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Abstract

Given a large sparse graph, how can we find patterns and
anomalies? Several important applications can be modeled
as large sparse graphs, e.g., network traffic monitoring,
research citation network analysis, social network analysis,
and regulatory networks in genes. Low rank decompositions,
such as SVD and CUR, are powerful techniques for revealing
latent/hidden variables and associated patterns from high
dimensional data. However, those methods often ignore the
sparsity property of the graph, and hence usually incur too
high memory and computational cost to be practical.

We propose a novel method, theCompact Matrix De-
composition (CMD), to compute sparse low rank approxi-
mations. CMD dramatically reduces both the computation
cost and the space requirements over existing decomposi-
tion methods (SVD, CUR). Using CMD as the key build-
ing block, we further propose procedures to efficiently con-
struct and analyze dynamic graphs from real-time applica-
tion data. We provide theoretical guarantee for our methods,
and present results on two real, large datasets, one on net-
work flow data (100GB trace of 22K hosts over one month)
and one on DBLP (200MB over 25 years).

We show that CMD is often an order of magnitude more
efficient than the state of the art (SVD and CUR): it is over
10X faster, but requires less than1/10 of the space, for the
same reconstruction accuracy. Finally, we demonstrate how
CMD is used for detecting anomalies and monitoring time-
evolving graphs, in which it successfully detects worm-like
hierarchical scanning patterns in real network data.

1 Introduction

Graphs are used in multiple important applications such as
network traffic monitoring, web structure analysis, social
network mining, protein interaction study, and scientific
computing. Given a large graph, we want to discover
patterns and anomalies in spite of the high dimensionality
of data. We refer to this challenge as thestatic graph mining
problem.

An even more challenging problem is finding patterns
in graphs that evolve over time. For example, consider a

network administrator, monitoring the (source, destination)
IP flows over time. For a given time window, the traffic
information can be represented as a matrix, with all the
sources as rows, all the destinations as columns, and the
count of exchanged flows as the entries. In this setting,
we want to find patterns, summaries, and anomalies for the
given window, as well as across multiple such windows.
Specifically for these applications that generate huge volume
of data with high speed, the method has to be fast, so that
it can catch anomalies early on. Closely related questions
are how to summarize dynamic graphs, so that they can be
efficiently stored, e.g., for historical analysis. We referto
this challenge as thedynamic graph miningproblem.

The typical way of summarizing and approximating
matrices is through transformations, with SVD/PCA [15,
18] and random projections [17] being popular choices.
Although all these methods are very successful in general,
for large sparse graphs they may require huge amounts of
space, exactly because their resulting matrices are not sparse
any more.

Large, real graphs are often very sparse. For example,
the web graph [20], Internet topology graphs [12], who-
trusts-whom social networks [7], along with numerous other
real graphs, are all sparse. Recently, Drineas et al. [10]
proposed the CUR decomposition method, which partially
addresses the loss-of-sparsity issue.

We propose a new method, calledCompact Matrix De-
composition (CMD), for generating low-rank matrix approx-
imations. CMD provides provably equivalent decomposition
as CUR, but it requires muchlessspace and computation
time, and hence ismoreefficient.

Moreover, we show that CMD can not only analyze
static graphs, but we can also extend it to handle dynamic
graphs. Another contribution of our work is exactly a
detailed procedure to put CMD into practice, and especially
for high-speed applications like internet traffic monitoring,
where new traffic matrices are streamed-in in real time.

Overall, our method has the following desirable proper-
ties:

• Fast: Despite the high dimensionality of large graphs,



the entire mining process is fast, which is especially
important for high-volume, streaming applications.

• Space efficient:We preserve the sparsity of graphs so
that both the intermediate results and the final results fit
in memory, even for large graphs that are usually too
expensive to mine today.

• Anomaly detection: We show how to spot anomalies,
that is, rows, columns or time-ticks that suffer from high
reconstruction error. A vital step here is our proposed
fast method to estimate the reconstruction error of our
approximations.

Our work makes contributions to both the theory as well
as to the practice of graph mining. From the theoretical view-
point, we provide the proofs and guarantees about the per-
formance of CMD, both for the static case, as well as for
the high-rate extension (Theorem 4.1, Lemma 5.1). From
the practical viewpoint, both CMD and its high-rate exten-
sion are efficient and effective: our experiments on large, real
datasets show that CMD is over10 times fasterand requires
less than1/10 space(see Figure 1). We also demonstrate
how CMD can help in monitoring and in anomaly detection
of time-evolving graphs: As shown in Figure 16 CMD effec-
tively detects real worm-like hierarchical scanning patterns
early on.
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Figure 1:CMD outperforms SVD and CUR significantly in terms
of space requirement and computational time. Space and timecost
is normalized by the maximum ones (i.e.,SVD in both case).

The rest of the paper is organized as follows: Section 2
discusses the related work. Then Section 3 defines our prob-
lem more formally. We describe the algorithm and analysis
of CMD in Section 4. Section 5 presents the detailed proce-
dures for mining large graphs. Section 6 and Section 7 pro-
vide the experimental evaluation and application case study
to show the efficiency and applicability of CMD. Finally, we
conclude in Section 8.

2 Related Work

Here we discuss related works from three areas: graph
mining, numeric analysis and stream mining.
Graph Mining: Graph mining has been a very active area
in data mining community. Because of its importance and

expressiveness, various problems are studied under graph
mining.

From the modeling viewpoint, Faloutsos et al. [12] have
shown the power-law distribution on the Internet graph. Ku-
mar et al. [20] studied the model for web graphs. Leskovec
et al. [21] discoverd the shrinking diameter phenomena on
time-evolving graphs.

