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Abstract network administrator, monitoring the (source, destmati

Given a large sparse graph, how can we find patterns aRdflows over time. For a given time window, the traffic
anomalies? Several important applications can be modd[dfgrmation can be represented as a matrix, with all the
as large sparse graphs, e.g., network traffic monitorifggUrces as rows, all the destinations as column_s, anql the
research citation network analysis, social network arglyOunt of exchanged flows as the entries. In this setting,
and regulatory networks in genes. Low rank decompositioM& want to find patterns, summaries, and anomalies for the
such as SVD and CUR, are powerful techniques for reveali@yen window, as well as across multiple such windows.
latent/hidden variables and associated patterns from higpecifically for these applications that generate hugemelu
dimensional data. However, those methods often ignore fHedata with high speed, the method has to be fast, so that
sparsity property of the graph, and hence usually incur hgan catch anoma!les early on. Closely related questions
high memory and computational cost to be practical. ~ &ré how to summarize dynamic graphs, so that they can be
We propose a novel method, t@mpact Matrix De- ef_f|C|entIy stored, e.g., for_ hlstor|cal_apaly5|s. We refier
composition (CMD)to compute sparse low rank approxithis challenge as théynamic graph mlnlnqproblem. o
mations. CMD dramatically reduces both the computation The typical way of summarizing and approximating
cost and the space requirements over existing decompB¥airices is through transformations, with SVD/PCA [15,
tion methods (SVD, CUR). Using CMD as the key buildl8] and random projections [17] being popular choices.
ing block, we further propose procedures to efficiently cofilthough all these methods are very successful in general,
struct and analyze dynamic graphs from real-time applid8! large sparse graphs thgy may require .huge amounts of
tion data. We provide theoretical guarantee for our metho8Bace, exactly because their resulting matrices are nitespa
and present results on two real, large datasets, one on ABY-MOre.
work flow data (100GB trace of 22K hosts over one month) Large, real graphs are often very sparse. For example,
and one on DBLP (200MB over 25 years). the web graph [20], Internet topology graphs [12], who-
We show that CMD is often an order of magnitude moteusts-whom social networks [7], along with numerous other
efficient than the state of the art (SVD and CUR): it is ovég@l graphs, are all sparse. Recently, Drineas et al. [10]
10X faster but requires less thal/10 of the spacefor the Proposed the CUR decomposition method, which partially
same reconstruction accuracy. Finally, we demonstrate hefresses the loss-of-sparsity issue. _
CMD is used for detecting anomalies and monitoring time- W& propose a new method, call€@mpact Matrix De-
evolving graphs, in which it successfully detects wornelikcomposition (CMD)for generating low-rank matrix approx-

hierarchical scanning patterns in real network data. imations. CMD provides provably equivalent decomposition
as CUR, but it requires muclessspace and computation
1 Introduction time, and hence imoreefficient.

s Moreover, we show that CMD can not only analyze

Graphs are used in multiple important applications such gs,. } .
. o . .Sfatic graphs, but we can also extend it to handle dynamic
network traffic monitoring, web structure analysis, socia - :
raphs. Another contribution of our work is exactly a

network mining, protein interaction study, and scientif etailed procedure to put CMD into practice, and especially

computing. Given a large graph, we want to discover " . T L , e
patterns and anomalies in spite of the high dimensionality high-speed applications like internet traffic monitayj

. . Slonaii¥ere new traffic matrices are streamed-in in real time.
of data. We refer to this challenge as 8tatic graph mining Overall, our method has the following desirable proper-
problem. '

An even more challenging problem is finding patterr%':?S:

in graphs that evolve over time. For example, consider 8, East: Despite the high dimensionality of large graphs,



the entire mining process is fast, which is especialkpressiveness, various problems are studied under graph
important for high-volume, streaming applications. mining.

S ficient:- Wi h i of h From the modeling viewpoint, Faloutsos et al. [12] have
* Space efficient:We preserve the sparsity of grapis sg, .,y the power-law distribution on the Internet graph. Ku-

that both the intermediate results and the final results tar et al. [20] studied the model for web graphs. Leskovec

in memory, even for large graphs that are usually X al. [21] discoverd the shrinking diameter phenomena on
expensive to mine today. time-evolving graphs.

 Anomaly detection: We show how to spot anomalies, ~From the algorithmic aspect, Yan et al. [26] proposed
that is, rows, columns or time-ticks that suffer from hign algorithm to perform substructure similarity search on
reconstruction error. A vital step here is our propos&ﬂaph databases, which is based on the algorithm for classic
fast method to estimate the reconstruction error of ofifquent itemset mining. Cormode and Muthukrishan [5]
approximations. proposed streaming algorithms to (1) estimate frequency
moments of degrees, (2) find heavy hitter degrees, and (3)
Our work makes contributions to both the theory as welbmpute range sums of degree values on streams of edges
as to the practice of graph mining. From the theoretical viewf communication graphs, i.e., (source, destination)spair
point, we provide the proofs and guarantees about the pgir work, we view graph mining as a matrix decomposition
formance of CMD, both for the static case, as well as fpfob|em and try to approximate the entire graph, which is
the high-rate extension (Theorem 4.1, Lemma 5.1). Fraiffferent to most of the existing graph mining work.
the practical viewpoint, both CMD and its high-rate extemow rank approximation: SVD has served as a building
sion are efficient and effective: our experiments on larg@, r plock for many important applications, such as PCA [18]
datasets show that CMD is ove0 times fasteand requires and LSI [23, 6], and has been used as a compression tech-
less thanl/10 space(see Figure 1). We also demonstratgique [19]. It has also been applied as correlation detectio
how CMD can help in monitoring and in anomaly detectiofputine for streaming settings [16, 24]. However, these ap-
of time-evolving graphs: As shown in Figure 16 CMD effeqroaches all implicitly assume dense matrices.

tively detects real worm-like hierarchical scanning pase ~ For sparse matrices, the diagonalization and SVD are
early on. computed by the iterative methods such as Lanczos algo-
rithm [15]. Recently, Drineas et al. proposed Monte-Carlo
10006 - VP SVDcur approximation algorithms for the standard matrix operetio

such multiplication [8] and SVD [9], which are two building
blocks in their CUR decomposition. CUR has been applied
in recommendation system [11], where based on small num-
ber of samples about users and products, it can reconstruct
cMD CMD the entire user-product relationship.

