
Less is More: Pay Less Attention in Vision Transformers

Zizheng Pan, Bohan Zhuang*, Haoyu He, Jing Liu, Jianfei Cai
Data Science & AI, Monash University, Australia

{zizheng.pan, bohan.zhuang, haoyu.he, jing.liu1, jianfei.cai}@monash.edu

Abstract

Transformers have become one of the dominant architectures
in deep learning, particularly as a powerful alternative to con-
volutional neural networks (CNNs) in computer vision. How-
ever, Transformer training and inference in previous works
can be prohibitively expensive due to the quadratic complex-
ity of self-attention over a long sequence of representations,
especially for high-resolution dense prediction tasks. To this
end, we present a novel Less attention vIsion Transformer
(LIT), building upon the fact that the early self-attention lay-
ers in Transformers still focus on local patterns and bring
minor benefits in recent hierarchical vision Transformers.
Specifically, we propose a hierarchical Transformer where we
use pure multi-layer perceptrons (MLPs) to encode rich local
patterns in the early stages while applying self-attention mod-
ules to capture longer dependencies in deeper layers. More-
over, we further propose a learned deformable token merg-
ing module to adaptively fuse informative patches in a non-
uniform manner. The proposed LIT achieves promising per-
formance on image recognition tasks, including image classi-
fication, object detection and instance segmentation, serving
as a strong backbone for many vision tasks. Code is available
at https://github.com/zip-group/LIT.

Introduction
Transformers have made substantial strides in natural lan-
guage processing (NLP) (e.g., (Vaswani et al. 2017; Devlin
et al. 2019)) and recently in the computer vision (CV) field
(e.g., (Dosovitskiy et al. 2021; Touvron et al. 2021a)). In-
spired by the pyramid design (Lin et al. 2017a) in CNNs, re-
cent hierarchical vision Transformers (HVTs) (Wang et al.
2021; Liu et al. 2021; Wu et al. 2021; Yan et al. 2021)
divide transformer blocks into several stages and progres-
sively shrink feature maps as the network goes deeper. How-
ever, high-resolution feature maps in the early stages result
in long token sequences, which brings huge computational
cost and memory consumption due to the quadratic com-
plexity of self-attention. For instance, a feature map of size
56 × 56 × 96 costs 2.0G FLOPs in one Multi-head Self-
Attention (MSA) (Vaswani et al. 2017), while the entire
model of ResNet-18 (He et al. 2016) only requires 1.8G
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FLOPs. Such a huge computing cost makes it difficult to
apply Transformers into broad computer vision tasks.

Several emerging efforts have been made to reduce the
computational cost in the early stages of HVTs. For exam-
ple, some works (Wu et al. 2021; Vaswani et al. 2021) reduce
the number of self-attention heads in an MSA layer or fur-
ther decreasing the number of Transformer blocks (Dosovit-
skiy et al. 2021). Another line of works proposes to trade-off
accuracy and efficiency for MSA via heuristic approxima-
tion, such as spatial reduction attention (SRA) (Wang et al.
2021) and shifted window based multi-head self-attention
(SW-MSA) (Liu et al. 2021). There are also studies simply
employ convolutional layers (Srinivas et al. 2021; Graham
et al. 2021) when the resolution of feature maps are consid-
erably large. However, how much the early adoption of self-
attention layers really contributes to the final performance
remains unclear.

In this paper, we present a Less attention vIsion
Transformer (LIT) to address the aforementioned problem
for HVTs. Specifically, we propose to exclusively use MLP
layers to capture local patterns in the early stages while in-
troducing MSA layers with sufficient number of heads to
handle long range dependencies in the later stages. The mo-
tivation comes from two aspects. First, previous studies in
both CNNs and Transformers have shown that shallow lay-
ers focus on local patterns and deeper layers tend to cap-
ture high-level semantics or global relationships (Wu, Su,
and Huang 2019; Hou et al. 2019; Tenney, Das, and Pavlick
2019), arising the question of whether using self-attention
at the early stages is necessary. Second, from the theoreti-
cal perspective, a self-attention layer with sufficient heads
applied to images can express any convolutional layer (Cor-
donnier, Loukas, and Jaggi 2020). However, fewer heads in
an MSA layer theoretically hinder the ability of approximat-
ing a convolutional layer with a large kernel size, where the
extreme case is as expressive as a 1 × 1 convolution that
can be viewed as a standard FC layer applied to each pixel
independently. While recent HVTs adopt very few heads at
the early stages to deliver pyramid representations, we ar-
gue that this is not optimal as such setting introduces high
computational and memory cost but brings minor benefits.