From the algorithmic aspect, Yan et al. [26] proposed
an algorithm to perform substructure similarity search on
graph databases, which is based on the algorithm for classic
frequent itemset mining. Cormode and Muthukrishan [5]
proposed streaming algorithms to (1) estimate frequency
moments of degrees, (2) find heavy hitter degrees, and (3)
compute range sums of degree values on streams of edges
of communication graphs, i.e., (source, destination) pairs. In
our work, we view graph mining as a matrix decomposition
problem and try to approximate the entire graph, which is
different to most of the existing graph mining work.
Low rank approximation: SVD has served as a building
block for many important applications, such as PCA [18]
and LSI [23, 6], and has been used as a compression tech-
nique [19]. It has also been applied as correlation detection
routine for streaming settings [16, 24]. However, these ap-
proaches all implicitly assume dense matrices.

For sparse matrices, the diagonalization and SVD are
computed by the iterative methods such as Lanczos algo-
rithm [15]. Recently, Drineas et al. proposed Monte-Carlo
approximation algorithms for the standard matrix operations
such multiplication [8] and SVD [9], which are two building
blocks in their CUR decomposition. CUR has been applied
in recommendation system [11], where based on small num-
ber of samples about users and products, it can reconstruct
the entire user-product relationship.
Streams: Data streams has been extensively studied in
recent years. The goal is to process the incoming data
efficiently without recomputing from scratch and without
buffering much historical data. Two recent surveys [3, 22]
have discussed many data streams algorithms, among which
we highlight two related techniques: sampling and sketches.

Sampling is a simple and efficient method to deal with
large massive datasets. Many sampling algorithms have
been proposed in the streaming setting such as reservoir
sampling [25], concise samples, and counting samples [14].
These advanced sampling techniques can potentially be
plugged into the sparsification module of our framework, al-
though which sampling algorithms to choose highly depends
on the application.

“Sketch” is another powerful technique to estimate
many important statistics, such asLp-norm [17, 4], of a
semi-infinite stream using a compact structure. “Sketches”
achieve dimensionality reduction using random projections
as opposed to the best-k rank approximations. Random pro-
jections are fast to compute and still preserve the distance



between nodes. However, the projections lead to dense data
representations, as oppose to our proposed method.

Finally, Ganti et al. [13] generalize an incremental
data mining model to perform change detection on block
evolution, where data arrive as a sequence of data blocks.
They proposed generic algorithms for maintaining the model
and detecting changes when a new block arrives. These two
steps are related to our dynamic graph mining.

3 Problem Definition

Without loss of generality, we use the adjacency matrix
A ∈ R

m×n to represent a directed graph with weights
G = (V, E, W )1. Every row or column inA corresponds
to a node inV . We set the value ofA(i, j) to w(i, j) ∈ W
if there is an edge from nodevi ∈ V to nodevj ∈ V
with weight w(i, j). Otherwise, we set it to zero. For
example, in the network traffic matrix case, we could have
m (active) sources,n (active) destinations, and for each
(source,destination) pair, we record the corresponding count
of flows. Note that our definition of the adjacency matrix is
more general, because we omit rows or columns that have no
entries. It can include both special cases such as bi-partite
graphs (rows and columns referring to the different sets of
nodes), and traditional graphs (rows and columns referring
to the same set of nodes).

Since most graphs from real applications are large but
sparse, i.e., the number of edges|E| is roughly linear in the
number of nodes|V |, we can store them very efficiently us-
ing sparse matrix representation by only keeping the nonzero
entries. Thus, the space overhead isO(|V |) instead of
O(|V |2).

There are many approaches to extract patterns or struc-
tures from a graph given its adjacency matrix. In particular,
we consider the patterns as a low dimensional summary of
the adjacency matrix. Hence, the goal is to efficiently iden-
tify a low dimensional summary while preserving the spar-
sity of the graph.

More specifically, we formulate the problem as a matrix
decomposition problem. The basic question is how to
approximateA as the product of three smaller matrices
C ∈ R

m×c, U ∈ R
c×r, andR ∈ R

r×n, such that: (1)
|A−CUR|2 is small, and (2)C,U, andR can be computed
quickly using a small space. More intuitively, we look for a
low rank approximation ofA that is both accurate and can
be efficiently computed.

With matrix decomposition as our core component,
we consider two general class of graph mining problems,
depending on the input data:

1We adopt sparse matrix format where only non-zero entries are stored,
whose storage essentially equivalent to adjacency list representation.

2The particular norm does not matter. For simplicity, we use squared
Frobenius norm, i.e.,|A| =

P

i,j A(i, j)2.

Symbol Description
v a vector (lower-case bold)
A a matrix (upper-case bold)
A

T the transpose ofA
A(i, j) the entry(i, j) of A
A(i, :) or A(:, i) i-th row or column ofA
A(I, :) or A(:, I) sampled rows or columns ofA with id in setI

Table 1: Description of notation.

Static graph mining: Given a sparse matrixA ∈ R
m×n,

find patterns, outliers, and summarize it. In this case, the
input data is a given static graph represented as its adjacency
matrix.
Dynamic graph mining: Given timestamped pairs (e.g.,
source-destination pairs from network traffic, email mes-
sages, IM chats), potentially in high volume and high speed,
construct graphs, find patterns, outliers, and summaries as
they evolve. In other words, the input data are raw event
records that need to be pre-processed.

The research questions now are how to sample data and
construct matrices (graphs) efficiently? How to leverage
the matrix decomposition of the static case, into the mining
process? What are the underlying processing modules, and
how do they interact with each other? These are all practical
questions that require a systematic process. Next we first
introduce the computational kernel CMD in Section 4; then
we discuss the mining process based on CMD in Section 5.

4 Compact Matrix Decomposition

In this section, we present the Compact Matrix Decompo-
sition (CMD), to decompose large sparse matrices. Such
method approximates the input matrixA ∈ R

m×n as a
product of three small matrices constructed from sampled
columns and rows, while preserving the sparsity of the orig-
inal A after decomposition. More formally, it approxi-
mates the matrixA asÃ = CsURs, whereCs ∈ R

m×c′

(Rs ∈ R
r′×n) containsc(r) scaled columns(rows) sampled

from A, andU ∈ R
c′×r′

is a small dense matrix which can
be computed fromCs andRs. We first describe how to con-
struct the subspace for a given input matrix. We then discuss
how to compute its low rank approximation.