Streams: Data streams has been extensively studied in
recent years. The goal is to process the incoming data
efficiently without recomputing from scratch and without
Sbuffering much historical data. Two recent surveys [3, 22]
have discussed many data streams algorithms, among which
we highlight two related techniques: sampling and sketches

The rest of the paper is organized as follows: Section 2 Sampling is a simple and efficient method to deal with
discusses the related work. Then Section 3 defines our prg#de massive datasets. Many sampling algorithms have
lem more formally. We describe the algorithm and analydi§en proposed in the streaming setting such as reservoir
of CMD in Section 4. Section 5 presents the detailed pro&mPpling [25], concise samples, and counting samples [14].
dures for mining large graphs. Section 6 and Section 7 pfdiese advanced sampling techniques can potentially be
vide the experimental evaluation and application caseystidugged into the sparsification module of our framework, al-
to show the efficiency and applicability of CMD. Finally, wehough which sampling algorithms to choose highly depends
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Figure 1:CMD outperforms SVD and CUR significantly in term
of space requirement and computational time. Space ancctiste
is normalized by the maximum ones (i.e.,SVD in both case).

conclude in Section 8. onthe applica_tion. . .
“Sketch” is another powerful technique to estimate
2 Related Work many important statistics, such ds-norm [17, 4], of a

. . semi-infinite stream using a compact structure. “Sketches”
Here we discuss related works from three areas: graph. : ; . : . o
chieve dimensionality reduction using random proje&ion

mining, numeric analysis and stream mining. e

L . . as opposed to the bektrank approximations. Random pro-
Graph Mining: Graph mining has been a very active area . ) .
. o . o ections are fast to compute and still preserve the distance
in data mining community. Because of its importance a



between nodes. However, the projections lead to dense daiabol Description

representations, as oppose to our proposed method. v a"ect“_" E'ower'case t;]o'l‘?j))
. : . . a matrix (upper-case no
Finally, Ganti et al. [13] generalize an mcrementaﬁT the transpose oA

data mining model to perform change detection on block; ;) the entry(i, j) of A

evolution, where data arrive as a sequence of data bloclss, :) or A(:, ) | i-th row or column ofA

They proposed generic algorithms for maintaining the modal(Z, :) or A(:, I sampled rows or columns & with id in set/
and detecting changes when a new block arrives. These two
steps are related to our dynamic graph mining.

Table 1: Description of notation.

Static graph mining: Given a sparse matriA € R™*",

3 Problem Definition find patterns, outliers, and summarize it. In this case, the
Without loss of generality, we use the adjacency matiixput data is a given static graph represented as its adjgicen
A € R™" to represent a directed graph with weightsatrix.
G = (V,E, W) Every row or column inA corresponds Dynamic graph mining: Given timestamped pairs (e.g.,
to a node inV/. We set the value oA (i, j) tow(i,j) € W source-destination pairs from network traffic, email mes-
if there is an edge from node; € V to nodev; € V sages, IM chats), potentially in high volume and high speed,
with weight w(i, 7). Otherwise, we set it to zero. Forconstruct graphs, find patterns, outliers, and summaries as
example, in the network traffic matrix case, we could hatieey evolve. In other words, the input data are raw event
m (active) sourcesn (active) destinations, and for eachecords that need to be pre-processed.
(source,destination) pair, we record the correspondingico  The research questions now are how to sample data and
of flows. Note that our definition of the adjacency matrix isonstruct matrices (graphs) efficiently? How to leverage
more general, because we omit rows or columns that havelim® matrix decomposition of the static case, into the mining
entries. It can include both special cases such as bi-ganpitocess? What are the underlying processing modules, and
graphs (rows and columns referring to the different sets tadw do they interact with each other? These are all practical
nodes), and traditional graphs (rows and columns referriggestions that require a systematic process. Next we first
to the same set of nodes). introduce the computational kernel CMD in Section 4; then

Since most graphs from real applications are large hwé discuss the mining process based on CMD in Section 5.
sparse, i.e., the number of eddéy is roughly linear in the
number of node§l/|, we can store them very efficiently us4 Compact Matrix Decomposition

ing sparse matrix representation by only keeping the n@nzgy tnis section, we present the Compact Matrix Decompo-
entries. Thus, the space overheadds|V|) instead of sjtion (CMD), to decompose large sparse matrices. Such
oIV ). method approximates the input mattk € R™*" as a
There are many approaches to extract patterns or stigigsduct of three small matrices constructed from sampled
tures from a graph given its adjacency matrix. In partiulglolumns and rows, while preserving the sparsity of the orig-
we consider the patterns as a low dimensional summary;f| A after decomposition. More formally, it approxi-
the adjacency matrix. Hence, the goal is to efficiently idepsates the matriA asA = C,UR,, whereC, € R™*
tify a low dimensional summary while preserving the spafr ¢ R"'*") containsc(r) scaled columns(rows) sampled
sity of the graph. from A, andU € R¢*"" is a small dense matrix which can
More specifically, we formulate the problem as a matrife computed fron€s andRs. We first describe how to con-
decomposition problem. The basic question is how &gct the subspace for a given input matrix. We then discuss
approximateA as the product of three smaller matriceggy to compute its low rank approximation.
C € R™*¢, U € R*", andR € R"*"™, such that: (1)
|A — CURJ?is small, and (2)C,U, andR can be computed4 1 Subspace ConstructionSince the subspace is
quickly using a small space. More intuitively, we look for @panned by the columns of the matrix, we choose to use
low rank approximation ofA that is both accurate and caampled columns to represent the subspace.
be efficiently computed. Biased sampling: The key idea for picking the columns is to
With matrix decomposition as our core componen§ample columns with replacement biased towards those ones
we consider two general class of graph mining problemgih higher norms. In other words, the columns with higher
depending on the input data: entry values will have higher chance to be selected multiple
times. Such sampling procedure, used by CUR, is proved
" TWe adopt sparse matrix format where only non-zero entriesared, o yl.eld an optimal approximation [.10]' I_:lgure 2 lists the
whose storage essentially equivalent to adjacency liseseptation. detailed steps_to C,OnStrUCt a low d|men5|onal SUbS_pace .fOI’
2The particular norm does not matter. For simplicity, we ugeased further approximation. Note that, the biased sampling will
Frobenius norm, i.e|A| = 3=, ; A (4, 7). bring a lot of duplicated samples. Next we discuss how to