To be emphasized, by exploiting MLP blocks in the
early stages, the model avoids the huge computational cost
and memory footprint arising from self-attention on high-
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resolution feature maps. Moreover, applying self-attention
in the later stages to capture long range dependencies is quite
efficient due to the progressive shrinking pyramid. Our com-
prehensive results show that such a simple architecture de-
sign brings a sweet spot between model performance and
efficiency.

Furthermore, recent HVTs either adopt a standard convo-
lutional layer or a linear projection layer to merge nearby
tokens (Wang et al. 2021; Liu et al. 2021), aiming to con-
trol the scale of feature maps. However, such methods hin-
der the representational power for vision Transformers to
model geometric transformations, considering that not ev-
ery pixel equally contributes to an output unit (Luo et al.
2016). To this end, we propose a Deformable Token Merging
(DTM) module, inspired by deformable convolutions (Dai
et al. 2017; Zhu et al. 2019), where we learn a grid of off-
sets to adaptively augment the spatial sampling locations for
merging neighboring patches from a sub-window in a fea-
ture map. In this way, we can obtain more informative down-
sampled tokens for subsequent processing.

Our contributions can be summarized as follows. First, we
identify the minor contribution of the early MSA layers in
recent HVTs and propose a simple HVT structure with pure
MLP blocks in the early stages. Second, we propose a de-
formable token merging module to adaptively merge more
informative patches to deliver hierarchical representations,
with enhanced transformation modeling capability. Finally,
we conduct extensive experiments to show that the proposed
LIT performs favorably against several state-of-the-art vi-
sion Transformers with similar or even reduced computa-
tional complexity and memory consumption.

Related Work
Vision Transformers. Vision Transformers are models
which adopt the self-attention mechanism (Vaswani et al.
2017) into CV tasks. Recent works towards Vision Trans-
formers either follow a hybrid architecture that combines
convolution and self-attention (Carion et al. 2020; Srini-
vas et al. 2021), or design a pure self-attention architec-
ture without convolution (Parmar et al. 2019; Hu et al.
2019). More recently, Dosovitskiy et al. (Dosovitskiy et al.
2021) propose a Vision Transformer (ViT) which achieves
promising results on ImageNet. Since then, a few subsequent
works have been proposed to improve ViT from different
aspects. For example, some works (Yuan et al. 2021b; Li
et al. 2021) seek to bring locality into ViT as they find ViT
failed to model the important local structures (e.g., edges,
lines). Another line of works aims to explore deeper archi-
tectures (Zhou et al. 2021; Touvron et al. 2021b) by stack-
ing more Transformer blocks. Some studies (Chen et al.
2021a,b) also try to search a well-performed ViT with neural
architecture search (NAS).

There is also a prevailing trend to introduce hierarchi-
cal representations into ViT (Pan et al. 2021; Yuan et al.
2021a; Wang et al. 2021; Liu et al. 2021; Wu et al. 2021;
Heo et al. 2021; Vaswani et al. 2021). To do so, these works
divide Transformer blocks into several stages and downsam-
ple feature maps as the network goes deeper. However, high-
resolution feature maps in the early stages inevitably result

in high computational and memory costs due to the quadratic
complexity of the self-attention module. Targeting at this
problem, Wang et al. (Wang et al. 2021) propose to reduce
the spatial dimensions of attention’s key and value matrices.
Liu et al. (Liu et al. 2021) propose to limit self-attention
in non-overlapped local windows. However, these replace-
ments seek to shrink the global attention maps for efficiency.
In this paper, we elaborately design the shallow layers with
pure MLPs, that are powerful enough to encode local pat-
terns. This neat architecture design keeps the capability for
modelling global dependencies in the later stages while eas-
ing the prohibitively expensive complexity introduced by
high-resolution feature maps, especially in the dense predic-
tion tasks.

