
Less Pain, Most of the Gain: Incrementally Deployable ICN

Seyed Kaveh Fayazbakhsh∗, Yin Lin†, Amin Tootoonchian◦,±, Ali Ghodsi‡,∓

Teemu Koponen¶, Bruce M. Maggs†,⋄, K. C. Ng⋄, Vyas Sekar∗, Scott Shenker‡,±

∗Stony Brook University, †Duke University, ◦University of Toronto
±ICSI, ‡UC Berkeley, ∓KTH, ¶VMware, ⋄Akamai

ABSTRACT

Information-Centric Networking (ICN) has seen a significant resur-
gence in recent years. ICN promises benefits to users and ser-
vice providers along several dimensions (e.g., performance, secu-
rity, and mobility). These benefits, however, come at a non-trivial
cost as many ICN proposals envision adding significant complex-
ity to the network by having routers serve as content caches and
support nearest-replica routing. This paper is driven by the simple
question of whether this additional complexity is justified and if
we can achieve these benefits in an incrementally deployable fash-
ion. To this end, we use trace-driven simulations to analyze the
quantitative benefits attributed to ICN (e.g., lower latency and con-
gestion). Somewhat surprisingly, we find that pervasive caching
and nearest-replica routing are not fundamentally necessary—most
of the performance benefits can be achieved with simpler caching
architectures. We also discuss how the qualitative benefits of ICN
(e.g., security, mobility) can be achieved without any changes to the
network. Building on these insights, we present a proof-of-concept
design of an incrementally deployable ICN architecture.

Categories and Subject Descriptors: C.2.6
[Computer-Communication Networks]: Internetworking

Keywords: Internet architecture, information-centric networking

1. INTRODUCTION
While the idea of information- or data-centric networking has

been around for over a decade [5,21,41,46], there has been renewed
interest in the last five years, inspired in large part by the CCN
project [23]. This interest is evident on many fronts: recent papers
on this topic, several workshops and conferences, and interest from
telcos and equipment vendors (e.g., [9, 29]). Furthermore, there
are several future Internet architecture proposals that incorporate or
support ICN as a core building block (e.g., DONA [28], NDN [24],
XIA [22], 4WARD [2], SAIL [37], and COMET [13]).

This departure, both in the earlier and more recent work, from
the host-centric paradigm is motivated by the evolution of Internet
traffic workloads. While the specific drivers have changed—e.g.,
Baccala’s work was motivated by web traffic [5] while more re-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM’13, August 12–16, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2056-6/13/08 ...$15.00.

cent work points to the growth of video traffic—the core tenet of
various ICN proposals has not changed. The insight here is that
a user’s intent is to fetch some data object rather than connect
to a specific host. By decoupling the data a user wants to access
from how the data is delivered, ICN promises several natural bene-
fits. These include: lower response time via pervasive caching and
nearest-replica routing; intrinsic content integrity without external
network-level indicators (e.g., HTTPS); simplified traffic engineer-
ing; and better support for mobility (e.g., [1, 18, 27, 49]).

Unfortunately, these benefits come at a non-trivial cost. Many
ICN proposals envision significant upgrades to the entire network
infrastructure requiring all end hosts and network routers to support
ICN as a first-order primitive. This entails adding content stores to
routers and supporting routing on content names as opposed to IP
addresses. Given that some of the ICN proposals mandate whole-
sale changes to the network infrastructure, it is natural to ask if this
complexity is worthwhile. Specifically, we ask:

• Does ICN provide significant benefits?

• If so, can we achieve the same benefits in a more incremen-
tally deployable fashion within the scope of today’s available
mechanisms?

In order to address these questions, we begin by breaking down
the potential benefits of ICN into two categories. The first class
of quantitative benefits—lower response time and simplified traf-
fic engineering—arise from a combination of a pervasive caching
infrastructure coupled with intelligent nearest-replica routing. The
second class of qualitative benefits stem from the ability to name
content and verify content integrity through the naming scheme
(e.g., self-certified names or digital signatures).

Having thus bisected the potential benefits, we first focus on the
quantitative benefits. Rather than commit to any specific realiza-
tion, we analyze a broad spectrum of ICN architectures along two
key dimensions: cache placement (e.g., edge caches vs. pervasive
caching) and routing (e.g., shortest path to origin servers vs. nearest
replica routing). Using trace-driven simulations, we find that:

• On realistic request traces, the maximum performance gap be-
tween a simple edge-based caching architecture and a full-
fledged ICN architecture (i.e., with pervasive caches and
nearest-replica routing) is at most 9% with respect to response
time, network congestion, and origin server load.

• Nearest-replica routing adds marginal (2%) value over simple
shortest-path routing in ICN (on all metrics).

• Using sensitivity analysis on a range of configuration parame-
ters, we find that the optimistic best-case improvement that ICN
can provide is 17% over the simple edge-caching architecture
(on all metrics).

147

• Simple extensions to edge caching (e.g., doubling the cache
size or enabling local cooperation) reduces even the optimistic
best-case performance gap to less than 6% (on all metrics).

Note that we are not arguing that caching is not useful for typical
workloads. Rather, our observation is that exploiting the benefits of
cacheable workloads is far easier than we imagined. The quantita-
tive benefits of caching largely arise from the fact that some cache
exists; pervasive caching and nearest-replica routing add little value
for the types of heavy-tailed workloads we expect in practice. In
some sense, our work reconfirms (and extends) past results from
the web caching literature to the ICN context (e.g., [7]).

Motivated by these findings, we analyze whether the remaining
qualitative benefits can be achieved in an incrementally deployable
fashion without router-level support. Somewhat surprisingly, we
show that many of these benefits can be achieved using techniques
that are already well known in the content distribution community.
Building on these insights, we provide a reference design of an
incrementally deployable ICN architecture or idICN. idICN is an
application-layer ICN architecture that delivers most of the per-
ceived benefits of ICN in a backwards-compatible fashion, without
requiring any network layer support.

In some sense, this paper is an attempt to analyze the ICN lit-
erature from an end-to-end perspective—significant changes to the
network can be justified only if they offer substantial performance
improvements [38]. We find that most of the benefits, even those
that seem to require changes to the core network infrastructure, can
be achieved in an end-to-end fashion (i.e., implemented at the edge
of the network).