4.1 Subspace ConstructionSince the subspace is
spanned by the columns of the matrix, we choose to use
sampled columns to represent the subspace.
Biased sampling:The key idea for picking the columns is to
sample columns with replacement biased towards those ones
with higher norms. In other words, the columns with higher
entry values will have higher chance to be selected multiple
times. Such sampling procedure, used by CUR, is proved
to yield an optimal approximation [10]. Figure 2 lists the
detailed steps to construct a low dimensional subspace for
further approximation. Note that, the biased sampling will
bring a lot of duplicated samples. Next we discuss how to



remove them without affecting the accuracy.

Input : matrixA ∈ R
m×n, sample sizec

Output : Cd ∈ R
m×c

1. for x = 1 : n [column distribution]
2. P (x) =

∑

i A(i, x)2/
∑

i,j A(i, j)2

3. for i = 1 : c [sample columns]
4. Pickj ∈ 1 : n based on distributionP (x)

5. ComputeCd(:, i) = A(:, j)/
√

cP (j)

Figure 2: Initial subspace construction

Duplicate column removal: CMD carefully removes dupli-
cate columns and rows after sampling, and thus it reduces
both the storage space required as well as the computational
effort. Intuitively, the directions of those duplicate columns
are more important than the other columns. Thus a key step
of subspace construction is to scale up the columns that are
sampled multiple times while removing the duplicates. Pic-
torially, we take matrixCd, which is the result of Figure 2
(see Figure 3(a)) and turn it into the much narrower ma-
trix Cs as shown in Figure 3(b), with proper scaling. The
method for selectingRd and constructingRs will be de-
scribed shortly.

Cd
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c
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��
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Rsx
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(a)with duplicates (b) without duplicates
Figure 3: Illustration of CUR and CMD

Input : matrixA ∈ R
m×n, sample sizec

Output : Cs ∈ R
m×c′

1. ComputeCd using the intial subspace construction
2. LetC ∈ R

m×c′ be the unique columns ofCd

3. Fori = 1 : c′

4. Letu be the number ofC(:, i) in Cd

5. ComputeCs(:, i)←
√

u ·C(:, i)

Figure 4: CMD subspace construction

Figure 4 shows the algorithm to construct a low dimen-
sional subspace represented with a set ofuniquecolumns.
Each column is selected by sampling the input matrixA,
and then scaling it up based on square root of the number of
times it being selected. The resulting subspace also empha-
sizes the impact of large columns to the same extent as the
result in Figure 2. Using the notations in Table 2, we show
by 4.1 that the top-k subspaces spanned byCd with dupli-
cates andCs without duplicates are the same.

Definition Size
C = [C1, . . . ,Cc′ ] m × c′

Cd = [C1, . . . , C1
| {z }

d1

, . . . ,Cc′ , . . . ,Cc′

| {z }

d
c′

] m × c, c =
P

i di

D = [e1, . . . , e1
| {z }

d1

, . . . , ec′ , . . . , ec′

| {z }

d
c′

] c′ × c, c =
P

i di

Λ = diag(d1, . . . , dc′ ) c′ × c′

CS = [
√

d1C1, . . . ,
p

dc′Cc′ ] = CΛ1/2 m × c′

R = [R1, . . . , Rr′ ]
T r′ × m

Rd = [R1, . . . , R1
| {z }

d′

1

, . . . ,Rr′ , . . . , Rr′

| {z }

d′

r′

] r × n, r =
P

i d′i

D′ = [e1, . . . , e1
| {z }

d′

1

, . . . , er′ , . . . , er′

| {z }

d′

r′

] r′ × r, r =
P

i d′i

Λ′ = diag(d′
1
, . . . , d′

r′
) r′ × r′

RS = [d′
1
R1, . . . , d′

r′
Rr′ ] = Λ

′
R r′ × n

Table 2: Matrix Definition:ei is a column vector with all
zeros except a one as itsi-th element

THEOREM 4.1. (DUPLICATE COLUMNS) MatricesCS and
CD, defined in Table 2, have the same singular values and
left singular vectors.
Proof. It is easy to seeCd = CD

T . Then we have

CdC
T
d = CD

T (CD
T )T = CD

T
DC

T(4.1)

= CΛC
T = CΛ1/2Λ1/2

C
T(4.2)

= CΛ1/2(CΛ1/2)T = CsC
T
s(4.3)

whereΛ ∈ R
k×k is defined in Table 23.

Now we can diagonalize either the productCdC
T
d or

CsC
T
s to find the same singular values and left singular

vectors for bothCd andCs.

4.2 Low Rank Approximation The goal is to form an
approximation of the original matrixX using the sampled
columnCs. For clarity, we useC for Cs. More specifically,
we want to projectX onto the space spanned byCs, which
can be done as follows:

• projectX onto the span ofCs;

• reduce the cost by further duplicate row removal.

Column projection: We first construct the orthonormal
basis ofC using SVD (sayC = UCΣCV

T
C ), and then

projecting the original matrix into this identified orthonormal
basisUC ∈ R

m×c. SinceUC is usually large and dense,
we do not compute the projection of matrixA directly as
AUCU

T
C ∈ R

m×m. Instead, we compute a low rank
approximation ofA based on the observation thatUc =
CVCΣ

−1
C , whereC ∈ R

m×c is large but sparse,VC ∈
R

c×k is dense but small, andΣ ∈ R
k×k is a small diagonal

3
ei is a column vector with all zeros except a one as itsi-th element



matrix 4. Therefore, we have the following:

Ã = UcU
T
c A = CVCΣ

−1
C (CVCΣ

−1
C )T

A

= C(VCΣ
−2
C V

T
CC

T )A = CTA

whereT = (VCΣ
−2
C V

T
CC

T ) ∈ R
c×m. Although C ∈

R
m×c is sparse,T is still dense and big. we further optimize

the low-rank approximation by reducing the multiplication
overhead of two large matricesT andA. Specifically, given
two matricesA and B (assumeAB is defined), we can
sample both columns ofA and rows ofB using the biased
sampling algorithm (i.e., biased towards the ones with bigger
norms). The selected rows and columns are then scaled
accordingly for multiplication. This sampling algorithm
brings the same problem as column sampling, i.e., there exist
duplicate rows.
Duplicate row removal: CMD removes duplicate rows in
multiplication based on 4.2. In our context, CMD samples
and scalesr′ unique rows fromA and extracts the corre-
spondingr′ columns fromC

T (last term ofT). Figure 5
shows the details. Line 1-2 computes the distribution; line
3-6 performs the biased sampling and scaling; line 7-10 re-
moves duplicates and rescales properly.

Input : matrixA ∈ R
c×m, B ∈ R

m×n, sample sizer
Output : Cs ∈ R

c×r′

andRs ∈ R
r′×n

1. for x = 1 : m [row distribution ofB]
2. Q(x) =

∑

i B(x, i)2/
∑

i,j B(i, j)2

3. for i = 1 : r
4. Pickj ∈ 1 : r based on distributionQ(x)

5. SetRd(i, :) = B(j, :)/
√

rQ(j)

6. SetCd(:, i) = A(:, j)/
√

rQ(j)

7. R ∈ R
r′×n are the unique rows ofRd

8. C ∈ R
c×r′

are the unique columns ofCd

9. for i = 1 : r′

10. u is the number ofR(i, :) in Rd

11. SetRs(i, :)← u ·R(i, :)
12. SetCs(:, i)← C(:, i)

Figure 5: ApprMultiplication algorithm

4.2 proves the correctness of the matrix multiplication
results after removing the duplicated rows. Note it is impor-
tant that we use different scaling factors for removing dupli-
cate columns (square root of the number of duplicates) and
rows (the exact number of duplicates). Inaccurate scaling
factors will incur a huge approximation error.

THEOREM 4.2. (DUPLICATE ROWS) Let I, J be
the set of selected rows (with and without dupli-
cates, respectively):J = [1, . . . , 1

︸ ︷︷ ︸

d′

1

, . . . , r′, . . . , r′
︸ ︷︷ ︸

d′

r′

] and

4In our experiment, bothVC andΣC have significantly smaller number
of entries thanA.

I = [1, . . . , r′]. Then givenA ∈ R
ma×na , B ∈ R

mb×nb

and∀i ∈ I, i ≤ min(na, mb), we have

A(:, J)B(J, :) = A(:, I)Λ′
B(I, :)

whereΛ′ = diag(d′1, . . . , d
′
r′).

Proof. Denote X = A(:, J)B(J, :) and Y = A(:
, I)Λ′

B(I, :). Then, we have

X(i, j) =
∑

k∈J

A(i, k)B(k, j)

=
∑

k∈I

dik
A(i, k)B(k, j) = Y(i, j)

To summarize, Figure 6 lists the steps involved in CMD to
perform matrix decomposition for finding low rank approxi-
mations.

Input : matrixA ∈ R
m×n, sample sizec andr

Output : C ∈ R
m×c, U ∈ R

c×r andR ∈ R
r×n

1. findC from CMD subspace construction
2. diagonalizeCT

C to findΣC andVC

3. findCs andRs using ApprMultiplication onCT andA

4. U = VCΣ
−2
C V

T
CCs

Figure 6: CMD Low rank decomposition

5 CMD in practice

In this section, we present several practical techniques for
mining dynamic graphs using CMD, where applications con-
tinuously generate data for graph construction and analysis.

Modules

Data

 Current 
Matrix

Data source

Sparsification
Matrix 

Decomposition
Error 

Measure

Mining Framework
Applications

Anomaly 
Detection

Historical 
Analysis

Storage

Decomposed
Matrices

Figure 7: A flowchart for mining large graphs with low rank
approximations

Figure 7 shows the flowchart of the whole mining pro-
cess. The process takes as input data from application, and
generates as output mining results represented as low-rank
data summaries and approximation errors. The results can
be fed into different mining applications such as anomaly
detection and historical analysis.

Thedata sourceis assumed to generate a large volume
of real time event records for constructing large graphs (e.g.,
network traffic monitoring and analysis). Because it is often
hard to buffer and process all data that are streamed in, we



propose one more step, namely,sparsification, to reduce
the incoming data volume by sampling and scaling data to
approximate the original full data (Section 5.1).

Given the input data summarized as acurrent matrix
A, the next step ismatrix decomposition(Section 5.2),
which is the core component of the entire flow to compute a
lower-rank matrix approximation. Finally, theerror measure
quantifies the quality of the mining result (Section 5.3) as an
additional output.

5.1 Sparsification Here we present an algorithm to spar-
sify input data, focusing on applications that continuously
generate data to construct sequences of graphs dynamically.
For example, consider a network traffic monitoring system
where network flow records are generated in real time. These
records are of the form (source, destination, timestamp,
#flows). Such traffic data can be used to construct communi-
cation graphs periodically (e.g., one graph per hour).

For each time window (e.g., 1pm-2pm), we can incre-
mentally build an adjacency matrixA by updating its entries
as data records are coming in. Each new record triggers an
update on an entry(i, j) with a value increase of∆v, i.e.,
A(i, j) = A(i, j) + ∆v.

The key idea to sparsify input data during the above
process is to sample updates with a certain probabilityp, and
then scale the sampled matrix by a factor1/p to approximate
the true matrix. Figure 8 lists this sparsification algorithm.