remove them without affecting the accuracy. Definition Size
CZ[Cl,...,Cc/] m x c
Cd:[Cl,...,Cl,...,CC/,...,CC/} mXC,CZZidi
Input: matrix A € R™*", sample size Py e
OUtpUt:CdeRmXC D:[el,...,el,...,ec/,...,éc/] dxee=3,d;
1.forx =1:n  [column distribution] T —
2. P(l‘) = 21 A(i,x)Q/ Zi,j A(i’j)Q A =diag(di,...,d.) - d xc
3.fori=1:¢ [sample columns] Cs = [\/diC1,...,/dsCo] = CAL/2 mxc
4, Pickj € 1: n based on distributiof®(x) R=[R1,...,R.]T X m
5.  ComputeCy(:,i) = A(:,5)/+/cP(j) Rg=[R1,.. -, Ry, Reryo Ry rxn,r=32d;
Figure 2: Initial subspace construction 4 d,
D' =le1,...,€1,...,€p,...,€] v xr,r=3,d
Duplicate column removal: CMD carefully removes dupli- M 7,
cate columns and rows after sampling, and thus it reducER" =diagl@,, ..., d’,) : X
both the storage space required as well as the computatiopnals = [¢/R1,...,d  R.] = A'R X n

effort. Intuitively, the directions of those duplicate aoins ] o _ ]
are more important than the other columns. Thus a key S{I@Flple 2: Matrix Definition:e; is a column vector with all
of subspace construction is to scale up the columns that ZPE0S €xcept a one as itsh element

sampled multiple times while removing the duplicates. Pi
Egg:”?;’i g\lﬁ; le:)l)ﬂ :;r(ljxifr’nwi? |ic;]k;0|sﬂt1f;er:]iiﬂt r? ;r'r:(l)%\l,gfrzn D, _defined in Table 2, have the same singular values and
trix Cs as shown in Figure 3(b), with proper scaling. Th?ft smgu_lar vectors. T

method for selectind?; and constructindR s will be de- Proof. Itis easy to se€; = CD". Then we have

scribed shortly.

ff'_HEOFeEM4.1. (DUPLICATE COLUMNS) MatricesCgs and

4.1 cu,cl =cp?(cp?)? =cp’pct

n n
/—/% f—/%
} & R (42 = CACT = CcAY/2pY/2CT
r
‘ 4.3) — CAV2(CAVY?)T = ¢,CT
m m<|Cs

Cq
whereA € RF** s defined in Table 2

Now we can diagonalize either the produetC? or
C;CT to find the same singular values and left singular
(a)with duplicates (b) without duplicatesvectors for bothC; andC,.

Figure 3: lllustration of CUR and CMD

c

4.2 Low Rank Approximation The goal is to form an
approximation of the original matriX using the sampled
columnC,. For clarity, we useC for C,. More specifically,
we want to projecX onto the space spanned @, which
can be done as follows:

Input: matrix A € R™*", sample size
Output: C, € Rm*¢
1. ComputeC, using the intial subspace construction

2. LetC € R~ be the unique columns &, e projectX onto the span of;
3. Fori=1:¢
4. Letu be the number o€(:,) in Cy e reduce the cost by further duplicate row removal.

5. ComputeCs; (:,4) «— u- C(:,1)
Figure 4: CMD subspace construction

Column projection: We first construct the orthonormal
basis of C using SVD (sayC = UcXcV]), and then
Figure 4 shows the algorithm to construct a low dimen_roj_ectingthe original _matrix in_to this identified orthamnaal
sional subspace represented with a setiwifjue columns. basisUc € R™"“. SmceU_c IS usually Iarge "_’md dense,
Each column is selected by sampling the input matsix W€ do r;ot compute the projection of matrX directly as
and then scaling it up based on square root of the numbefdfcUc € R™*™. Instead, we compute a low rank
times it being selected. The resulting subspace also emgHreximation ofA baseglgcn the observation tht. =
sizes the impact of large columns to the same extent as ﬁ"n}:gz , whereC € R IS Ia}grgke_but SpafseYc €
result in Figure 2. Using the notations in Table 2, we shdi " is dense but small, andl € R is a small diagonal
by 4.1 that the top: subspaces spanned &y; with dupli-
cates andC, without duplicates are the same. " 3¢, is a column vector with all zeros except a one as-is element



matrix*. Therefore, we have the following: I =[1,...,7"]. Then givenA € R™«*" B ¢ R™v*"
A =U.UTA = CVeSHCVesaH)TA andvi € I,7 < min(ng, msy), we have
T cTe - C C
=C(VcEAVECT)A = CTA A(G,)B(J,:) = A(, )A'B(I,:)
whereT = (VcEVECT) € Re*™. AlthoughC € \yhereA! — diag(d}.....d.,).