Deformable Convolutions. Deformable convolutions
(DC) are initially proposed by Dai et al. (Dai et al. 2017) in
object detection and semantic segmentation tasks. Different
from the regular sampling grid of a standard convolution,
DC adaptively augments the spatial sampling locations with
learned offsets. One following work by Zhu et al. (Zhu
et al. 2019) improves DC with a modulation mechanism,
which modulates the input feature amplitudes from different
spatial locations. With the advantage on modeling geometric
transformations, many works adopt DC to target various CV
problems. For example, Zhu et al. (Zhu et al. 2021) propose
a deformable attention module for object detection. Shim et
al. (Shim, Park, and Kweon 2020) construct a similarity
search and extraction network built upon DC layers for
single image super-resolution. Thomas et al. (Thomas
et al. 2019) introduce a deformable kernel point convolution
operator for point clouds. In this paper, we propose a
deformable token merging module to adaptively merge
more informative image tokens. Unlike previous works that
merge tokens from a regular grid, DTM introduces better
transformation modeling capability for HVTs.

Proposed Method

Overall Architecture

The overall architecture of LIT is illustrated in Figure 1. Let
I ∈ RH×W×3 be an input RGB image, where H and W rep-
resent the height and width, respectively. We first split I into
non-overlapping patches with a patch size of 4× 4, and thus
the initial feature dimension of each patch is 4×4×3 = 48.
Next, a linear embedding layer is exploited to project each
patch into dimension C1, serving as the initial input for the
following pipeline. The entire model is divided into 4 stages.
Letting s ∈ [1, 2, 3, 4] be the index of a stage, we employ Ls

blocks at each stage, where the first two stages solely utilise
MLP blocks to encode local representations and the last two
stages employ standard Transformer blocks (Dosovitskiy
et al. 2021) to handle longer dependencies. At each stage, we
scale the input feature maps into Hs−1

Ps
× Ws−1

Ps
×Cs, where

Ps and Cs represent the patch size and the hidden dimension
at the s-th stage, respectively. For the last two stages, we set
Ns self-attention heads in each Transformer block.
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Figure 1: Overall architecture of LIT. The model is divided into four stages, where we apply MLP blocks in the first two
stages and employ standard Transformer blocks in the last two stages. “DTM” denotes our proposed deformable token merging
module.

Block Design in LIT

As shown in Figure 1, LIT employs two types of blocks:
MLP blocks and Transformer blocks. In the early stages,
we apply MLP blocks. Concretely, an MLP block is built
upon an MLP which consists of two FC layers with
GELU (Hendrycks and Gimpel 2016) non-linearity in be-
tween. For each MLP at the s-th stage, an expansion ratio
of Es is used. Specifically, the first FC layer expands the di-
mension of a token from Cs to Es × Cs, and the other FC
layer reduces the dimension back to Cs. Formally, letting

X ∈ R(
Hs−1
Ps

×Ws−1
Ps

)×Cs be the input of the s-th stage and l
be the index of a block, an MLP block can be formulated as

Xl = Xl−1 +MLP(LN(Xl−1)), (1)

where LN indicates the layer normalization (Ba, Kiros, and
Hinton 2016) and MLP denotes an MLP. In the last stages,
a Transformer block as described in ViT (Dosovitskiy et al.
2021) contains an MSA layer and an MLP, which can be
expressed as

X
′

l−1 = Xl−1 +MSA(LN(Xl−1)), (2)

Xl = X
′

l−1 +MLP(LN(X
′

l−1)). (3)

With this architecture, our model benefits from two main ad-
vantages: First, we avoid the huge computational costs and
memory footprint that are introduced by long sequences in
the early stages. Second, unlike recent works that shrink the
attention maps using sub-windows (Liu et al. 2021) or re-
duce the spatial dimensions of the key and value matrices,
we keep standard MSA layers in the last two stages so as
to maintain the capability of LIT to handle long range de-
pendencies while keeping mild FLOPs due to the pyramid
structure. We will show in the ablation study that our simple
architecture design outperforms the state-of-the-art hierar-
chical ViT variants on ImageNet with comparable FLOPs.

Remark. Here we justify the rationality of applying pure
MLP blocks in the early stages by considering the relation-
ship among a convolutional layer, an FC layer and an MSA
layer. Firstly, we begin with a review of a standard convolu-
tional layer. Let X ∈ RH×W×Cin be the input feature map,
and let W ∈ RK×K×Cin×Cout be the convolutional weight
tensor, where K is the kernel size, Cin and Cout are the input
and output channel dimensions, respectively. For simplic-
ity, we omit the bias term and use Xp,: to represent Xi,j,:,:,
where (i, j) denotes the pixel index and p ∈ [H] × [W ].
Given a convolutional kernel of K ×K sampling locations,
the output for a pixel p can be formulated as

Conv(X)p,: =
∑

k∈[K×K]

Xp+g(k),:Wg(k),:,:, (4)

where g : [K × K] → ∆K is a bijective mapping of sam-
pling indexes onto the pre-specified offsets ∆K . For exam-
ple, let ∆K = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} be a
3 × 3 kernel with dilation 1, then g(0) = (−1,−1) rep-
resents the first sampling offset.