Input :update index(s1, d1), . . . , (sn, dn)
sampling probabilityp
update value∆v

Output : adjacency matrixA
0. initializeA = 0
1. for t = 1, . . . , n
3. if Bernoulli(p)= 1 [decide whether to sample]
4. A(st, dt) =A(st, dt) + ∆v
5. A = A/p [scale upA by 1/p]

Figure 8: An example sparsification algorithm

We can further simplify the above process by avoiding
doing a Bernoulli draw for every update. Note that the
probability of skippingk consecutive updates is(1 − p)kp
(as in the reservoir sampling algorithm [25]). Thus insteadof
deciding whether to select the current update, we decide how
many updates to skip before selecting the next update. After
sampling, it is important that we scale up all the entries of
A by 1/p in order to approximate the true adjacency matrix
(based on all updates).

The approximation error of this sparsification process
can be bounded and estimated as a function of matrix dimen-
sions and the sampling probabilityp. Specifically, suppose
A

∗ is the true matrix that is constructed using all updates.

For a random matrixA that approximatesA∗ for every of
its entries, we can bound the approximation error with a high
probability using the following theorem (see [2] for proof):

THEOREM 5.1. (RANDOM MATRIX ) Given a matrixA∗ ∈
R

m×n, let A ∈ R
m×n be a random matrix such that for all

i,j: E(A(i, j)) = A
∗(i, j) and Var(A(i, j)) ≤ σ2 and

|A(i, j)−A
∗(i, j)| ≤ σ

√
m + n

log3(m + n)

For anym+n ≥ 20, with probability at least1−1/(m+n),

‖A−A
∗‖2 < 7σ

√
m + n

With our data sparsification algorithm, it is easy to
observe thatA(i, j) follows a binomial distribution with
expectationA∗(i, j) and varianceA∗(i, j)(1 − p). We can
thus apply 5.1 to estimate the error bound with a maximum
varianceσ = (1 − p)maxi,j(A∗(i, j)). Each application
can choose a desirable sampling probabilityp based on
the estimated error bounds, to trade off between processing
overhead and approximation error.

5.2 Matrix Decomposition Once we construct the adja-
cency matrixA ∈ R

m×n, the next step is to compactly sum-
marize it. This is the key component of our process, where
various matrix decomposition methods can be applied to the
input matrixA for generating a low-rank approximation. As
we mentioned, we consider SVD, CUR and CMD as poten-
tial candidates: SVD because it is the traditional, optimal
method for low-rank approximation; CUR because it pre-
serves the sparsity property; and CMD because, as we show,
it achieves significant performances gains over both previous
methods.

5.3 Error Measure The last step of our framework in-
volves measuring the quality of the low rank approxima-
tions. An approximation error is useful for certain applica-
tions, such as anomaly detection, where a sudden large er-
ror may suggest structural changes in the data. A common
metric to quantify the error is the sum-square-error (SSE),
defined as SSE=

∑

i,j(A(i, j) − Ã(i, j))2. In many cases,
a relative SSE (SSE/

∑

i,j(A(i, j)2), computed as a fraction
of the original matrix norm, is more informative because it
does not depend on the dataset size.

Direct computation of SSE requires us to calculate the
norm of two big matrices, namely,X and X − X̃ which
is expensive. We propose an approximation algorithm to
estimate SSE (Figure 9) more efficiently. The intuition is to
compute the sum of squared errors using only a subset of the
entries. The results are then scaled to obtain the estimated

˜SSE.



Input :A ∈ R
n×m,C ∈ R

m×c,U ∈ R
c×r,R ∈ R

r×n

sample sizessr andsc

Output : Approximation error ˜SSE
1. rset =sr random numbers from 1:m
2. cset =sr random numbers from 1:n
3. ÃS = C(rset, :) ·U ·R(:, cset)
4. AS = A(rset, cset)
5. ˜SSE = m·n

sr·scSSE(AS , ÃS)
Figure 9: The algorithm to estimate SSE

With our approximation, the true SSE and the estimated
˜SSE converge to the same value on expectation based on

the following lemma5. In our experiments (see Section 6.3),
this algorithm can achieve small approximation errors with
only a small sample size.

LEMMA 5.1. Given the matrixA ∈ R
m×n and its esti-

mate Ã ∈ R
m×n such thatE(Ã(i, j)) = A(i, j) and

Var(Ã(i, j)) = σ2 and a setS of sample entries, then

E(SSE) = E(S̃SE) = mnσ2

where SSE=
∑

i,j(A(i, j)− Ã(i, j))2and
S̃SE= mn

|S|

∑

(i,j)∈S(A(i, j)− Ã(i, j))2

Proof. Straightforward - omitted for brevity.

6 Performance Evaluation

In this section, we evaluate both CMD and our mining frame-
work, using two large datasets with different characteristics.
The candidates for comparison include SVD and CUR. The
evaluation focuses on 1) space requirement, 2) CPU time, 3)
Accuracy estimation cost as well as 4) sparsification effect.

Overall, CMD performs much better than both SVD and
CUR as shown in Figure 106.
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Figure 10: Compared to SVD and CUR, CMD achieves lower
space and time requirement as well as fast estimation latency. Note
that every thing is normalized by the largest cost in that category
when achieving 90% accuracy. e.g., The space requirement of
CMD is 1.5% of SVD, while that of CUR is 70%.

5The variance of SSE and˜SSE can also be estimated but requires higher
moment ofÃ.

6These experiments are based on network traffic dataset with accuracy
90%. Note that the estimation cost is not applicable to SVD.

Next, we first describe our experimental setup including
the datasets in Section 6.1. We then compare the space and
time requirement of CMD vs. SVD and CUR in Section 6.2.
Section 6.3 evaluates the accuracy estimation for CMD and
CUR. Finally, Section 6.4 studies the sparsification module.

6.1 Experimental Setup In this section, we first describe
the two datasets; then we define the performance metrics
used in the experiment.

data dimension |E|
Network flow 22K-by-22K 12K
DBLP data 428K-by-3.6K 64K

Figure 11: Two datasets

The Network Flow Dataset The traffic trace consists of
TCP flow records collected at the backbone router of a class-
B university network. Each record in the trace corresponds
to a directional TCP flow between two hosts with timestamps
indicating when the flow started and finished.

