’s self-estimates
showed only small-to-moderate correlations to objective intelligence criteria, there are
likely regression-to-the-mean effects in these data. Thus, together with the above-average
effects across aspects of intelligence, it is plausible that the Dunning–Kruger effects we
found using this quartile-based approach are—at least partly—due to statistical artefacts
(see Ackerman et al. 2002; Gignac and Zajenkowski 2020; Krueger and Mueller 2002).

Results on the Dunning–Kruger effect changed considerably when we used statistical
methods that do not rely on artificial categorization of continuous data (i.e., nonlinear
regression and a measure of heteroscedasticity; see also (Gignac and Zajenkowski 2020).
For general and spatial intelligence, we neither found support for nonlinear associations
between measured and self-estimated abilities nor for higher absolute residuals in low-
performers’ estimates. While there was some indication for nonlinear associations between
measured and self-estimated numerical intelligence, this effect was likely driven by a single
influential case. The domain for which we found the most consistent—but still mixed—
support for Dunning–Kruger effects was verbal intelligence: here, people at the lower end
of the intelligence spectrum showed higher misestimation (i.e., absolute residuals) than
those at the higher end. With r = −.17, this effect could be considered small to medium
in the context of individual difference research (Gignac and Szodorai 2016; Gignac and
Zajenkowski 2020). Moreover, there was some indication of quadratic effects between
measured and self-estimated verbal intelligence. However, this finding also did not prove
robust in bootstrapped analyses. Gignac and Zajenkowski (2020) recommended that
authors should only consider data exhibiting both significant heteroscedasticity and a
significant quadratic effect to be supportive of a Dunning–Kruger effect. Thus, future
studies are needed to confirm or dispel this first, very tentative support for a Dunning–
Kruger effect in verbal intelligence. Taken together, our results are well in line with past
work that reported Dunning–Kruger effects for general intelligence using the quartile-
based approach (Gignac and Zajenkowski 2020; von Stumm 2014) but only mixed evidence
when using statistical approaches that do not require artificial categorization (Gignac and
Zajenkowski 2020).

4.1. Implications

The present study adds to a growing literature questioning the robustness of the
Dunning–Kruger effect. Recently, Gignac (2022) reported on the Dunning–Kruger effect in
financial literacy. Just like in the present study, the effect was supported in quartile-based
analyses but not in tests for nonlinearity or heteroscedasticity. That Dunning–Kruger effects
are consistently detected in one type of analysis, but fail to emerge in other—likely more
adequate—tests, conforms with accounts attributing the effect at least partly to statistical
artefacts (e.g., Ackerman et al. 2002; Feld et al. 2017; Krajč and Ortmann 2008; Krueger
and Mueller 2002; Nuhfer et al. 2016). Due to the large size of the Dunning–Kruger
effect reported in some studies, Gignac and Zajenkowski (2020) concluded that it is likely
not completely attributable to statistical artefacts but rather overestimated due to them.
Of note, the authors of a recent study applied yet another type of statistical analyses—fitting
Bayesian and performance-dependent models to their data—and did find support that
low performers in the tasks originally applied by Kruger and Dunning (1999) were indeed
worse judges of their own performance (Jansen et al. 2021). Nevertheless, the authors
cautioned against generalizing from their results to potential Dunning–Kruger effects in
other domains. It, thus, remains open whether such performance-dependent models would
also show a good fit for intelligence test data such as those in our study.
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Overall, it appears increasingly plausible that the Dunning–Kruger effect might be less
ubiquitous than earlier work suggested. This raises questions about potential boundary
conditions of the effect: what factors—apart from the analyses used to test for it—determine
whether people show a Dunning–Kruger effect? Dunning (2011) already proposed that
people’s oversight of their own incompetence depends on the type of skill that they have
to assess. Similarly, Gignac and Zajenkowski (2020) acknowledged that Dunning–Kruger
effects might emerge in some domains but not in others. In line with this, our data provide
the first, tentative, supporting evidence that different aspects of intelligence might differ in
how susceptible they are to Dunning–Kruger effects: it appears that (only) people with low
verbal intelligence have particular difficulties in recognizing their shortcomings. While
future work is still needed to confirm this effect, we already find it informative to speculate
about what might make verbal intelligence different from the other intelligence domains.
One often-discussed moderator of self-knowledge is the social desirability of the domain
in question (e.g., John and Robins 1993; Vazire 2010): people likely have a harder time
assessing themselves—and particularly their shortcomings—in very socially desirable
domains, as these are thought to be more strongly related to self-esteem. Do people find
high verbal intelligence more desirable than high numerical, spatial, or general intelligence?
The comparatively low accuracy correlation for verbal intelligence would be in line with
this assumption. In a current study, people indeed rated being verbally intelligent as more
important to their sense of self-worth than being numerically or spatially intelligent (there
was no comparable measure for general intelligence; (Hofer et al. 2021). It would, thus,
be interesting to see how far social desirability—perhaps in addition to other discussed
moderators such as task difficulty (Burson et al. 2006)—affects which domains are prone to
elicit Dunning–Kruger effects.