R™*¢ is sparseT is still dense and big. we further optimize

the low-rank approximation by reducing the multiplicatioProof. Denote X = A(;,J)B(J,:) and’Y = A(:
overhead of two large matric@8 andA.. Specifically, given | [)A’B(Z,:). Then, we have
two matricesA and B (assumeAB is defined), we can

sample both columns cA and rows ofB using the biased X(i,7) = Z A(i, k)B(k, j)
sampling algorithm (i.e., biased towards the ones with é&igg keJ
norms). The selected rows and columns are then scaled _ Zd’ A, K)B(k,j) = Y(i,5)

accordingly for multiplication. This sampling algorithm
brings the same problem as column sampling, i.e., theré exis
duplicate rows. To summarize, Figure 6 lists the steps involved in CMD to
Duplicate row removal: CMD removes duplicate rows inperform matrix decomposition for finding low rank approxi-
multiplication based on 4.2. In our context, CMD samplesations.

and scales’ unique rows fromA and extracts the corre-
spondingr’ columns fromC7 (last term ofT). Figure 5 Input: matrix A € R™%", sample size andr
shows the details. Line 1-2 computes the distribution; "@utput: C e R™*¢, U € R andR € R"*"

3-6 performs the biased sampling and scaling; line 7-10 #-find C from CMD subspace construction

kel

moves duplicates and rescales properly. 2. diagonalizeC” C to find X¢ andV ¢
3. find C,; andR, using ApprMultiplication onC” and A
Input: matrix A € R°*™, B € R™*", sample size 4.U=VeE2VEC,
Output: C, € R**"" andR, € R™ *" Figure 6: CMD Low rank decomposition
1.forx =1:m  [row distribution of B]
2. Qx)= ZiB(xvi)Q/Zi,j B(i, )
3.fori=1:r 5 CMD in practice
4. Pickj € 1:r based on distributio)(x) In this section, we present several practical techniques fo
5. SetRq(i,:) = B(j,:)/ Q) mining dynamic graphs using CMD, where applications con-
6. SetCu(;,1) = A(;,))/vrQ(j) tinuously generate data for graph construction and arglysi
7.R € R" *™ are the unique rows A&y
8.C € R°*" are the unique columns &1, Mining Framework
9.fore=1:7 Mod Application
10. wisthe numberoR(i,:)in Ry r Sparsification R S (ﬁnomaly
11, SeR,(i,:) «— u- R((z', :)) ot ﬁ ﬂDewmpogmon{_ﬂ = e
12, SetC.(:,i) — C(;,1) TB/J—’ Sarent |__ [Toscomposen %
Figure 5: ApprMultiplication algorithm Matrix Matrices

4.2 proves the_correctnes§ of the matrix mu.lt'.p“.cat'qﬂgure 7: A flowchart for mining large graphs with low rank
results after removing the duplicated rows. Note it is impo pproximations

tant that we use different scaling factors for removing dup
cate columns (square root of the number of duplicates) and Figure 7 shows the flowchart of the whole mining pro-

rows (the exact number of duplicates). Inaccurate scali&gss_ The process takes as input data from application, and

factors will incur a huge approximation error. generates as output mining results represented as low-rank
THEOREM4.2. DUPLICATE ROWS) Let I, J  be data summaries and approximation errors. The results can
the set of selected rows (with and without duplbe fed into different mining applications such as anomaly
cates, respectively): = [1,...,1,...,7/,...,7'] and detection and historical analysis.

—_ Thedata sourcds assumed to generate a large volume
of real time event records for constructing large graph (e.
network traffic monitoring and analysis). Because it is ofte
hard to buffer and process all data that are streamed in, we

! &,

ZIn our experiment, botlV ¢ and ¢ have significantly smaller number

of entries thamA..



propose one more step, namesparsification to reduce For a random matribA that approximatef\* for every of

the incoming data volume by sampling and scaling dataits entries, we can bound the approximation error with a high

approximate the original full data (Section 5.1). probability using the following theorem (see [2] for proof)
Given the input data summarized a@arent matrix _ )

A, the next step ismatrix decompositior(Section 5.2), THEOREMS.1. (RANDOM MATRIX) Given a matrixA™ €

which is the core component of the entire flow to computéfa |t A € R™*" be a random matrix such that for all

lower-rank matrix approximation. Finally, tiegror measure ©J° E(A(i,5)) = A*(i,j) and Var(A(i, j)) < o? and

quantifies the quality of the mining result (Section 5.3)as a ——
additional output. |A(i,7) — A™(i,5)] < U?’L—Fn
log®(m + n)

5.1 Sparsification Here we present an algorithm to spafeor anyim +n > 20, with probability at leastt — 1/ (m+n),
sify input data, focusing on applications that continugusl

generate data to construct sequences of graphs dynamically JA — A%|l2 < Tovm +n
For example, consider a network traffic monitoring system
where network flow records are generated in real time. These

records are of the form (source, destination, timestamp, With our data sparsification algorithm, it is easy to

#lows). Such traffic data can be used to construct COMMygie e thata (i, j) follows a binomial distribution with
cation graphs perlodl_cally (e.g., one graph per hour). __expectationA* (i, j) and varianceA* (i, j)(1 — p). We can

For each time window (€.g., 1pm-2pm), we can inCrg5 s anply 5.1 to estimate the error bound with a maximum
mentally build an adjacency matrix by updating its entries

i . variancesc = (1 — p)max_;(A*(i,5)). Each application
as data records are coming in. Each new record triggers.an choose a desirable sampling probabifitbased on
update on an entryi, j) with a value increase ohv, i.e.,

T o the estimated error bounds, to trade off between processing
A(i,j) = A(i,j) + Av.