With this traffic trace, we study how the communication
patterns between hosts evolve over time, by reading traffic
records from the trace, simulating network flows arriving
in real time. We use a window size of∆t seconds to
construct a source-destination matrix every∆t seconds,
where ∆t = 3600 (one hour). For each matrix, the
rows and the columns correspond to source and destination
IP addresses, respectively, with the value of each entry
(i, j) representing the total number of TCP flows (packets)
sent from thei-th source to thej-th destination during the
corresponding∆t seconds. Because we cannot observe all
the flows to or from a non-campus host, we focus on the
intranet environment, and consider only campus hosts and
intra-campus traffic. The resulting trace has over 0.8 million
flows per hour (i.e., sum of all the entries in a matrix)
involving 21,837 unique campus hosts.

Figure 12(a) shows an example source-destination ma-
trix constructed using traffic data generated from 10AM to
11AM on 01/06/2005. We observe that the matrix is in-
deed sparse, with most of the traffic to or from a small set of
server-like hosts. The distribution of the entry values is very
skewed (a power law distribution) as shown in Figure 12(b).
Most of hosts have zero traffic, with only a few of exceptions
which were involved with high volumes of traffic (over104

flows during that hour). Given such skewed traffic distribu-
tion, we rescale all the non-zero entries by taking the natural
logarithm (actually,log(x+1), to account forx = 0), so that
the matrix decomposition results will not be dominated by a
small number of very large entry values.

Non-linear scaling the values is very important: experi-
ments on the original, bursty data would actually give excel-
lent compression results, but poor anomaly discovery capa-



bility: the 2-3 most heavy rows (speakers) and columns (lis-
teners) would dominate the decompositions, and everything
else would appear insignificant.
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Figure 12:Network Flow: the example source-destination matrix
is very sparse but the entry values are skewed.

The DBLP Bibliographic Dataset Based on DBLP
data [1], we generate an author-conference graph for every
year from year 1980 to 2004 (one graph per year). An edge
(a, c) in such a graph indicates that authora has published in
conferencec during that year. The weight of(a, c) (the entry
(a, c) in the matrixA) is the number of papersa published
at conferencec during that year. In total, there are 428,398
authors and 3,659 conferences.

The graph for DBLP is less sparse compared with the
source-destination traffic matrix. However, we observe that
the distribution of the entry values is still skewed, although
not as much skewed as the source-destination graph. Intu-
itively, network traffic is concentrated in a few hosts, but
publications in DBLP are more likely to spread out across
many different conferences.

Performance Metric We use the following three metrics to
quantify the mining performance:
Approximation accuracy: This is the key metric that we
use to evaluate the quality of the low-rank matrix approxi-
mation output. It is defined as:

accuracy= 1− relative SSE

Space ratio: We use this metric to quantify the required
space usage. It is defined as the ratio of the number of output
matrix entries to the number of input matrix entries. So a
larger space ratio means more space consumption.
CPU time: We use the CPU time spent in computing the
output matrices as the metric to quantify the computational
expense.

All the experiments are performed on the same dedi-
cated server with four 2.4GHz Xeon CPUs and 12GB mem-
ory. For each experiment, we repeat it 10 times, and report
the mean.

6.2 The Performance of CMD In this section, we com-
pare CMD with SVD and CUR, using static graphs con-
structed from the two datasets. No sparsification process is
required for statically constructed graphs. We vary the target
approximation accuracy, and compare the space and CPU
time used by the three methods.
Network-Space:We first evaluate the space consumption for
three different methods to achieve a given approximation
accuracy. Figure 13(1a) shows the space ratio (to the original
matrix) as the function of the approximation accuracy for
network flow data. Note the Y-axis is in log scale. SVD uses
the most amount of space (over 100X larger than the original
matrix). CUR uses smaller amount of space than SVD, but
it still has huge overhead (over 50X larger than the original
space), especially when high accuracy estimation is needed.
Among the three methods, CMD uses the least amount of
space consistently and achieves over orders of magnitudes
space reduction.

The reason that CUR performs much worse for high
accuracy estimation is that it has to keep many duplicate
columns and rows in order to reach a high accuracy, while
CMD decides to keep only unique columns and rows and
scale them carefully to retain the accuracy estimation.
Network-Time: In terms of CPU time (see Figure 13(1b)),
CMD achieves much more savings than SVD and CUR (e.g.,
CMD uses less 10% CPU-time compared to SVD and CUR
to achieve the same accuracy 90%.). There are two reasons:
first, CMD compressed sampled rows and columns, and
second, no expensive SVD is needed on the entire matrix
(graph). CUR is as bad as SVD for high accuracy estimation
due to excessive computation cost on duplicate samples. The
majority of time spent by CUR is in performing SVD on the
sampled columns (see the algorithm in Figure 6)7 .
DBLP-Space: We observe similar performance trends using
the DBLP dataset. CMD requires the least amount of space
among the three methods (see Figure 13(1a)). Notice that
we do not show the high-accuracy points for SVD, because
of its huge memory requirements. Overall, SVD uses more
than 2000X more space than the original data, even with a
low accuracy (less than30%). The huge gap between SVD
and the other two methods is mainly because: (1) the data
distribution of DBLP is not as skewed as that of network
flow, therefore the low-rank approximation of SVD needs
more dimensions to reach the same accuracy, and (2) the
dimension for DBLP (428,398) is much bigger than that for
network flow (21,837), which implies a much higher cost
to store the result for DBLP than for network flow. These
results demonstrates the importance of preserving sparsity in
the result.

7We use LinearTimeCUR algorithm in [10] for all the comparisons.
There is another ConstantTimeCUR algorithm proposed in [10], however,
the accuracy approximation of it is too low to be useful in practice, which is
left out of the comparison.
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Figure 13:CMD takes the least amount of space and time to decompose the source-destination matrix; the space and time required by
CUR increases fast as the accuracy increases due to the duplicated columns and rows.