Taken together, we believe that there are still many questions to be answered about peo-
ple’s self-knowledge regarding their intelligence and other abilities. As people’s self-views
are related to psychological adjustment (even though the literature is still not completely
clear on the exact nature of this association; (Dufner et al. 2018; He and Côté 2019; Humberg
et al. 2019; Kim et al. 2010; Kim and Chiu 2011) and likely guide important career and
other life decisions (Ackerman and Wolman 2007; Freund and Kasten 2012), we believe
that it will remain important to conduct research on what people know about their own
cognitive abilities. Our findings underline that this research will benefit from considering
different operationalizations of accuracy and different aspects of intelligence instead of g
alone, as these might yield rather different results. In our exploratory analyses, people’s
self-estimates of their general intelligence correlated more highly with their IQ in their
personal best domain than with their weakest one. Thus, people potentially differ in the
intelligence facets on which they base their overall intellectual self-assessment, depend-
ing on their individual strengths and weaknesses—another reason for researchers and
practitioners not to focus on self-estimates of g alone. Further interesting insights might
be gained from explicitly asking participants how they derived their self-assessment. In
view of the Dunning–Kruger effect’s popularity and the mixed results on its robustness,
research on it continues to be important. Here, we concur with other authors (Gignac and
Zajenkowski 2020; Jansen et al. 2021) that future work should refrain from splitting data
into quartiles, as this procedure does not offer the kind of resolution needed to provide
sufficient answers regarding this effect. There are likely more insights to be gained from
using more adequate and easily implemented statistical methods described by Gignac and
Zajenkowski (2020) or the modeling approach applied by Jansen et al. (2021).

4.2. Strengths and Limitations

We conducted an in-depth investigation into the accuracy of self-estimates of intel-
ligence. To our knowledge, we were the first to test for the Dunning–Kruger effect with
different statistical methods not only for general cognitive ability but for three central
sub-facets of intelligence. While we consider our pre-registered methodology involving



J. Intell. 2022, 10, 10 15 of 18

different domains, self-estimate measures, operationalizations of accuracy, and statistical
approaches to be a particular strength, our study also comes with some limitations.