’ . _ overhead and approximation error.
The key idea to sparsify input data during the above

process is to sample updates with a certain probabiliagnd
then scale the sampled matrix by a fact@p to approximate
the true matrix. Figure 8 lists this sparsification algarith

5.2 Matrix Decomposition Once we construct the adja-
cency matrixA € R™*™, the next step is to compactly sum-
marize it. This is the key component of our process, where
various matrix decomposition methods can be applied to the
input matrixA for generating a low-rank approximation. As

Input :update indexsy, d1), .. ., (sn, dn) we mentioned, we consider SVD, CUR and CMD as poten-
sampling probability tial candidates: SVD because it is the traditional, optimal
update valuev method for low-rank approximation; CUR because it pre-

Output: adjacency matrba serves the sparsity property; and CMD because, as we show,

0. initialize A = 0 it achieves significant performances gains over both ptevio

l.fort=1,...,n methods.

3. ifBernoulli(p)=1 [decide whether to sample]

4. A(se, dy) =A(se, di) + Av 5.3 Error Measure The last step of our framework in-

5A=A/p [scale upA by 1/p] volves measuring the quality of the low rank approxima-
Figure 8: An example sparsification algorithm tions. An approximation error is useful for certain applica

tions, such as anomaly detection, where a sudden large er-

We can further simplify the above process by avoidiff@r may suggest structural changes in the data. A common
doing a Bernoulli draw for every update. Note that the@etric to quantify the error is the sum-square-error (SSE),
probability of skippingk consecutive updates {g — p)¥p defined as SSE 3, (A (i, ) — A(i,5))*. In many cases,
(asin the reservoir sampling algorithm [25]). Thus instefd a relative SSE (SSEY, ;(A(i, 4)?), computed as a fraction
deciding whether to select the current update, we decide hafwhe original matrix norm, is more informative because it
many updates to skip before selecting the next update. Aftees not depend on the dataset size.
sampling, it is important that we scale up all the entries of Direct computation of SSE requires us to calculate the
A by 1/pin order to approximate the true adjacency matriorm of two big matrices, namelX and X — X which
(based on all updates). is expensive. We propose an approximation algorithm to

The approximation error of this sparsification processtimate SSE (Figure 9) more efficiently. The intuition is to
can be bounded and estimated as a function of matrix dimeampute the sum of squared errors using only a subset of the
sions and the sampling probability Specifically, supposeentries. The results are then scaled to obtain the estimated
A* is the true matrix that is constructed using all updateSSE.



Next, we first describe our experimental setup including

Input:A € R™*™,C € R™*“,U € R™*" R € R™" the datasets in Section 6.1. We then compare the space and
sample sizesr andsc time requirement of CMD vs. SVD and CUR in Section 6.2.
Output: Approximation erroiS'SE Section 6.3 evaluates the accuracy estimation for CMD and
1. rset =sr random numbers from 1:m CUR. Finally, Section 6.4 studies the sparsification module
2. cset =sr random numbers from 1:n
3.Ag =C(rset:)- U-R(:,cse} 6.1 Experimental Setup In this section, we first describe
4. Ags = A(rsetcse) the two datasets; then we define the performance metrics
5.SSE = ™" SSEQAg, As) used in the experiment.
Figure 9: The algorithm to estimate SSE
data dimension | |E|
Network flowy 22K-by-22K| 12K
With our approximation, the true SSE and the estimated DBLP data | 428K-by-3.6K 64K
SSE converge to the same value on expectation based on Figure 11: Two datasets

the following lemma. In our experiments (see Section 6.3),
this algorithm can achieve small approximation errors with

only a small sample size. . .
y P The Network Flow Dataset The traffic trace consists of

LEMMA 5.1. Given the matrixA € R™*” and its esti- TCP flow records collected at the backbone router of a class-
mate A € R™*" sych thatE(A(z’,j)) = A(i,j) and B university network. Each record in the trace corresponds

Var(A(z’, 4)) = o2 and a setS of sample entries, then to adirectional TCP flow between two hosts with timestamps
indicating when the flow started and finished.
E(SSB = E(SSB = mno? With this traffic trace, we study how the communication
_ patterns between hosts evolve over time, by reading traffic
where SSE= 3, ((A(4,5) — A(i,j))*and records from the trace, simulating network flows arriving
SSE= Tt 2o jyes (A ) —A(i,§))? in real time. We use a wilndow siz_e ak¢ seconds to
construct a source-destination matrix evelky seconds,
Proof. Straightforward - omitted for brevity. where At = 3600 (one hour). For each matrix, the
rows and the columns correspond to source and destination
6 Performance Evaluation IP addresses, respectively, with the value of each entry

In this section, we evaluate both CMD and our mining framé- J) representing the total number of TCP flows (packets)
work, using two large datasets with different charactiesst SNt from thei-th source to the/-th destination during the
The candidates for comparison include SVD and CUR. TRarresponding\t seconds. Because we cannot observe all
evaluation focuses on 1) space requirement, 2) CPU time{i§ flows to or from a non-campus host, we focus on the
Accuracy estimation cost as well as 4) sparsification effedfitranet environment, and consider only campus hosts and
Overall, CMD performs much better than both SVD arlgtra-campus traffic. The resulting trace has over 0.8 anilli

CUR as shown in Figure $0 flows per hour (i.e., sum of all the entries in a matrix)
involving 21,837 unique campus hosts.
[@svo  mcor  oowo Figure 12(a) shows an example source-destination ma-

100%

trix constructed using traffic data generated from 10AM to
11AM on 01/06/2005. We observe that the matrix is in-

80%

oo deed sparse, with most of the traffic to or from a small set of
server-like hosts. The distribution of the entry valuesasyv
skewed (a power law distribution) as shown in Figure 12(b).

Space Time Estimation Cost

, _ . Most of hosts have zero traffic, with only a few of exceptions
Figure 10: Compared to SVD and CUR, CMD achieves lowe hich were involved with high volumes of traffic (ove6®
space and time requirement as well as fast estimation hatbfute flows during that hour). Given such skewed traffic distribu-

that every thing is normalized by the largest cost in tha¢gaty . . .
when achieving 90% accuracy. e.g., The space requiremen{'Sp'We rescale all the non-zero entries by taking the @tur

CMD is 1.5% of SVD, while that of CUR is 70%. ogarithm (actuallylog(z+ 1), to account for: = 0), so that
the matrix decomposition results will not be dominated by a
small number of very large entry values.