On the other hand, the difference between CUR and
CMD in DBLP becomes smaller than that with network flow
trace (e.g., CMD is 40% better than CUR for DBLP instead
of an order of magnitude better for network.). The reason
is that the data distribution is less skewed. There are fewer
duplicate samples in CUR.
DBLP-Time: The computational cost of SVD is much
higher compared to CMD and CUR (see Figure 13(2b)).
This is because the underlying matrix is denser and the
dimension of each singular vector is bigger, which explains
the high operation cost on the entire graph. CMD, again, has
the best performance in CPU time for DBLP data.

6.3 Accuracy Estimation In this section, we evaluate the
performance of our accuracy estimation algorithm described
in Section 5.3. Note the estimation of relative SSEs is only
required with CUR and CMD. For SVD, the SSEs can be
computed easily using sum of the singular values.

Using the same source-destination matrix, we plot in
Figure 14 (a) both the estimated accuracy and the true ac-
curacy by varying the sample size used for error estimation
(i.e., number of columns or rows). For every sample size, we
repeat the experiment 10 times with both CUR and CMD,
and show all the 20 estimated errors. The targeted low-rank
approximation accuracy is set to90%. We observe that the
estimated accuracies (i.e., computed based on the estimated
error using1 − ˜SSE) are close to the true accuracy (unbi-
ased), with the variance dropping quickly as the sample size
increases (small variance).

The time used for estimating the error is linear to the
sample size (see Figure 14). We observe that CMD requires
much smaller time to compute the estimated error than CUR
(5 times faster). For both methods, the error estimation can
finish within several seconds. As a comparison, it takes
longer than 1,000 seconds to compute a true accuracy for
the same matrix. Thus for applications that can tolerate a
small amount of inaccuracy in accuracy computation, our
estimation method provides a solution to dramatically reduce
the computation latency.
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Figure 14:Accuracy Estimation: (a) The estimated accuracy are
very close to the true accuracy; (b) Accuracy estimation performs
much faster for CMD than CUR

6.4 Robustness to SparsificationWe now proceed to
evaluate our framework, beginning with the performance of
the sparsification module. As described in Figure 8, our
proposed sparsification constructs an approximate matrix in-
stead of using the true matrix. Our goal is thus to see how
much accuracy we lose using sparsified matrices, compared
with using the true matrix constructed from all available data.
We use the same source-destination traffic matrix used in
Section 6.2. Figure 15 plots the sparsification ratiop vs. ac-
curacy of the final approximation output by the entire frame-
work, using the three different methods, SVD, CUR, and
CMD. In other words, the accuracy is computed with respect
to the true adjacency matrix constructed with all updates. We
also plot the accuracy of the sparsified matrices compared
with the true matrices. This provides an upper bound as the
best accuracy that could be achieved ideally after sparsifica-
tion.

Once we get the sparsified matrices, we fix the amount
of space to use for the three different methods. We observe
that the accuracy of CMD is very close to the upper bound
ideal case. The accuracies achieved by all three methods do
not drop much as the sparsification ratio decreases, suggest-
ing the robustness of these methods to missing data. These
results indicate that we can dramatically reduce the number
of raw event records to sample without affecting the accuracy



much.
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Figure 15:Sparsification: it incurs small performance penalties,
for all algorithms.

In summary, CMD consistently out performs traditional
method SVD and the state of art method CUR on all experi-
ments. Next we will illustrate some applications of CMD in
practice.

7 Applications and Mining Case Study

In this section, we illustrate how CMD and our framework
can be applied in practice using two example applications:
(1) anomaly detection on a single matrix (i.e., astatic
graph) and (2) storage, historical analysis, and real-time
monitoring of multiple matrices evolving over time (i.e.,
dynamic graphs). For each application, we perform case
studies using real data sets.

7.1 Anomaly Detection Given a large static graph, how
do we efficiently determine if certain nodes are outliers, that
is, which rows or columns are significantly different than the
rest? And how do we identify them? In this section, we
consider anomaly detection on a static graph, with the goal
of finding abnormal rows or columns in the corresponding
adjacency matrix. CMD can be easily applied for mining
static graphs. We can detect static graph anomalies using
the SSE along each row or column as the potential indicators
after matrix decomposition.

A real world example is to detect abnormal hosts from
a static traffic matrix, which has often been an important but
challenging problem for system administrators. Detecting
abnormal behavior of host communication patterns can help
identify malicious network activities or mis-configuration
errors. In this case study, we focus on the static source-
destination matrices constructed from network traffic (every
column and row corresponds to a source and destination,
respectively), and use the SSEs on rows and columns to
detect the following two types of anomalies:
Abnormal source hosts: Hosts that send out abnormal traf-
fic, for example, port-scanners, or compromised “zombies”.
One example of abnormal source hosts are scanners that send
traffic to a large number of different hosts in the system.
Scanners are usually hosts that are already compromised by

Ratio 20% 40% 60% 80% 100%

Source IP 0.9703 0.9830 0.9727 0.8923 0.8700
Destination IP 0.9326 0.8311 0.8040 0.7220 0.6891

Table 3:Network anomaly detection: precision is high for all spar-
sification ratios (the detection false positive rate= 1− precision).

malicious attacks such as worms. Their scanning activities
are often associated with further propagating the attack by
infecting other hosts. Hence it is important to identify and
quarantine these hosts accurately and quickly. We propose
to flag a source host as “abnormal”, if its row has a high re-
construction error.
Abnormal destination hosts: Examples include targets of
denial of serviceattacks (DoS), or targets ofdistributed
denial of service(DDoS). Hosts that receive abnormal traffic.
An example abnormal destination host is one that has been
under denial of service attacks by receiving a high volume
of traffic from a large number of source hosts. Similarly, our
criterion is the (column) reconstruction error.
Experimental setup: We randomly pick an adjacency ma-
trix from normal periods with no known attacks. Due to
the lack of detailed anomaly information, we manually in-
ject anomalies into the selected matrix using the following
method: (1)Abnormal source hosts:We randomly select a
source host and then set all the corresponding row entries to
1, simulating a scanner host that sends flows to every other
host in the network. (2)Abnormal destination hosts:Simi-
lar to scanner injection, we randomly pick a column and set
90% of the corresponding column entries to1, assuming the
selected host is under denial of service attack from a large
number of hosts.