When K = 1, the weight tensor W is equivalent to a
matrix, such that W ∈ RCin×Cout . In this case, Eq. (4) can
express an FC layer, and the output for a pixel p is defined
by

FC(X)p,: = Xp,:W:,:. (5)
Last, let Nh be the number of heads in an MSA layer and
W(h) ∈ RCin×Cout be learnable parameters of the h-th
head. Under a specific relative positional encoding scheme,
Cordonnier et al. (Cordonnier, Loukas, and Jaggi 2020)
prove that the output from an MSA layer at pixel p can be
formulated as

MSA(X)p =
∑

h∈[Nh]

Xp+f(h),:W
(h), (6)

where f : [Nh] → ∆K is a bijective mapping of heads
onto pixel shifts. In that case, Eq. (6) can be seen as an ap-
proximation to a convolutional layer with a kernel size of
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√
Nh ×

√
Nh. We refer detailed explanations to (Cordon-

nier, Loukas, and Jaggi 2020).
From Eqs. (4)-(6), we observe that while an MSA layer

with sufficient heads is able to approximate any convolu-
tional layer, fewer heads theoretically limit the ability of
such approximation. As an extreme case, an MSA layer with
one head is only capable of approximating an FC layer. Note
that an MSA layer is certainly not equivalent to a convolu-
tional layer in practice. However, d’Ascoli et al. (d’Ascoli
et al. 2021) observe that the early MSA layers can learn to
behave convolutional upon training. Considering most re-
cent HVTs (Wang et al. 2021; Wu et al. 2021) adopt very few
heads in the early stages, such convolutional behavior could
be limited within small receptive fields. In Figure 3, we show
in visualizations that the early MSA layers in PVT-S (Wang
et al. 2021) indeed only attend to a tiny area around the query
pixel, while removing them costs a minor performance drop
but achieves significant reduction in model complexity. This
justifies our method of applying pure MLP blocks in the first
two stages without self-attention.

Deformable Token Merging
Previous works on HVTs (Wang et al. 2021; Liu et al. 2021)
rely on patch merging to achieve pyramid feature representa-
tions. However, they merge patches from a regular grid and
neglect the fact that not every patch contributes equally to an
output unit (Luo et al. 2016). Inspired by deformable con-
volutions (Dai et al. 2017; Zhu et al. 2019), we propose a
deformable token merging module to learn a grid of offsets
to adaptively sample more informative patches. Formally, a
deformable convolution is formulated as

DC(X)p,: =
∑

k∈[K×K]

Xp+g(k)+∆g(k),:Wg(k),:,:. (7)

Compared to a standard convolution operation as in Eq. (4),
DC learns an offset ∆g(k) for each pre-specified offset g(k).
Learning ∆g(k) requires a separate convolutional layer,
which is also applied over the input feature map X. To merge
patches in an adaptive manner, we adopt one DC layer in a
DTM module, which can be formulated by

DTM(X) = GELU(BN(DC(X))), (8)

where BN denotes the batch normalization (Ioffe and
Szegedy 2015) and we employ the GELU non-linearity. We
will show in the ablation study that the sampling locations
in DTM are adaptively adjusted when objects’ scales and
shapes change, benefiting from the learned offsets. Also note
that our light-weight DTM introduces negligible FLOPs and
parameters compared to regular grid sampling in baselines,
thus making it a plug-and-play module for recent HVTs.

Experiments
ImageNet Classification
We conduct experiments on ImageNet (ILSVRC2012) (Rus-
sakovsky et al. 2015) dataset. ImageNet is a large-scale
dataset which has ∼1.2M training images from 1K cate-
gories and 50K validation images. We compare with CNN-
based ResNet (He et al. 2016) and Transformer-based mod-
els including DeiT (Touvron et al. 2021a), PVT (Wang et al.