5The varjance of SSE aniiS E can also be estimated but requires higher Non-linear scaling the values is verv important: experi
moment ofA. g y1mp : P

6These experiments are based on network traffic dataset wdtracy MeNts on the original, bursty data would actually give excel
90%. Note that the estimation cost is not applicable to SVD. lent compression results, but poor anomaly discovery capa-



bility: the 2-3 most heavy rows (speakers) and columns (B2 The Performance of CMD In this section, we com-
teners) would dominate the decompositions, and everythpaye CMD with SVD and CUR, using static graphs con-
else would appear insignificant. structed from the two datasets. No sparsification process is
required for statically constructed graphs. We vary thgetr
10° approximation accuracy, and compare the space and CPU
time used by the three methods.
Network-SpaceWe first evaluate the space consumption for
three different methods to achieve a given approximation
accuracy. Figure 13(1a) shows the space ratio (to the atigin
matrix) as the function of the approximation accuracy for
S " . hetwork flow data. Note the Y-axis is in log scale. SVD uses
o e e volume the most amount of space (over 100X larger than the original
(a) Source-destination matrix  (b) Entry distribution Matrix). CUR uses smaller amount of space than SVD, but
it still has huge overhead (over 50X larger than the original
space), especially when high accuracy estimation is needed
Figure 12:Network Flow: the example source-destination matrikmong the three methods, CMD uses the least amount of
is very sparse but the entry values are skewed. space consistently and achieves over orders of magnitudes
space reduction.
The reason that CUR performs much worse for high
The DBLP Bibliographic Dataset Based on DBLP accuracy estimation is that it has to keep many duplicate
data [1], we generate an author-conference graph for evegfumns and rows in order to reach a high accuracy, while
year from year 1980 to 2004 (one graph per year). An edgfID decides to keep only unique columns and rows and
(a, ¢) in such a graph indicates that autladras published in scale them carefully to retain the accuracy estimation.
conference during that year. The weight ¢&, c) (the entry Network-Time: In terms of CPU time (see Figure 13(1b)),
(a,c) in the matrixA) is the number of papers published CMD achieves much more savings than SVD and CUR (e.g.,
at conference during that year. In total, there are 428,398 MD uses less 10% CPU-time compared to SVD and CUR
authors and 3,659 conferences. to achieve the same accuracy 90%.). There are two reasons:
The graph for DBLP is less sparse compared with tiigst, CMD compressed sampled rows and columns, and
source-destination traffic matrix. However, we observe trﬁgcond' no expensive SVD is needed on the entire matrix
the distribution of the entry values is still Skewed, altgbu (graph) CUR is as bad as SVD for h|gh accuracy estimation
not as much skewed as the source-destination graph. Igfye to excessive computation cost on duplicate samples. The
itively, network traffic is concentrated in a few hosts, byhajority of time spent by CUR is in performing SVD on the
publications in DBLP are more likely to spread out acrogampled columns (see the algorithm in Figure.6)
many different conferences. DBLP-Space We observe similar performance trends using
the DBLP dataset. CMD requires the least amount of space
Performance Metric We use the following three metrics toamong the three methods (see Figure 13(1a)). Notice that
quantify the mining performance: we do not show the high-accuracy points for SVD, because
Approximation accuracy: This is the key metric that we of its huge memory requirements. Overall, SVD uses more
use to evaluate the quality of the low-rank matrix approxhan 2000X more space than the original data, even with a
mation output. Itis defined as: low accuracy (less thaB0%). The huge gap between SVD
and the other two methods is mainly because: (1) the data
distribution of DBLP is not as skewed as that of network
Space ratio: We use this metric to quantify the requiregow’ thgreforg the low-rank approximation of SVD needs
. . . more dimensions to reach the same accuracy, and (2) the
space usage. It is defined as the ratio of the number OfOUtgil#lension for DBLP (428,398) is much bigger than that for
matrix entries to the number of input matrix entries. So a L 99 .
larger space ratio means more space consumption. network flow (21,837), which implies a much higher cost
o . ; . to store the result for DBLP than for network flow. These
CPU time: We use the CPU time spent in computing the . . .
output matrices as the metric to quantify the computatiori%?uns demonsrates the importance of preserving sparsit
e result.
expense.
All the experiments are performed on the same dedi-

. We use LinearTimeCUR algorithm in [10] for all the compariso
cated server with four 2.4GHz Xeon CPUs and 12GB me[ﬂfere is another ConstantTimeCUR algorithm proposed irj, H@wvever,

ory. For each experiment, we repeat it 10 times, and rep@gtaccuracy approximation of it is too low to be useful ingtice, which is
the mean. left out of the comparison.

destination
entry count

accuracy= 1 — relative SSE
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Figure 13:CMD takes the least amount of space and time to decomposeuheesdestination matrix; the space and time required by
CUR increases fast as the accuracy increases due to theateplicolumns and rows.

On the other hand, the difference between CUR an F 8 e eciacal )
CMD in DBLP becomes smaller than that with network flow s~ 8 8 @ 8 B § 8 7 5 §
trace (e.g., CMD is 40% better than CUR for DBLP insteac 3 ° % o4 B
of an order of magnitude better for network.). The reasmg 1o %3 g 8
is that the data distribution is less skewed. There are few g = ° £, Cl
duplicate samples in CUR. 02 o cuR . 8 ¢ . B
DBLP-Time: The computational cost of SVD is much | e vae , ® oo ®’
higher compared to CMD and CUR (see Figure 13(2b)) °  * samplesize * samplesize
This is because the underlying matrix is denser and the (a) Estimated accuracy (b) Estimation latency

dimension of each singular vector is bigger, which explains

the high operation cost on the entire graph. CMD, again, has

the best performance in CPU time for DBLP data. Figure 14:Accuracy Estimation: (a) The estimated accuracy are
very close to the true accuracy; (b) Accuracy estimatiorfigpers

6.3 Accuracy Estimation In this section, we evaluate themuch faster for CMD than CUR

performance of our accuracy estimation algorithm desdribe

in Section 5.3. Note the estimation of relative SSEs is orgy

; ) 4 Robustness to SparsificatioWe now proceed to
required with CUR_and CMD. For _SVD’ the SSEs can be‘c\"/aluate our framework, beginning with the performance of
computed easily using sum of the singular values.