There are two additional input parameters: sparsifica-
tion ratio and the number of sampled columns and rows. We
vary the sparsification ratio from20% to 100% and set the
sampled columns (and rows) to 500.
Performance metrics: We use detection precision as our
metric. We sort hosts based their row SSEs and column
SSEs, and extract the smallest number of top ranked hosts
(sayk hosts) that we need to select as suspicious hosts, in
order to detect all injected abnormal host (i.e., recall =100%
with no false negatives). Precision thus equals1/k, and the
false positive rate equals1− precision.

We inject only one abnormal host each time. And we
repeat each experiment 100 times and take the mean.
Results:Table 3(a) and (b) show the precision vs. sparsifica-
tion ratio for detectingabnormal source hostsandabnormal
destination hosts, respectively. Although the precision re-
mains high for both types of anomaly detection, we achieve
a higher precision in detecting abnormal source hosts than
detecting the abnormal destinations. One reason is that scan-
ners talk to almost all other hosts while not all hosts will



launch DOS attacks to a targeted destination. In other words,
there are more abnormal entries for a scanner than for a host
under denial of service attack. Most of the false positives are
actually from servers and valid scanning hosts, which can be
easily removed based on the prior knowledge of the network
structure.

Our purpose of this case study is not to present the
best algorithm for anomaly detection, but to show the great
potential of using efficient matrix decomposition as a new
method for anomaly detection. Such approach may achieve
similar or better performance than traditional methods but
without expensive analysis overhead.

7.2 Time-Evolving Monitoring In this section, we con-
sider the application of monitoring dynamic graphs. Using
our proposed process, we can dynamically construct and an-
alyze time-evolving graphs from real-time application data.
One usage of the output results is to provide compact storage
for historical analysis. In particular, for every timestamp t,
we can store only the sampled columns and rows as well as
the estimated approximation error˜SSEt in the format of a
tuple(Ct,Rt, ˜SSEt).

Furthermore, the approximation error (SSE) is useful
for monitoring dynamic graphs, since it gives an indication
of how much the global behavior can be captured using the
samples. In particular, we can fix the sparsification ratio and
the CMD sample size, and then compare the approximation
error over time. A timestamp with a large error or a time
interval (multiple timestamps) with a large average error
implies structural changes in the corresponding graph, and
is worth additional investigation.

To make our discussion concrete, we illustrate the appli-
cation of time-evolving monitoring using both the network
traffic matrices and the DBLP matrices.
Network over time: For network traffic, normal host com-
munication patterns in a network should roughly be similar
to each other over time. A sudden change of approximation
accuracy (i.e.,1− ˜SSE) suggests structural changes of com-
munication patterns since the same approximation procedure
can no longer keep track of the overall patterns.

Figure 16(b) shows the approximation accuracy over
time, using 500 sampled rows and columns without dupli-
cates (out of 21K rows/columns). The overall accuracy re-
mains high. But an unusual accuracy drop occurs during the
period from hour 80 to 100. We manually investigate into the
trace further, and indeed find the onset of worm-like hierar-
chical scanning activities. For comparison, we also plot the
percentage of non-zero matrix entries generated each hour
over time in Figure 16(a), which is a standard method for
network anomaly detection based on traffic volume or dis-
tinct number of connections. Although such statistic is rel-
atively easier to collect, the total number of traffic entries
is not always an effective indicator of anomaly. Notice that

during the same period of hour 80 to 100, the percentage of
non-zero entries is not particularly high. Only when the in-
fectious activity became more prevalent (after hour 100), we
can see an increase of the number of non-zero entries. Our
framework can thus potentially help detect abnormal events
at an earlier stage.
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Figure 16: Network flow over time: we can detect anomalies
by monitoring the approximation accuracy (b), while traditional
method based on traffic volume cannot do (a).

DBLP over time: For the DBLP setting, we monitor the ac-
curacy over the 25 years by sampling 300 conferences (out of
3,659 conferences) and 10 K authors (out of 428K authors)
each year. Figure 17(b) shows that the accuracy is high ini-
tially, but slowly drops over time. The interpretation is that
the number of authors and conferences (nonzero percentage)
increases over time (see Figure 17(a)), suggesting that we
need to sample more columns and rows to achieve the same
high approximation accuracy.
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Figure 17:DBLP over time: The approximation accuracy drops
slowly as the graphs grow denser.

In summary, our exploration of both applications sug-
gest that CMD has great potential for discovering patterns
and anomalies for dynamic graphs too.

8 Conclusion

We studied the problem of efficiently discovering patterns
and anomalies from large graphs, like traffic matrices, both
in the static case, as well as when they evolve over time. The
contributions are the following:

• New matrix decomposition method:CMD generates
low-rank, sparse matrix approximations. We proved



that CMD gives exactly the same accuracy like CUR,
but in much less space (Theorem 4.1).

• High-rate time evolving graphs:Extension of CMD,
with careful sampling, and fast estimation of the recon-
struction error, to spot anomalies.

• Speed and space:Experiments on several real datasets,
one of which is>100Gb of real traffic data, show that
CMD achieves up to10 times less space and less time
than the competition.

• Effectiveness:CMD found anomalies that were verified
by domain experts, like the anomaly in Figure 16

Future work could focus on the time window size:
currently, the window size is 1 time-tick. Longer windows
might be able to reveal long-term trends, like, e.g., low-
rate port-scanners in network intrusion. The choice of the
optimal window size is a research challenge.
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