2. BACKGROUND AND MOTIVATION
In this section, we begin with a brief overview of the common

themes underlying different ICN proposals [2, 23, 24, 37]. Then,
we use real request logs to motivate the need to revisit some of the
assumptions about pervasive caching and nearest-replica routing.

2.1 ICN Principles and Benefits
While ICN proposals vary in terminology, implementation, and

APIs to clients and network operators, we identify four main
themes underlying all proposals:

1. Decoupling names from locations: Network applications and
protocols are rearchitected so that communication is based on
content lookup and transfer in contrast to today’s host-centric
abstractions.

2. Pervasive caching: In the limit, every network router also acts
as a content cache. This means that in addition to traditional
forwarding responsibilities, routers also serve requests for con-
tent in their caches.

3. Nearest replica routing: Routing is based on content names
rather than hosts so that requests are routed to the nearest copy
of the content. (In the worst case, this is the origin server host-
ing the content.)

4. Binding names to intent: The content name is intrinsically
bound to the intent of the content publisher and the consumer.
This binding helps users (and routers) to check the integrity and
the provenance of the data without external indicators.

The proposals differ in specific mechanisms they use to achieve
these properties and the specific API they expose [18]. For in-
stance, some proposals prefer opaque identifiers [28] while others
use human-readable hierarchical naming [23]. Our goal in this pa-
per is not to focus on the specific ICN architectures; rather, we want
to analyze the benefits arising from the principles underlying ICN.

Feature
Benefit Decoupling

names from
locations

Pervasive
Caching

Nearest-
replica
routing

Intrinsic
Binding

Latency (§4, §5) X X

Traffic Engg. (§4, §5) X X

Mobility (§6) X X

Ad hoc mode (§6) X X

Security (§6) X X

Table 1: Feature-Benefit Matrix for ICN: the Xshows the key fea-

tures of ICN that contribute to each perceived benefit.

Benefits: For completeness, we enumerate the perceived benefits
of ICN that have been argued in prior work (e.g., [1, 18]):

• Lower response latency: A pervasive caching infrastructure
means that the requests do not necessarily need to traverse the
entire network toward the origin server.

• Simplified traffic engineering: Caching also helps network op-
erators by automatically eliminating content hotspots, which
simplifies the traffic engineering logic necessary to balance net-
work load.

• Security: By elevating content as a first-class citizen, ICN in-
trinsically binds the user’s intent to the eventual data being de-
livered without having to rely on external confirmation of the
provenance or authenticity of the data.

• Mobility: Shifting from host- to content-centric routing also
makes it easier to support mobile clients, as traditional prob-
lems with handoffs, retransmissions, etc., simply go away.

• Ad hoc mode: Another benefit of ICN is the ability of nodes to
communicate and share content without any infrastructure sup-
port. Imagine a user wanting to share a photo between a mobile
phone and a laptop; today we have unwieldy workarounds via
cloud-based services [47]. Further imagine that they are in an
airplane without a wireless network; in this case, they cannot
share the content because they do not have IP working.

• Others: There are other perceived benefits such as DDoS re-
silience [16] and disruption tolerance that are less well ex-
plored. These appear to be specific instances or combina-
tions of the above benefits. For instance, disruption tolerance
seems to be a combination of support for mobility and ad hoc
mode. Similarly, DDoS resilience stems from avoiding content
hotspots and universal caching.

Table 1 summarizes the benefits and the ICN principles con-
tributing to each perceived benefit. We can see that the quanti-

tative performance benefits—low latency and traffic engineering—
essentially arise as a result of the pervasive caching and nearest-
replica routing infrastructure envisioned by ICN solutions. Un-
surprisingly, we find that this is also the topic that has received
the greatest attention in the ICN community.1 The second class
of qualitative benefits such as mobility, security, and support for
ad hoc mode are rooted in the naming-related aspects of ICN (and
to a lesser degree from nearest-replica routing).

2.2 Motivation: Heavy-Tailed Workloads
Many measurement studies have observed heavy-tailed or Zipf

distributions (i.e., the ith popular object has a request probability
proportional to 1

iα
for some α > 0) in request popularities (e.g., [7,

20]). In this section, we use request logs collected from three CDN

1For instance, in the most recent ICN workshop at SIGCOMM
2012, roughly half the papers were related to caching in ICN.

148

(a) US (b) Europe (c) Asia

Figure 1: Request popularity distribution across different geographical locations. While the specific exponent parameters vary slightly across

the different locations, we can see that the popularity distribution is Zipfian.

Location Requests Zipf parameter

US 1.1M 0.99
Europe 3.1M 0.92

Asia 1.8M 1.04

Table 2: Analysis of requests from three CDN cache clusters in

different geographical regions.

vantage points to reconfirm such heavy-tailed behavior in recent
workloads.

Dataset: The CDN serves a diverse workload spanning diverse
content types: regular text, images, multimedia, software binaries,
and other miscellaneous content. We use daily request logs from
three geographically diverse locations. Each log entry contains four
relevant fields: an anonymized client IP, anonymized request URL,
the size of the object, and whether the request was served locally
or forwarded to a remote location.

Figure 1 visually confirms that request popularity is heavy-tailed
and close to a Zipfian distribution; each curve is almost linear on a
log-log plot. While the specific exponents and y-intercepts do vary
slightly across locations and content types, the main takeaway is
that object requests are reasonably approximated by heavy-tailed
Zipfian distributions. Table 2 summarizes the Zipf-fit parameters
for the three locations that we use to guide our simulation study.

Why does Zipf matter? Anecdotal evidence suggests that in the
presence of Zipf workloads, having multiple caching layers or co-
operative caching provide limited improvements [6, 52]. To under-
stand this better, we begin with a simple analysis on a binary tree
topology. We use an analytical optimization model to reason about
the optimal cache management scheme—the best static placement
of objects across the tree nodes given a Zipfian workload. The
workload is a collection of requests, each arriving at a leaf of the
tree chosen at random. Given a request, as long as the current node
does not have the object, the request is forwarded to the parent
node. The root is assumed to host all objects. As a simplifying
assumption, we assume all caches are of the same size.2

A tree is small enough to be amenable to such analysis. At the
same time a tree is instructive because from the view of a content
origin server, the distribution topology is effectively a tree.