2021) and Swin (Liu et al. 2021). For simplicity, we de-
note them as “Model-Ti/S/M/B” to refer to their tiny, small,
medium and base variants. Similarly, we define four vari-
ants of our LIT models: LIT-Ti, LIT-S, LIT-M and LIT-B.
Detailed architecture specifications are included in the sup-
plementary material. For better comparison, we design LIT-
Ti as a counterpart to PVT-S, where both models adopt the
absolute positional encoding. Our LIT-S, LIT-M and LIT-B
use the relative positional encoding, and these three mod-
els can be seen as competitors to Swin-Ti, Swin-S, Swin-B,
respectively.

Implementation details. In general, all models are trained
on ImageNet with 300 epochs and a total batch size of 1024.
For all ImageNet experiments, training images are resized
to 256× 256, and 224× 224 patches are randomly cropped
from an image or its horizontal flip, with the per-pixel mean
subtracted. We use the single-crop setting for testing. We
use AdamW optimizer (Loshchilov and Hutter 2019) with
a cosine decay learning rate scheduler. The initial learning
rate is 1 × 10−3, and the weight decay is set to 5 × 10−2.
The initial values of learnable offsets in DTM are set to 0,
and the initial learning rate for offset parameters is set to
1×10−5. The kernel sizes and strides in DTM are consistent
with that of patch merging layers in PVT and Swin. For a fair
comparison, we adopt the same training strategies as PVT
and Swin when comparing our models to each of them.

Results on ImageNet. In Table 1, we compare LIT with
several state-of-the-art methods on ImageNet, ImageNet-
Real and ImageNet-V2. In general, all LIT models have
fewer parameters, less FLOPs and faster throughput than
their counterparts without applying any existing efficient
self-attention mechanisms. For memory consumption, at the
training time, we observe LIT-Ti and LIT-S require less
memory than PVT-S and Swin-Ti while things are on the
contrary when comparing LIT-M/B with Swin-S/B. The rea-
son is due to the increased activation memory of standard
MSA layers at the later stages. However, at the testing stage,
LIT models show advantages over baselines as all of them
consume less memory than their counterparts.

In terms of model performance, on ImageNet, LIT-Ti out-
performs PVT-S by 1.3% on the Top-1 accuracy while the
FLOPs is reduced by 0.2G. LIT-S surpasses Swin-Ti by
0.2% with 0.4G less FLOPs. LIT-M achieves on par per-
formance with Swin-S, whereas the FLOPs of LIT-M is
reduced. LIT-B brings 0.1% Top-1 accuracy increase over
Swin-B while using 0.4G less FLOPs. For ResNet and
DeiT, LIT demonstrates better performance when compared
to them with the same magnitude of FLOPs and param-
eters (e.g., ResNet-50 v.s. LIT-S, DeiT-B v.s. LIT-B). On
ImageNet-real, LIT-Ti improves PVT-S by 0.8% on the Top-
1 accuracy, while LIT-S/M/B achieve slightly lower accu-
racy than Swin models. Finally, on ImageNet-V2, LIT mod-
els achieve on par or better performance than PVT-S and
Swin models. Overall, LIT models present competitive per-
formance across the three datasets, challenging the full self-
attention models in recent works.
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Method Params FLOPs Throughput Train Memory Test Memory ImageNet@Top-1 Real@Top-1 V2@Top-1
ResNet-18 12M 1.8G 4,454 2,812 1,511 69.8 77.3 57.1
ResNet-50 26M 4.1G 1,279 8,051 2,908 76.2 82.5 63.3
ResNet-101 45M 7.9G 722 10,710 3,053 77.4 83.7 65.7
DeiT-Ti 5M 1.3G 3,398 2,170 314 72.2 80.1 60.4
DeiT-S 22M 4.6G 1,551 4,550 713 79.8 85.7 68.5
DeiT-B 86M 17.5G 582 10,083 1,939 81.8 86.7 71.5
PVT-Ti 13M 1.9G 1,768 4,316 1,269 75.1 82.2 63.0
PVT-S 25M 3.8G 1,007 6,996 1,356 79.8 85.8 68.4
PVT-M 44M 6.7G 680 9,546 1,506 81.2 86.7 70.1
PVT-L 61M 9.8G 481 13,343 1,637 81.7 87.0 71.2
Swin-Ti 28M 4.5G 961 6,211 1,493 81.3 86.6 69.7
Swin-S 50M 8.7G 582 9,957 1,697 83.0 87.6 72.1
Swin-B 88M 15.4G 386 13,705 2,453 83.3 87.7 72.3
LIT-Ti 19M 3.6G 1,294 5,868 1,194 81.1 86.6 70.4
LIT-S 27M 4.1G 1,298 5,973 1,264 81.5 86.4 70.4
LIT-M 48M 8.6G 638 12,248 1,473 83.0 87.3 72.0
LIT-B 86M 15.0G 444 16,766 2,150 83.4 87.6 72.8