First, due to the COVID-19 crisis, it was not possible to conduct this study in the lab
under normal supervised conditions. Instead, participants completed all measures online,
which might have introduced error variance, particularly in the intelligence measures. We
could not rule out cheating aside from excluding participants that admitted to doing so.
However, it should be noted that participants had nothing to gain from cheating and were
explicitly told that cheating would render their feedback worthless. The online testing
might have also allowed for distractions, thus lowering performance. Nevertheless, we
want to emphasize that most of our results are well in-line with those of comparable
in-person studies. Second, on average, our sample scored quite highly on the majority
of intelligence measures. This might be due to the rather old norms of our intelligence
measure (Fay et al. 2001) not being adequate anymore because of the Flynn effect. If that
was the case, the test overestimated people’s true intelligence (e.g., Trahan et al. 2014;
but see Pietschnig and Voracek 2015). At the same time, it is quite likely that our highly
educated convenience sample was indeed above average in their intelligence. Particularly
for the investigation of Dunning–Kruger effects, a sample including a higher number of
low performers would have been beneficial, since this group is at the very core of the
proposed effect. However, we want to note that Gignac and Zajenkowski (2020) found
comparable results for general intelligence in a more intellectually diverse sample. Third,
our choice of intelligence measure could be questioned: while the ISA (Fay et al. 2001) is an
often-applied, well-conceived, and standardized test, it does not differentiate well at the
more extreme ends of the intelligence distribution. This does not appear to be a problem in
our study—only very few participants scored at the lower or upper bounds—but future
work involving a more diverse sample might want to consider other instruments. Finally,
we based the timing of collecting self-estimates in our study (before the intelligence test) on
Gignac and Zajenkowski (2020; but see also West and Eaton 2019), thereby deviating from
earlier work on the Dunning–Kruger effect presenting self-estimates after performance
tests (Kruger and Dunning 1999). Notably, studies using the same order we did also
reported Dunning–Kruger effects—at least when applying classical quartile-based analyses
(Gignac and Zajenkowski 2020; West and Eaton 2019). Moreover, meta-analytic evidence
suggests that the timing of self-estimates has little effect on their accuracy (Freund and
Kasten 2012; Zell and Krizan 2014). Overall, future replications involving in-person testing,
a more nuanced intelligence measure, a sample including more low performers, and
potentially presenting self-estimates after intelligence measures will determine how robust
our results are.

4.3. Conclusions

Coming back to our initially posed question about how much people know about
their own intelligence, the response that our results and past work suggest is “It depends”.
When looking at correlational accuracy, people appear to be worst at judging their verbal
intelligence and best at judging their numerical intelligence. However, even for self-
estimated numerical intelligence the correlation with test performance was only at about .4,
which is in line with the substantial body of evidence showing that one’s self-estimated
ability level does not necessarily correspond very well to one’s objectively measured ability
(e.g., Freund and Kasten 2012; Zell and Krizan 2014). This leads us—and other researchers
(Ackerman and Wolman 2007; Freund and Kasten 2012)—to caution against using self-
estimated intelligence as a stand-in for actual intelligence, be it in research or in applied
settings such as career counselling. Our data also highlight the importance of looking at the
accuracy of self-perceptions from different viewpoints: had we just looked at the mostly
negligible mean differences between self-estimated and measured intelligence, we would
have probably concluded that people, on average, have a rather accurate idea of their own
cognitive abilities—perhaps apart from underestimating their numerical intelligence. Most
importantly, we only found mixed evidence for Dunning–Kruger effects, particularly when
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we applied statistical methods that do not rely on assigning participants to performance
quartiles. While there is an immense amount of literature speaking for Dunning–Kruger
effects in many domains, our results and those of related work raise questions about the
effect’s supposedly ubiquitous nature. Instead, our findings might indicate that some
performance domains—in our case, verbal intelligence—are more susceptible to Dunning–
Kruger effects than others. Future studies with samples including a larger number of low
performers are needed to confirm this and could further provide insights into potential
reasons for these differences between domains. Considering the high popularity of the
Dunning–Kruger effect in research and pop-culture alike, as well as its potential real-life
consequences, research in this area will continue to be important.
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Note
1 Unfortunately, we had overlooked this discrepancy at the planning stage. However, we believe that the self-estimates of

the remaining participants are still valid as they were either within the bounds of the intelligence tests or would have also
corresponded to an over-/underestimation with intelligence tests with a broader range (e.g., a self-estimated IQ of 138 compared
to a measured one of 104).
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