2We do not show the full formulation for brevity. The high-level
idea is to solve the problem of deciding where to cache specific
objects and how to assign requests to different caches to minimize
the expected latency (i.e., number of hops traversed by requests) as
an integer linear program.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6

F
ra

c
ti
o
n
 o

f
re

q
u
e
s
ts

 s
e

rv
e

d
Cache level

α = 0.7
α = 1.1
α = 1.5

Figure 2: Utility of different cache levels with a simplified optimiza-

tion model on a binary tree with 6 levels. Level 6 here is the origin

server to which requests are sent on cache misses.

Figure 2 shows the fraction of requests served at each level of
the tree for different request distributions. Here, level 6 denotes the
origin server. We see that the intermediary levels of the tree (i.e.,
levels 2–6) add little value beyond caching at the edge or satisfying
the request at the origin. Consider the setting with α = 0.7. In
this case, the expected number of hops that a request traverses is
0.4 × 1 + . . . + 0.18 × 6 ≈ 3. Now, let us look at an extreme
scenario where we have no caches at the intermediate levels; i.e.,
all of the requests currently assigned to levels 2–6 will be served at
the origin. In this case, the expected number of hops will be 0.4×
1+0.6×6 = 4. In other words, the latency improvement attributed
to universal caching is only 25%. Note that this is actually unfair
to the edge caching approach, as it only has half the total cache
capacity.

We also extended this optimization-driven analysis with another
degree of freedom, where we also vary the sizes of the cache al-
located to different locations. The results showed that the optimal
solution under a Zipf workload involves assigning a majority of the
total caching budget to the leaves of the tree. (We do not show the
detailed results due to space limitations.)

The above reconfirmation that request workloads are Zipf and
our simple tree-based intuition motivate us to evaluate to what ex-
tent pervasive caching and nearest-replica lookup are really neces-
sary to achieve the quantitative benefits of ICN.

3. DESIGN SPACE FOR CACHING
The measurements and simplified analysis from the previous sec-

tion raise the question of whether pervasive caching and nearest-
replica routing are strictly necessary. We do not claim novelty for

149

Origin	

Server	 R1

R3

R4

R2

R5 R7 R6

Origin	

Server	 R1

R3

R4

R2

R5 R7 R6

Content Requests Content Requests

Cache only at Edge Pervasive Caching

Figure 3: Example of two cache placement strategies: caches

placed at select network locations such as at the edge of the net-

work or pervasively throughout the network. The shaded nodes are

routers augmented with content caches while the others are tradi-

tional IP routers.

the general observation that ubiquitous caching may have limited
impact with Zipfian distributions. Our specific contribution here
lies in providing a detailed analysis of caching in an ICN-specific
context, which involves an entire network of caches and name-
based forwarding, and comparing it with more easily deployable
alternatives.

Given the diversity of ICN proposals, we want to avoid tightly
coupling our analysis to any specific architecture. To this end, we
consider a broad design space of caching infrastructures character-
ized by two high-level dimensions:

1. Cache placement: The first dimension of interest is where
caches are located in the network. From the perspective of the
origin server serving content to users, the network looks like
a tree of routers/caches. Figure 3 depicts two possible strate-
gies in this distribution tree. At one extreme, every network
router is also a content cache. Alternatively, we can envision
caches deployed close to the network edge. We can also con-
sider intermediate placement solutions; e.g., due to economic
constraints operators may only install caches at locations that
serve to sufficiently large populations [29]. A related question
here is provisioning the compute and storage capacity of the
various caches. For instance, we can consider a network where
all caches have the same capacity or make the caches propor-
tionally higher for nodes serving larger populations.

2. Request routing: An orthogonal dimension to placement is
how content requests are routed through the network. As rep-
resentative samples, we consider two design points in Figure 4.
In this example, a request for the object C arrives at node R4.
The origin server and possibly some other nodes have copies
of C. In the first case, a request is routed along the tree toward
the origin server until it finds a node with the desired content.
In the second case, we assume that the network routes the re-
quest based on the name toward the closest replica. We can
also consider intermediate strategies. For instance, we can con-
sider cooperative caching within a small search scope to look
up nearby nodes and reverting to shortest-path routing toward
the origin if these lookups fail.

In this paper, we are less concerned with the discovery protocols
used to populate content routing tables [23] or the feasibility of
name-based lookup in high-speed routers [34]. Since our goal is
to evaluate the potential benefits of pervasive caching and nearest-
replica routing, we conservatively assume that routing and lookup
have zero cost.

There is possibly a third aspect of cache resource management.
Given that prior work (e.g., [39]) and our own experiments show

Origin	

Server	 R1

R3

R4

R2

R5 R7 R6

Shortest path to Origin Nearest-replica Routing

Origin	

Server	 R1

R3

R4

R2

R5 R7 R6

C	

C	

C	

C	

Rqst C Rqst C

Figure 4: Example of two request routing strategies: requests are

routed along the shortest path to the origin server and served from

some available content cache along that path or the requests are

routed to the nearest cached copy (e.g., ICN).

that the LRU policy performs near-optimally in practical scenarios,
we use LRU for the rest of this paper. We also tried LFU, which
yielded qualitatively similar results.

4. BENEFITS OF CACHING
In this section, we use simulations to analyze the relative per-

formance of different caching architectures with respect to three
key metrics: (1) response latency; (2) network congestion; and (3)
server load.

Figure 5: An example network topology with four PoP nodes and

their corresponding access trees.

4.1 Setup
We use PoP-level network topologies from educational back-

bones and Rocketfuel [43]. From each PoP-level topology (core

network), we create its corresponding router-level topology by con-
sidering each PoP as the root of a complete k -ary tree [43]. We
refer to this as the access tree. The baseline results presented in
this section use k=2 and set the depth of each access tree to 5. We
study the sensitivity of the results to these parameters in Section 5.
Figure 5 shows an example network topology with four PoPs. We
annotate each PoP with the population of its associated metro re-
gion and assume that the requests at each PoP are proportional to
its population. We assume a homogeneous request stream where
requests at different network locations are drawn from the same
object popularity distribution—we analyze the effect of popularity
spatial skew in the next section.