Table 1: Comparisons with several state-of-the-art methods on ImageNet (Russakovsky et al. 2015), ImageNet-Real (Beyer et al.
2020) and ImageNet-V2 matched frequency (Recht et al. 2019). All models are trained and evaluated with the input resolution
of 224× 224. Throughput (imgs/s) is measured on one NVIDIA RTX 3090 GPU, with a batch size of 64 and averaged over 30
runs. Training time and testing time memory consumption is measured with a batch size of 64 in Megabyte (MB).

Model Params FLOPs Top-1 Acc. (%)
PVT-S (Wang et al. 2021) 25M 3.8G 79.8
LIT-Ti* 19M 3.6G 80.4
Swin-Ti (Liu et al. 2021) 28M 4.5G 81.3
LIT-S* 27M 4.1G 81.3

Table 2: Effect of our architecture design principle. * denotes
the LIT model which adopts the same uniform patch merging
strategies as in PVT-S or Swin-Ti.

Model Params FLOPs Top-1 Acc. (%)
PVT-S (Wang et al. 2021) 25M 3.8G 79.8
PVT-S + DTM 25M 3.8G 80.5
Swin-Ti (Liu et al. 2021) 28M 4.5G 81.3
Swin-Ti + DTM 28M 4.5G 81.6

Table 3: Effect of the proposed deformable token merging
module. We replace the uniform patch merging strategies in
PVT-S and Swin-Ti with our DTM.

Ablation Studies
Effect of the architecture design. To explore the effect
of our architecture design principle in LIT, we conduct ex-
periments on ImageNet and compare the architecture of LIT
with two recent HVTs: PVT-S (Wang et al. 2021) and Swin-
Ti (Liu et al. 2021). The results are shown in Table 2. In
general, our architecture improves baseline PVT-S by 0.6%
in Top-1 accuracy while using less FLOPs (3.6G v.s. 3.8G).
For Swin-Ti, our method reduces the FLOPs by 0.4G while
achieving on par performance. It is also worth noting that
the total number of parameters is reduced for both PVT-S
and Swin-Ti. The overall performance demonstrates the ef-
fectiveness of the proposed architecture, which also empha-
sizes the minor benefits of the early MSAs in PVT and Swin.

Effect of deformable token merging. To verify the ef-
fectiveness of our proposed DTM strategy, we replace the
default patch merging scheme in PVT-S and Swin-Ti with
DTM and train the models on ImageNet. The results are
shown in Table 3. We observe that for both models, DTM
introduces negligible FLOPs and parameters while improv-
ing PVT-S and Swin-Ti by 0.7% and 0.3% in terms of the

Figure 2: Visualization of learned offsets by the proposed
deformable token merging modules. Each image shows 43

sampling locations (red dots) in three DTM modules with
2×2 filter. The green rectangle outlines a 32×32 patch of the
original image, which also indicates a regular sampling field
of previous methods. Best viewed in color. More examples
can be found in the supplementary material.

2039



Model Stage Params FLOPs Top-1 (%)
PVT-S 0 25M 3.8G 79.8
PVT-S w/ MSA 0 20M 8.4G 80.9
PVT-S w/ MSA 1 20M 4.5G 80.8
PVT-S w/ MSA 1,2 19M 3.6G 80.4
PVT-S w/ MSA 1,2,3 17M 3.0G 75.0
PVT-S w/ MSA 1,2,3,4 14M 2.8G 66.8

Table 4: Impact of the MSA layers at each stage. Note that
PVT-S has four stages, which adopts SRA at all blocks in-
stead of MSA. Here we denote “w/ MSA” as PVT-S with
standard MSA layers. “Stage” refers to the stages where we
remove all self-attention layers. For example, “1,2” means
we remove the self-attention layers in the first two stages.
Note that “0” means a model without removing any self-
attention layers.