Using th destinati i | tthe sparsification module. As described in Figure 8, our
_using fhe same source-destination matrix, we plo oposed sparsification constructs an approximate matrix i
Figure 14 (a) both the estimated accuracy and the true

b ing th le si qf timati ad of using the true matrix. Our goal is thus to see how
curacy by varying the sample size used for error esimatigfy, ., accuracy we lose using sparsified matrices, compared
(i.e., number of columns or rows). For every sample size, &i

fith using the t tri tructed from all availabl
repeat the experiment 10 times with both CUR and CM using the true matrix constructed from all availablézda

: use the same source-destination traffic matrix used in
and show all the 20 estimated errors. The targeted Iow-raémgction 6.2. Figure 15 plots the sparsification ratics. ac-

approxmaﬂon accuracy 1 set 80%. We observe that thecuracy of the final approximation output by the entire frame-
estimated accuracies (i.e., computed based on the estim Srk, using the three different methods, SVD, CUR, and

error us_mgl N SS.E) are clos_e to the true accuracylfi- .CMD. In other words, the accuracy is computed with respect
gseq, with the variance dropping quickly as the sample S5 the true adjacency matrix constructed with all updates. W

increases (small vanance): . - also plot the accuracy of the sparsified matrices compared
The time used for estimating the error is linear to tI'{/\e/ith the true matrices. This provides an upper bound as the

sample size (sge Figure 14). We obS(_erve that CMD requi 3t accuracy that could be achieved ideally after spaasific
much smaller time to compute the estimated error than C |

(5 times faster). For both methods, the error estimation can

finish within several seconds. As a comparison, it tak ?space to use for the three different methods. We observe

![cr)]nger than 1{900 _?ﬁcor}ds 0 clpmtpute ?htrtue actculraC)t/t Mt the accuracy of CMD is very close to the upper bound
€ Tlame matn);.. us for applications tha cant ?era §dal case. The accuracies achieved by all three methods do

small amount ot Inaccuracy In accuracy computation, ogif, drop much as the sparsification ratio decreases, suggest

estimation method provides a solution to dramatlcallymaduing the robustness of these methods to missing data. These

the computation latency. results indicate that we can dramatically reduce the number
of raw event records to sample without affecting the acgurac

Once we get the sparsified matrices, we fix the amount



much. Ratio 20% | 40% | 60% | 80% | 100%
Source IP 0.9703 | 0.9830 | 0.9727 | 0.8923 | 0.8700
Destination IP| 0.9326 | 0.8311 | 0.8040 | 0.7220 | 0.6891

08 P
A AR AR ASA ) . . .
QM A/:/H e\% Table 3:Network anomaly detection: precision is high for all spar-
5 < sification ratios (the detection false positive rated. — precision).
§ 0.4
Sparsification
0.2 -A-SVD
-=-CUR
—&-CMD .. . . .
% oz 04 05 _os 1 malicious attacks such as worms. Their scanning activities

sparsification ratio are often associated with further propagating the attack by

Figure 15: Sparsification: it incurs small performance penaltie'sr:'feCtlng other hosts. Hence it is Importar_]t to identify and
for all algorithms. quarantine these hosts accurately a_nql quickly. We propose
to flag a source host as “abnormal”, if its row has a high re-
_ ~construction error.
In summary, CMD consistently out performs traditiongd pnormal destination hosts Examples include targets of
method SVD and the state of art method CUR on all expegienjal of serviceattacks (DoS), or targets dafistributed

ments. Next we will illustrate some applications of CMD igjenjal of servicéDDoS). Hosts that receive abnormal traffic.

practice. An example abnormal destination host is one that has been
o o under denial of service attacks by receiving a high volume
7 Applications and Mining Case Study of traffic from a large number of source hosts. Similarly, our

In this section, we illustrate how CMD and our frameworgriterion is the (column) reconstruction error.
can be applied in practice using two example applicatiofxperimental setup: We randomly pick an adjacency ma-
(1) anomaly detection on a single matrix (i.e.,static trix from normal periods with no known attacks. Due to
graph) and (2) storage, historical analysis, and real-tintee lack of detailed anomaly information, we manually in-
monitoring of multiple matrices evolving over time (i.e.ject anomalies into the selected matrix using the following
dynamic graphs For each application, we perform casmethod: (1Abnormal source hostsiWWe randomly select a
studies using real data sets. source host and then set all the corresponding row entries to
1, simulating a scanner host that sends flows to every other
7.1 Anomaly Detection Given a large static graph, howhost in the network. (Bbnormal destination hostsSimi-
do we efficiently determine if certain nodes are outlieraf thar to scanner injection, we randomly pick a column and set
is, which rows or columns are significantly different thaa tr90% of the corresponding column entriesitpassuming the
rest? And how do we identify them? In this section, weelected host is under denial of service attack from a large
consider anomaly detection on a static graph, with the goamber of hosts.
of finding abnormal rows or columns in the corresponding There are two additional input parameters: sparsifica-
adjacency matrix. CMD can be easily applied for miningpn ratio and the number of sampled columns and rows. We
static graphs. We can detect static graph anomalies usiagy the sparsification ratio fror20% to 100% and set the
the SSE along each row or column as the potential indicateesnpled columns (and rows) to 500.
after matrix decomposition. Performance metrics: We use detection precision as our
A real world example is to detect abnormal hosts frometric. We sort hosts based their row SSEs and column
a static traffic matrix, which has often been an important BBSEs, and extract the smallest number of top ranked hosts
challenging problem for system administrators. Detectifigay £ hosts) that we need to select as suspicious hosts, in
abnormal behavior of host communication patterns can hehger to detect all injected abnormal host (i.e., recdldg%
identify malicious network activities or mis-configuratio with no false negatives). Precision thus equals, and the
errors. In this case study, we focus on the static sourfase positive rate equals— precision.
destination matrices constructed from network traffic (gve ~ We inject only one abnormal host each time. And we
column and row corresponds to a source and destinatimpeat each experiment 100 times and take the mean.
respectively), and use the SSEs on rows and columnsResults: Table 3(a) and (b) show the precision vs. sparsifica-
detect the following two types of anomalies: tion ratio for detectingabnormal source hosendabnormal
Abnormal source hosts Hosts that send out abnormal trafdestination hostsrespectively. Although the precision re-
fic, for example, port-scanners, or compromised “zombiesiiains high for both types of anomaly detection, we achieve
One example of abnormal source hosts are scanners that sehidher precision in detecting abnormal source hosts than
traffic to a large number of different hosts in the systerdetecting the abnormal destinations. One reason is that sca
Scanners are usually hosts that are already compromisedéns talk to almost all other hosts while not all hosts will