Requests arrive at the leaves of each access tree. Within each
PoP, the requests arrive uniformly at random at one of the leaf nodes
of that access tree. Each PoP additionally serves as an origin server

for a subset of the set of entire objects; the number of objects it
hosts is also proportional to the population.3 We assume that each

3We also experimented with other models such as uniform origin
assignment and found consistent results.

150

cache has sufficient budget (i.e., storage capacity) to host a certain
number of objects. We use different budget configurations; e.g.,
uniform or proportional to the population. Note that a PoP node
serves two roles: (1) as the root node of an access tree, and (2) as
the origin server for a set of objects. As a regular cache, we assume
the PoP node has a fixed budget, but as an origin server, we assume
it has a very large cache to host all the objects it “owns”.

Representative designs: We choose four representative designs
from the design space described in Section 3:

• ICN-SP: This assumes pervasive cache placement and shortest
path routing toward the origin server. That is, any cache along
the shortest path may respond to the request if it has the object.

• ICN-NR: This extends ICN-SP with nearest-replica-based
routing. Our goal here is not to design new routing strategies
or evaluate the overhead of these content-based routing proto-
cols. We conservatively assume that we can find and route to
the nearest replica with zero overhead.

• EDGE: This is the simplest strategy where we only place
caches at the “edge” of the network. The notion of “edge” de-
pends on other economic and management-related factors and
whether it is viable to operate caches deep inside the network.
We use edge to represent the leaves of our access topology since
our goal is to do a relative comparison between the different
schemes.

• EDGE-Coop: This uses the same placement as EDGE, but
with a simple neighbor-based cooperative strategy. Each router
does a scoped lookup to check if its sibling in the access tree
has the object, and if so, reroutes the request to the sibling.

Cache provisioning: We consider two cache budgeting policies
for setting the cache size Br for each router r . If there are a total
of O objects being requested across the network of R routers, we
assume that the total cache budget of the network is F × R × O ,
for some value of F ∈ [0, 1]. As a baseline, we pick F = 5%
based roughly on the CDN provisioning we observe relative to the
universe of objects each CDN server sees in a day. We vary the
budget parameter in the next section.

Given this total budget, we consider two possible splits:

1. Uniform: Each router r gets a fixed cache capacity to store 5%
of the universe of all objects.

2. Population-proportional: We divide the total budget such that
each PoP gets a total budget proportional to its population and
then divide this budget equally within that access tree.

We have also tried other cache budgeting policies and observed
results that are qualitatively consistent. Due to space constraints,
we do not report the results from those settings.

Note that this method of dividing the budget can be viewed as
unfair to the EDGE and EDGE-Coop settings as they have a total
budget that (for binary trees) is half the capacity of the ICN-SP and
ICN-NR cases. Thus, we also consider a new representative design
EDGE-Norm where we ensure that the total budgets are the same.
That is, we take the EDGE configuration and multiply the budget
of the edge caches by an appropriate constant (for example, 2 in
case of binary trees) to make sure that the total cache capacity is
the same across different representative designs.

All representative designs use LRU for cache management. Each
node on the response path, which starts at the node that the re-
quested object is found (the origin server or a cache) and ends at
the leaf at which the request has arrived, stores the object in addi-
tion to forwarding it towards the client.

For reasons of scalability, we use a request-level simulator and
thus we do not model packet-level, TCP, or router queueing effects.

Since our goal is to understand the relative performance of the dif-
ferent caching architectures at a request granularity, we believe this
is a reasonable assumption. We optimistically assume that ICN-SP
and ICN-NR solutions incur no lookup or discovery overhead when
modeling the response latencies and network congestion.

Having described the simulation setup, we present the baseline
results in the next sub-section.

4.2 Baseline Results
We use trace-driven simulations using the CDN request logs and

corresponding synthetic request logs, which have similar numbers
of requests, objects, and the best-fit Zipf popularity distribution.

For this section, we use the Asia trace from the CDN. We as-
sume that this trace is the universe of all requests. We assign each
request to a PoP with a probability proportional to the correspond-
ing PoP’s population. (We vary the popularity skew across PoPs
in Section 5.) Within each PoP, requests are uniformly distributed
among the leaves.

For the following results, we report normalized metrics w.r.t. to
a system without any caching infrastructure. Thus, we focus on the
improvement in response latency, reduction in network congestion,
and reduction in server load. In each case, a higher value of the
metric implies that caching is more beneficial.

Response latency: We report response latency in terms of the
number of hops between the request and the location from which
it was served. Figure 6(a) shows the percentage improvement in
latency for the four caching architectures (plus EDGE-Norm) in
comparison with a network with no caching (i.e., all requests are
routed to the origin PoP). We make three main observations. First,
the gap between the different caching architectures is quite small
(at most 9%); this is consistent across the different topologies.
Second, EDGE-Coop consistently achieves comparable latency im-
provement relative to ICN-NR with a maximum gap of 3%. Third,
nearest replica routing (ICN-NR) does not offer significant benefits
over ICN-SP.

Figure 7(a) shows the latency improvements for the case of uni-
form budget assignment across PoPs. We see no major change in
the relative performances of the different architectures.

Network congestion: Other parallel work has focused on the in-
teraction between ISP traffic engineering and “content engineer-
ing” and showed that there are natural synergies to be exploited
here [25,35]. Here, we focus on a simpler question of network con-
gestion under different caching architectures. The congestion on a
link is measured simply as the number of object transfers traversing
that link.

Figure 6(b) shows the effectiveness of caching in reducing the
congestion level across the network. We focus on the maximum
congested link in the network. Analogous to the query delay anal-
ysis, the percentage shown in each case indicates the improvement
over the base case with zero budget. Once again, we see that
EDGE-Coop delivers close to the best performance (with a max-
imum gap of 4%) and that the gap between the solutions is fairly
small.4 The success of edge-based approaches in this context is
particularly promising. Unlike nearest-replica routing, caching at
the edge strictly reduces traffic in the core of the network and thus
eliminates any concerns that ISP traffic engineering and content
engineering could be in conflict [25]. Figure 7(b) shows similar
results with uniform budget assignment across PoPs.

4The absolute improvement values for latency are typically lower
than the numbers for the congestion improvement. The reason is
that we are looking at the average in the latency metric and the
maximum in the case of congestion.