Top-1 accuracy, respectively. Furthermore, we visualize the
learned offsets in Figure 2. As it shows, unlike previous
uniform patch merging strategy where sampled locations
are limited within the green rectangle, our DTM adaptively
merges patches according to objects’ scales and shapes (e.g.,
koala leg, cat tail).

Effect of MSA in each stage. To explore the effect of self-
attention in recent HVTs, we train PVT-S on ImageNet and
gradually remove self-attention layers at each stage. The re-
sults are presented in Table 4. First, after replacing the SRA
layers in PVT-S with standard MSA layers, we observe 1.1%
improvement on the Top-1 accuracy whereas the FLOPs is
almost doubled. Next, by gradually removing MSA layers in
the first two stages, the Top-1 accuracy only drops by 0.1%,
0.5%, respectively. It implies that the self-attention layers in
the early stages of PVT contribute less than expected to the
final performance, and they perform not much better than
pure MLP layers. It can be attributed to the fact that shal-
low layers focus more on encoding local patterns. However,
we observe a huge performance drop when removing self-
attention layers in the last two stages. The results show that
the self-attention layers play an important role in the later
stages and capturing long range dependencies is essential
for well-performed hierarchical vision Transformers.

To better understand the phenomenon, we visualize the at-
tention probabilities for PVT-S without removing any MSA
layers, which are depicted in Figure 3. First, the attention
map at the first stage shows that the query pixel almost pays
no attention to other locations. At the second stage, the re-
ceptive field of the query pixel is slightly enlarged, but sim-
ilar to the first stage. Considering that PVT-S only has one
head at the first stage and two heads at the second stage,
this strongly supports our hypothesis that very few heads in
an MSA layer result in a smaller receptive field, such that a
self-attention layer is almost equivalent to an FC layer. Fur-
thermore, we observe relatively larger receptive fields from
the attention maps of the last two stages. As a large recep-
tive field usually helps to model longer dependencies, this
explains the huge performance drop in Table 4 after we re-
move the MSA layers in the last two stages.

Model
RetinaNet

#P AP AP50 AP75 APS APM APL

R-50 38M 36.3 55.3 38.6 19.3 40.0 48.8
PVT-S 34M 40.4 61.3 43.0 25.0 42.9 55.7
LIT-Ti 30M 41.6 62.8 44.7 25.7 44.4 56.4
R-101 57M 38.5 57.8 41.2 21.4 42.6 51.1
Swin-Ti 39M 41.5 62.1 44.2 25.1 44.9 55.5
LIT-S 39M 41.6 62.7 44.1 25.6 44.7 56.5

Table 5: Object detection performance on the COCO
val2017 split using the RetinaNet framework. “#P” refers
to the number of parameters.

Model
Mask R-CNN

#P APb APb
50 APb

75 APm APm
50 APm

75

R-50 44M 38.0 58.6 41.4 34.4 55.1 36.7
PVT-S 44M 40.4 62.9 43.8 37.8 60.1 40.3
LIT-Ti 40M 42.0 64.9 45.6 39.1 61.9 41.9
R-101 63M 40.4 61.1 44.2 36.4 57.7 38.8
Swin-Ti 48M 42.2 64.6 46.2 39.1 61.6 42.0
LIT-S 48M 42.9 65.6 46.9 39.6 62.3 42.4

Table 6: Object detection and instance segmentation perfor-
mance on the COCO val2017 split using the Mask R-
CNN framework. APb and APm denote the bounding box
AP and mask AP, respectively. “#P” refers to the number of
parameters.