launch DOS attacks to a targeted destination. In other wordsring the same period of hour 80 to 100, the percentage of
there are more abnormal entries for a scanner than for a hasi-zero entries is not particularly high. Only when the in-
under denial of service attack. Most of the false positives dectious activity became more prevalent (after hour 10@), w
actually from servers and valid scanning hosts, which candsn see an increase of the number of non-zero entries. Our
easily removed based on the prior knowledge of the netwdramework can thus potentially help detect abnormal events
structure. at an earlier stage.
Our purpose of this case study is not to present the

best algorithm for anomaly detection, but to show the gres gsx 10° 1
potential of using efficient matrix decomposition as a nevng
method for anomaly detection. Such approach may achie\ 3 6
similar or better performance than traditional methods bu 4
without expensive analysis overhead.

Accuracy
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7.2 Time-Evolving Monitoring In this section, we con- 50 100 150 50 100 150
sider the application of monitoring dynamic graphs. Using hours hours
our proposed process, we can dynamically construct and aga) Nonzero entries over time  (b) Accuracy over time
alyze time-evolving graphs from real-time applicationadatrigyre 16: Network flow over time: we can detect anomalies
One usage of the output results is to provide compact storgg&nonitoring the approximation accuracy (b), while traial
for historical analysis. In particular, for every timesi@am method based on traffic volume cannot do (a).
we can store only the sampled columns and rows as well as
the estimated approximation errSiSE; in the format of a DBLP over time: For the DBLP setting, we monitor the ac-
tuple (Cy, Ry, SSE). curacy over the 25 years by sampling 300 conferences (out of
Furthermore, the approximation error (SSE) is usefai659 conferences) and 10 K authors (out of 428K authors)
for monitoring dynamic graphs, since it gives an indicatig¢ach year. Figure 17(b) shows that the accuracy is high ini-
of how much the global behavior can be captured using ti@ly, but slowly drops over time. The interpretation isth
samples. In particular, we can fix the sparsification ratid athe number of authors and conferences (nonzero percentage)
the CMD sample size, and then compare the approximatibareases over time (see Figure 17(a)), suggesting that we
error over time. A timestamp with a large error or a timeeed to sample more columns and rows to achieve the same
interval (multiple timestamps) with a large average errbigh approximation accuracy.
implies structural changes in the corresponding graph, and
is worth additional investigation. 5x10°
To make our discussion concrete, we illustrate the appli &, V\N\/y\w
cation of time-evolving monitoring using both the network 5
traffic matrices and the DBLP matrices.
Network over time: For network traffic, normal host com- g
munication patterns in a network should roughly be simila s 1
to each other over time. A sudden change of approximatio
accuracy (i.e.] — SSFE) suggests structural changes of com-
munication patterns since the same approximation proeedufa) Nonzero entries over time  (b) Accuracy over time
can no longer keep track of the overall patterns. Figure 17:DBLP over time: The approximation accuracy drops
Figure 16(b) shows the approximation accuracy ové€lbwly as the graphs grow denser.
time, using 500 sampled rows and columns without dupli-
cates (out of 21K rows/columns). The overall accuracy re- In summary, our exploration of both applications sug-
mains high. But an unusual accuracy drop occurs during gest that CMD has great potential for discovering patterns
period from hour 80 to 100. We manually investigate into tifd anomalies for dynamic graphs too.
trace further, and indeed find the onset of worm-like hierar-
chical scanning activities. For comparison, we also plet tB Conclusion
percentage of non-zero matrix entries generated each hgir studied the problem of efficiently discovering patterns
over time in Figure 16(a), which is a standard method fghd anomalies from large graphs, like traffic matrices, both
network anomaly detection based on traffic volume or digrthe static case, as well as when they evolve over time. The
tinct number of connections. Although such statistic is refontributions are the following:
atively easier to collect, the total number of traffic ergrie
is not always an effective indicator of anomaly. Notice that
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e New matrix decomposition methodZMD generates
low-rank, sparse matrix approximations. We proved



that CMD gives exactly the same accuracy like CUR[9] P. Drineas, R. Kannan, and M. Mahoney. Fast monte catlo al
but in much less space (Theorem 4.1). gorithms for matrices ii: Computing a low rank approximatio
to a matrix. SIAM Journal of Computing?005.
¢ High-rate time evolving graphsExtension of CMD, [10] P. Drineas, R. Kannan, and M. Mahoney. Fast monte carlo

with careful sampling, and fast estimation of the recon- algorithms for matrices iii: Computing a compressed approx
struction error, to spot anomalies imate matrix decomposition.SIAM Journal of Computing
’ ' 2005.
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