151

 0

 20

 40

 60

 80

 100
A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

Q
u
e
ry

 l
a
te

n
c
y
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(a)

ICN-SP
ICN-NR

EDGE
EDGE-Coop
EDGE-Norm

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

C
o
n
g
e
s
ti
o
n
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(b)

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

O
ri
g
in

 s
e
rv

e
r

lo
a
d
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(c)

Figure 6: Trace-based simulations results. Cache budget and origin server allocation are set to be proportional to population. Parts (a), (b),

and (c) show improvements in query latency, congestion, and maximum origin server load, respectively.

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

Q
u
e
ry

 l
a
te

n
c
y
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(a)

ICN-SP
ICN-NR

EDGE
EDGE-Coop
EDGE-Norm

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

C
o
n
g
e
s
ti
o
n
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(b)

 0

 20

 40

 60

 80

 100

A
bi

le
ne

G
ea

nt
Te

ls
tra

S
pr

in
t

V
er

io

Ti
sc

al
i

Le
ve

l3
A
TT

O
ri
g
in

 s
e
rv

e
r

lo
a
d
 i
m

p
ro

v
e
m

e
n
t
(%

)

Topology

(c)

Figure 7: Trace-based simulations results. Cache budget and origin server allocation are set to be uniform across the network. Parts (a),

(b), and (c) show improvements in query latency, congestion, and maximum origin server load, respectively.

Server load: Next, we consider the load on the origin servers (i.e.,
the PoP nodes hosting the objects) in Figure 6(c). The metric we
use here is the percentage reduction in the requests served by the
origin server with the highest observed load in the network (again,
over the base case of no caching). Once again, we see that the
various cache architectures show similar performance: a maximum
performance gap of 9% between EDGE-Coop and ICN-SP and a
2% gap between ICN-NR and ICN-SP. Figure 7(c) shows similar
results with uniform budget assignment as well.

Validating a synthetic request model: Ideally, we would like to
vary the request popularity distribution. One concern is whether
the performance gaps using synthetic request traces are compara-
ble to real traces. That is, in addition to visually and statistically
confirming the distribution fit in the previous section, we want to
ensure that this translates into system-level performance metrics.

To address this issue, for each request trace, we also generate
a synthetic request log with the best-fit Zipf distribution. In Ta-
ble 3 we show the difference between trace-driven and synthetic
request data-driven simulations w.r.t. the performance gap between
ICN-NR and EDGE. The predicted gap of ICN-NR over EDGE in
different topologies (see Table 3) has a maximum value of 1.67%.
The gap w.r.t. congestion and origin server load improvements are
similar and not shown for brevity. These results suggest that using
a Zipf-based synthetic log is a reasonable approximation for a real
trace.

4.3 Key Observations and Implications
In summary, we make three key observations:
• The performance gap between different caching policies on all

three metrics (i.e., query latency, congestion, and server load)
is small (at most 9%).

Performance gap between ICN-NR and EDGE

Topology Trace Synthetic Difference

Abilene 6.89 7.81 0.92

Geant 5.92 6.96 1.04

Telstra 7.44 8.63 1.19

Sprint 7.09 8.76 1.67

Verio 7.40 8.94 1.54

Tiscali 7.11 8.05 0.94

Level3 6.18 7.32 1.14

ATT 7.25 8.04 0.79

Table 3: Comparison of simulation results for query latency on

request traces and synthetic data (with best-fit Zipf).

• The performance gap between ICN-SP and ICN-NR is negli-
gible (at most 2%); i.e., nearest-replica routing adds marginal
value over pervasive caching.

• Cache provisioning (i.e., population-based and uniform) does
not affect the relative performance of the representative de-
signs.

Implications: These results suggest that an “edge” caching de-
ployment provides almost the same benefits to both users and the
network as a universal caching architecture with nearest-replica
routing. This is important because edge deployment is naturally
suited for an incremental deployment path for ICN on two counts.
First, there is an immediate benefit (and incentive) to a group of
users who have a cache server deployed near their access gateways.
Second, and perhaps more crucially, this benefit is independent of
deployments (or the lack thereof) in the rest of the network. This
naturally motivates users to deploy a cache, or a CDN or ISP to
deploy a cache on their behalf, without depending on adoption by
other providers.

152

5. SENSITIVITY ANALYSIS
The results of the last section are based on a fixed configuration

with a specific popularity distribution, cache size, access-tree arity,
etc. In this section, we perform an extensive sensitivity analysis
across different configuration parameters using synthetically gen-
erated request traces. For clarity, we only show results from the
largest topology (AT&T) as the results are similar across topolo-
gies.

Rather than look at all cache architectures, here we focus on the
two extreme points in this section, namely, ICN-NR and EDGE. In
the following results, we report a normalized improvement metric:

RelImprov ICN−NR − RelImprovEDGE

where RelImprov is the improvement over the no-caching scenario
that we mentioned in the previous section. By construction, a pos-
itive value of this measure implies ICN-NR performs better than
EDGE and a negative value implies that EDGE performs better.

For clarity of presentation, we take the following approach in
running the sensitivity analysis. First, we begin by analyzing one
dimension at a time, while retaining the baseline setup from the
previous section for the remaining parameters. Then, we focus on
the combination of parameter(s) that provides the best performance
improvement for ICN-NR.

5.1 Single-Dimension Sensitivity

Zipf parameter α: Figure 8(a) shows that with increasing α, the
gap between EDGE and ICN-NR becomes less positive. This is
intuitively expected—as α increases, popular objects get a larger
share. This reduces the value of pervasive caching and nearest-
replica routing because most of the requests are served from the
edge caches.

Cache budget: Next, we consider the effect of increasing the
cache size in Figure 8(b). As in Section 4, we represent the per-
router cache size as a fraction of the total number of objects being
requested. We see that the maximum improvement that ICN-NR
can provide is around 10% when each cache can store ≈ 2% of
the objects. We also observe an interesting non-monotonic effect
in the performance gap as a function of cache size. The reason is
that with very small caches, none of the caching architectures are
effective. With a sufficiently large cache (> 10%), however, the
edge caches account for a significant fraction of the requests and
thus the marginal utility of interior caches is very low.