Object Detection and Instance Segmentation on
COCO
In this section, we conduct experiments on COCO 2017 (Lin
et al. 2014) dataset to show the performance of LIT on object
detection and instance segmentation. COCO is a large-scale
dataset which contains ∼118K images for the training set
and ∼5K images for the validation set. For a fair compar-
ison, we evaluate LIT-Ti and LIT-S on two base detectors:
RetinaNet (Lin et al. 2017b) and Mask R-CNN (He et al.
2017). For the experiments with both detectors, we con-
sider CNN-based ResNet (He et al. 2016) and Transformer-
based models including PVT-S (Wang et al. 2021) and Swin-
Ti (Liu et al. 2021). Following common practice (Carion
et al. 2020; Wang et al. 2021), we measure the performance
of all models by Average Precision (AP) in COCO.
Implementation details. All models are trained on 8 V100
GPUs, with 1× schedule (12 epochs) and a total batch size
of 16. We use AdamW (Loshchilov and Hutter 2019) opti-
mizer with a step decay learning rate scheduler. Following
PVT (Wang et al. 2021), the initial learning rates are set to
1×10−4 and 2×10−4 for RetinaNet and Mask R-CNN, re-
spectively. The weight decay is set to 1×10−4 for all models.
Results of Swin-Ti based detectors are adopted from Chu et
al. (Chu et al. 2021). At the training stage, we initialize
the backbone with the pretrained weights on ImageNet. The
training images are resized to the shorter size of 800 pixels,
and the longer size is at most 1333 pixels. During inference,
we fix the shorter side of an image to 800 pixels.
Results on COCO. Table 5 shows the comparisons of dif-
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Figure 3: Attention probabilities of PVT-S with standard MSA layers. For each stage, we visualize the attention map of each
head (columns) at selected blocks (rows). All attention maps are averaged over 100 validation images. Each map shows the
attention probabilities of a query pixel (green rectangle) to other pixels. Darker color indicates higher attention probability and
vice versa. Best viewed in color. We provide visualizations of all blocks in the supplementary material.

ferent backbones on object detection based on RetinaNet.
By comparing LIT with PVT and ResNet counterparts, we
find that our model outperforms both backbones on object
detection in almost all metrics. Similar results can be found
in Table 6, where LIT again surpasses compared methods on
object detection and instance segmentation using the Mask
R-CNN framework.

Semantic Segmentation on ADE20K

We conduct experiments on ADE20K (Zhou et al. 2019) to
show the performance of LIT models on semantic segmen-
tation. ADE20K is a widely adopted dataset for semantic
segmentation, which has ∼20K training images, ∼2K val-
idation images and ∼3K test images. For a fair compari-
son, we evaluate LIT models with Semantic FPN (Kirillov
et al. 2019). Following the common practice in (Wang et al.
2021), we measure the model performance by mIoU.
Implementation details. All models are trained on 8 V100
GPUs, with 8K steps and a total batch size of 16. The
AdamW (Loshchilov and Hutter 2019) optimizer is adopted
with an initial learning rate of 1× 10−4. Learning rate is de-
cayed by the polynomial decay schedule with the power of
0.9. We set the weight decay to 1× 10−4. All backbones are
initialized with the pretrained weights on ImageNet. At the
training stage, we randomly resize and crop the images to
512× 512. During inference, images are scaled to the short
size of 512.
Results on ADE20K. We compare different backbones on
the ADE20K validation set in Table 7. From the results,
we observe that LIT-Ti outperforms ResNet-50 and PVT-
S by 4.6% and 1.5% mIoU, respectively. For LIT-S, our
model again surpasses ResNet-101 and Swin-Ti, with 2.9%
and 0.2% improvement on mIoU, respectively. The overall
performance demonstrates the effectiveness of the proposed
LIT models for dense prediction tasks.

Backbone
Semantic FPN

Params (M) mIoU (%)
ResNet-50 29 36.7
PVT-S 28 39.8
LIT-Ti 24 41.3
ResNet-101 48 38.8
Swin-Ti 32 41.5
LIT-S 32 41.7

Table 7: Semantic segmentation performance with different
backbones on the ADE20K validation set.

Conclusion and Future Work

In this paper, we have introduced LIT, a hierarchical vision
transformer which pays less attention in the early stages to
ease the huge computational cost of self-attention modules
over high-resolution representations. Specifically, LIT ap-
plies MLP blocks in the first two stages to focus on local
patterns while employing standard Transformer blocks with
sufficient heads in the later stages to handle long range de-
pendencies. Moreover, we have proposed a deformable to-
ken merging module, which is learned to adaptively merge
informative patches to an output unit, with enhanced ge-
ometric transformations. Extensive experiments on Ima-
geNet, COCO and ADE20K have demonstrated that LIT
achieves better performance compared with existing state-
of-the-art HVT methods. Future works may include finding
better architectural configurations of LIT with neural archi-
tecture search (NAS) and improving MLP blocks in the early
stages to enhance the capability of LIT to encode local pat-
terns. Besides, one may also consider applying efficient self-
attention mechanisms (Peng et al. 2021; Wang et al. 2020)
in the later stages to achieve better efficiency.
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