Spatial skew: In the previous section, we considered a homoge-
neous request stream where requests at different network locations
are drawn from the same object popularity distribution. There are
likely to be regional differences across request streams at differ-
ent locations. Thus, we explore the effect of spatial skew in Fig-
ure 8(c). A spatial skew of 0 means that the requests at all locations
follow the same global popularity distribution (i.e., objects have a
unique global ranking). A spatial skew of 1, at the other extreme,
implies that the most popular object at one location may become
the least popular object at some other location.5 Figure 8(c) shows
that as the spatial skew increases, ICN-NR outperforms EDGE. In-
tuitively, with a large spatial skew, a less popular object at one lo-
cation may become popular at a nearby location. Thus, caching

5While the specific spatial skew metric we use is not crucial, we de-
fine it for completeness: Suppose there are O objects and P PoPs,
and rop denotes the rank of object o at PoP p. Let So = stdev(rop)
be the standard deviation of ranks of object o across all PoPs. Then,

spatial skew = avg(So)
O

.

arity Latency

gain (%)

Congestion

gain (%)

Origin

load (%)

2 10.29 9.14 6.27

4 9.12 8.28 5.35

8 7.95 7.01 4.66

64 1.76 0.90 0.34

Table 4: Effect of access tree arity on performance gain of ICN-NR

over EDGE.

objects with different popularity distributions across edge locations
inside the network magnifies the benefit of ICN-NR.

Access-tree arity: Our baseline uses a fixed binary tree. Here,
we evaluate how the structure of the access tree impacts the perfor-
mance difference by changing the arity while adjusting the height
of the access trees to keep the total number of leaves per tree fixed.
Table 4 shows that as the access-tree arity increases, the perfor-
mance gap between ICN-NR and EDGE decreases. This is not
surprising: with our cache budgeting mechanism, the ratio of total
cache budget between EDGE and ICN-NR in a tree of arity k is
k−1
k

; with a higher k this ratio comes closer to 1. In some sense,
increasing arity in this case has a similar effect to normalizing the
cache budgets in EDGE-Norm.

Other parameters: For completeness, we mention three other
parameters that might be relevant. First, rather than assume unit
latency cost per hop, we vary the latency model in two ways: (1)
arithmetic progression of latency toward the core and (2) a scenario
where the latency of each hop at the core network is d times higher.
(We pick this latency model to magnify the benefit of ICN-NR.)
Under both models, the maximum performance gap between ICN-
NR and EDGE is less than 2%. This can be explained in part by
the intuition from Section 2.2; the intermediate levels see far fewer
requests.

Second, we vary the request serving capacity. In this case, the
number of queries each node can serve in a certain period of time
is limited. If a request arrives at a cache that is overloaded, this
request is redirected to the next cache on the query path (or the ori-
gin). Again, we see that the maximum performance improvement
of ICN-NR over EDGE in this case is less than 2%.

Finally, we investigated request streams with heterogeneous ob-
ject sizes (as observed in the real traces). This has minimal impact
on our performance results (less than 1%), as we do not see a strong
correlation between an object’s size and its popularity.

We do not present the results for a range of other parameters as
their effects are small compared with the above parameters.

5.2 Best Scenario for ICN-NR
We want to understand under what scenario(s) ICN-NR has the

best performance benefits over EDGE and by how much. To this
end, we begin by ordering the configuration parameters in decreas-
ing order of the magnitude of the relative improvement they yield.
Then, we progressively change one dimension at a time to max-
imize the gap between ICN-NR and EDGE in Figure 9. In the
figure, Baseline is the configuration from Section 4. In each subse-
quent configuration, we change one of the configuration parameters
(while all other parameters maintain their current values) as fol-
lows: (1) Alpha∗ uses α = 0.1; (2) Skew∗ sets the spatial skew to
1; (3) Budget-Dist∗ uses uniform budgeting; and (4) Node-Budget∗

sets the cache sizes to be F = 2% of the number of objects re-
quested. (For completeness, we also tried a brute force exhaustive
enumeration of parameters and found that the best case is identi-
cal to combining the best single-dimensional results.) We see that
with the best combination of parameters, ICN-NR can improve the
performance at most 17% relative to EDGE.

153

-5

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
IC

N
-N

R
o
v
e
r

E
D

G
E

 (
%

)

Zipf α

Delay
Congestion

Origin Server Load

(a) Zipf α

-5

 0

 5

 10

 15

 20

 1e-05 0.0001 0.001 0.01 0.1 1 10 100

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
IC

N
-N

R
o
v
e
r

E
D

G
E

 (
%

)

Individual cache sizes as percentage of total objects

Delay
Congestion

Origin Server Load

(b) Cache budget

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
IC

N
-N

R
o
v
e
r

E
D

G
E

 (
%

)

Spatial skew

Delay
Congestion

Origin Server Load

(c) Spatial skew

Figure 8: Effect of varying different simulation parameters on the performance gap between ICN-NR and EDGE. Here, we consider a fixed

total cache budget across the nodes.

 0

 5

 10

 15

 20

 25

Bas
el
in
e

Alp
ha
*

Ske
w
*

Bud
ge

t-D
is
t.
*

N
od

e-
Bud

ge
t
*

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
IC

N
-N

R
o
v
e
r

E
D

G
E

 (
%

)

Latency
Congestion
Origin-Load

Figure 9: Exploring the best scenario for ICN-NR by progres-

sively setting configuration parameters to yield the maximum per-

formance gap w.r.t. EDGE.

The next question we ask is whether this performance gap is fun-
damental or whether it can be bridged using simple extensions to
EDGE. As we saw in Section 4, cooperation (EDGE-Coop) and
doubling the budget (EDGE-Norm) reduces the gap in the baseline
simulations. Figure 10 shows how several natural extensions to
EDGE bridge the performance gap. In this figure, Baseline refers
to EDGE without any changes; 2-Levels is EDGE augmented with
one more layer of caching (at the level above the edge); Coop
refers to EDGE-Coop; 2-Levels-Coops combines the features of
2-Levels and Coop; Norm refers to EDGE-Norm; Norm-Coop is
a combination of EDGE-Norm and Coop; Double-Budget-Coop is
the same as Norm-Coop with the budget doubled. There are also
two points of reference in the figure: Section-4 is the set of per-
formance measures from Section 4 and Inf-Budget is a scenario
in which both EDGE and ICN-NR have infinite caches (i.e., each
cache has enough space to store O objects). We see that the com-
bination of EDGE-Norm and local cooperation can bring down the
gap to around 6%.

5.3 Key Observations and Implications
The main observations from our sensitivity analysis are:

• The key parameters that effect the relative performance of ICN-
NR over EDGE are Zipf α and spatial skew.

• The best possible performance benefit of ICN-NR over EDGE
(across all metrics) by setting the above parameters to be favor-
able to ICN-NR is only 17%.

-5

 0

 5

 10

 15

 20

Bas
el
in
e

2-
Le

ve
ls

C
oo

p

2-
Le

ve
ls
-C

oo
p

N
or

m
N
or

m
-C

oo
p

D
ou

bl
e-

Bud
ge

t-

C
oo

p Sec
tio

n-
4

In
f-B

ud
ge

t

P
e
rf

o
rm

a
n
c
e
 g

a
in

 o
f
b
e
s
t
s
c
e
n
a
ri
o
 f
o
r

IC
N

-N
R

 o
v
e
r

v
a
ri
a
ti
o
n
s
 o

f
E

D
G

E
 (

%
)

Latency
Congestion
Origin-Load

Figure 10: Bridging the performance gap between the best scenario

for ICN-NR and EDGE via simple extensions to EDGE. We also

show the baseline from Section 4 and a hypothetical infinite cache

setting.

• Simple extensions to EDGE such as putting all the cache at the
edge and enabling local scoped cooperation can reduce even
this best case performance gap to 6%.

• Doubling the edge cache sizes can in fact make EDGE better
than ICN-NR.

Implications: In summary, these observations imply that we can
match the best-case quantitative performance of ICN, and avoid
most of the deployment headaches, merely by increasing the size
of the edge caches or enabling simple cooperative strategies.

6. INCREMENTALLY DEPLOYABLE ICN
Our quantitative results showed that most of the benefits of

caching can be achieved through edge caching. In this section, we
show that the qualitative advantages of ICN (i.e., security, mobility,
and ad hoc mode) are also achievable in an end-to-end fashion (see
Table 1). Here, we outline one possible design of an incrementally
deployable ICN or idICN, where caching as well as the qualita-
tive aspects of ICN are implemented at the edge of the network.
Note that our goal here is not to reinvent CDNs. Rather, we want
a design that is architecturally simpler than today’s CDNs and yet
more incrementally deployable than clean-slate ICN designs. To
this end, we deliberately choose a path that requires only moderate
re-engineering and uses tools that are already available.

154

Our goal in designing idICN is to place the most crucial aspects
of ICN functionality within reach of practical deployments. To-
wards this end, we build upon HTTP, as it already provides a fetch-
by-name primitive (as opposed to IPs fetch-by-hostname). HTTP,
however, comes with a host-centric naming (DNS) and security
model (HTTPS), and requires explicit configuration of proxies. We
remedy the former by using a self-certifying approach to naming,
and the latter by using an existing protocol (WPAD) as a mech-
anism to automatically configure end-hosts to use a nearby edge
proxy. Furthermore, we also show how ad hoc data sharing and
mobility can be practically achieved in idICN.

We show that the qualitative properties from Table 1 can be
achieved via purely end-to-end mechanisms and building on com-
modity technologies that already exist in the content distribu-
tion/HTTP world. We do not claim that idICN is the only feasible
design, or an optimal one, and we intentionally leave open choices
regarding specific algorithms or implementations to the end appli-
cations and administrative domains (ADs).

Figure 11 shows a high-level view of the idICN operation. First,
clients automatically discover the location of the HTTP proxy con-
figuration file as we will see in Section 6.2 (step 1). With the client
configured to use the proxy, the client’s HTTP requests are explic-
itly directed through the proxy cache (without even requiring the
client to perform a name lookup or a per-request connection setup)
(step 2). The cache responds immediately if it has a fresh copy of
the requested object (step 7); otherwise, it queries the name resolu-
tion system (step 3). Using the information from the resolvers, the
proxy sends a request towards the origin server (or replicas) (step
4). If the reverse proxy (deployed by the content provider) does not
already have a fresh copy of the object, it routes the request to the
origin server and receives the content (step 5). The reverse proxy
adds relevant metadata (e.g., to provide content-oriented security)
to the HTTP response and sends it to the proxy (step 6). The proxy
authenticates the content using enclosed digital signatures (see Sec-
tion 6.1) and serves the content to the client (step 7).

To advertise new content, origin servers publish the names of
newly generated contents through the reverse proxy (step P1),
which, in turn, registers the names with the idICN name resolu-
tion system (step P2) as well as DNS (for backward compatibility).
Reverse proxies also generate signatures and a list of policies and
mirrors, cache them, and include them in the HTTP header of their
responses. Finally, thanks to the properties of the idICN names (as
we will discuss shortly), presenting content along with its signature
is sufficient to update the idICN name resolution system. We en-
vision a system similar to SFR [51] to implement name resolution
and registration in idICN—the specific realization is orthogonal to
our goal of achieving the benefits of ICN.

Even though the full benefits of idICN are only available to con-
tent providers and to clients located in ADs that fully adopt idICN,
there are three key advantages regarding its deployment: (1) idICN
leaves the current infrastructure intact, operating in parallel during
the transition to idICN, (2) clients in ADs that support idICN can
still retrieve content from providers that do not support idICN, and
(3) clients in ADs that do not support idICN can retrieve content
from providers that do support idICN.

6.1 Content-Oriented Security
Most ICN designs adopt some form of self-certifying

names [17], where names embed the relevant cryptographic in-
formation such as public keys or their cryptographic hashes. By
signing the content, the principal responsible for the content (i.e.,
the owner of the relevant public key) can prove that the content is
associated with the name. Thus, this model of security is com-

Name Resolution System

Proxy Reverse Proxy

1. Automatic

configuration

2. Content

request by

name

Origin Server

3. Name resolution

P1. Publish

New content

P2. Register new names

7. Response

4. Content request by address

6 Response along with metadata

5. Routing the request and

receiving the response

Figure 11: A high-level view of the idICN operation. The sequence

of steps per request depends on whether the proxy has the requested

content. If it does, only steps 1, 2, and 7 are performed; otherwise,

steps 1 through 7 are taken. In the latter case, if the reverse proxy

has the content, step 5 is skipped. In parallel, the origin server

publishes newly generated contents (steps P1 and P2).

pletely data-oriented; the client can verify its provenance (e.g.,
[17, 30, 42, 51]) irrespective of who provided the data (e.g., CDN,
local cache, or a stranger on the bus). This is in contrast to the cur-
rent security model that tries to secure the data path or end hosts,
and to retrieve the content from a trusted party.

The ICN approach decouples delivery from security and sepa-
rates trust management and verification. It is solely up to clients
to decide which data sources they are going to trust (and how they
such make trust determinations). We believe that this change in
security models is important and long overdue, having been first
proposed almost a decade ago [30, 51].

Content-oriented security can be provided via: (1) extending
HTTP to negotiate and serve required metadata (keys, signa-
tures, etc.), and (2) standardizing a self-certifying naming scheme.
The Metalink HTTP extension [8], S-HTTP [36] (competing with
HTTPS at the time), and HTTPi [40] (an improvement over S-
HTTP to support today’s common use cases) show how to possibly
extend HTTP for this purpose. Moreover, the widespread use of
self-certifying names in peer-to-peer networks (e.g., the use of con-
tent hashes as names in the Magnet URI scheme [31]) shows that
self-certifying names, albeit for static content, are commonplace.
idICN adopts a DONA-style self-certifying flat naming scheme and
the Metalink description format (see [28]). We discuss both next.

Self-certifying names: Our naming scheme must be backwards
compatible with DNS, yet offer the ICN security model. Follow-
ing the lead of numerous existing proposals [44,50,51], we achieve
this using an idICN proxy name resolver under idicn.org with
names of the form name.idicn.org where name is a self-
certifying name. We use names of the form name=L.P where
P is a cryptographic hash of the publisher’s public key and L is a
content label assigned to the content by P.6

Client browsers issue content requests as they do today: by re-
questing an “address”, which in this case is a URI encoded as
L.P.idicn.org. For content to be reachable via DNS, it must
be registered in the new .idicn.org domain. We rely upon a
consortium of entities to host idICN resolvers (e.g., Google, Ya-
hoo!, Microsoft, Akamai, and Verisign). Because the total traf-
fic these resolvers would see is far below what these companies
handle for their normal web services today, we think this is a rea-

6Backward compatibility with DNS does come at a price. Labels
in a domain name are restricted to 63 characters; we cannot support
hashing algorithms with digests > 63 characters (e.g., SHA-512).

155

sonable assumption. These resolvers need only check for crypto-
graphic correctness (rather than rely on any other form of trust); the
.idicn.org namespace will provide a public API allowing any-
one who can sign with P’s private key (or produce an authorizing
signature from P) to register names of the form L.P.idicn.org.
To resolve a request for a particular name, the name resolution sys-
tem first looks for exact matches on L.P and, failing that, looks for
a match for P. Moreover, the entries can point to other resolvers that
can provide more fine-grained resolution (e.g., the basic resolver
might only have an entry for P, which then points to a resolver that
has entries for individual L.P names).

Metadata using metalink/HTTP: In practice, we also need to
provide relevant metadata along with the content; e.g., locations of
replicas or working copies, cryptographic hashes, and digital sig-
natures. To this end, we leverage the Metalink standard [8], which
is an XML-based download description format that provides the
metadata of the named content.7 Metalink-enabled HTTP clients
and proxies understand the relevant HTTP headers (e.g., to verify
the authenticity and integrity of the data, discover faster mirrors,
etc.), while legacy clients simply ignore them.

Together, our naming scheme and metadata embedding enable
the new data-oriented security model. We note that the client or the
proxy should authenticate the content; the latter would put trust on
proxies, while the former would require software changes, requir-
ing incremental deployment.

6.2 Automatic Proxy Configuration
Since idICN is based on HTTP and uses its support for proxies,

now we describe how hosts can automatically discover and connect
to a nearby HTTP proxy without requiring any manual setup. Be-
cause content delivery primitives are baked into the basic ICN ar-
chitecture, there is no need for transparent caching or other “hacks”
that make the network brittle. Moreover, when used in the “broad-
cast” mode, ICN designs can be realized in ad hoc environments
without any explicit management. Fortunately, there are widely
available techniques to address both concerns. idICN provides au-
tomatic proxy configuration via built-in support in browsers and
the OS [14, 33] and relies on Zero Configuration Networking (Ze-
roconf) [53], which enables content sharing in a network with no
infrastructure for address assignment and name resolution.

Client proxy configuration: Hosts in idICN use the Web
Proxy Autodiscovery Protocol (WPAD) [14] to locate a URL
of a Proxy Auto-Config (PAC) file [33]. To support WPAD,
networks need to configure their DHCP or DNS servers to
announce the PAC file location. Once the PAC file is lo-
cated and fetched, the browser invokes the JavaScript function
FindProxyForURL(url, host) contained in the file to de-
termine the proxy to use for a given URL. WPAD and PAC are
widely supported by all major operating systems and browsers [4]
and are extensively used in enterprise networks.

Content sharing in ad hoc mode: For completeness, we also
discuss content sharing without any infrastructure for network con-
figuration and name resolution. We do note that the techniques
required to enable ad hoc operation of idICN are optional and or-
thogonal to the rest of our design.

To support the ad hoc mode, idICN relies on two aspects of Zero-
conf: (1) IP address assignment without obtaining outside informa-
tion (e.g., from a DHCP server) [10, 45], and (2) distributed name
publishing and resolution over multicast using the familiar DNS
interface in the absence of a centralized DNS server (mDNS) [11].

7E.g., see http://releases.ubuntu.com/releases/
12.10/ubuntu-12.10-desktop-amd64.metalink.

Support for IP link-local configuration and mDNS is readily built
in Linux distributions through Avahi8, in OS X and in iOS through
Bonjour9; and several open-source cross-platform implementations
are also available. We note that support for Zeroconf does not re-
quire any changes to the networking devices (e.g., wireless routers)
as long as they are not filtering local multicast traffic.

To show the feasibility of sharing cached content in a network
with limited local connectivity, we prototyped a simple HTTP
proxy (350 lines of Python code) to expose Chrome browser’s
cache over the network when the IP address is link-local. Con-
sumers do not need to do anything to access available content as
long as they have a Zeroconf stack and use mDNS as a fallback
name resolution mechanism. Only users who wish to share their
browser cache need to deploy our prototype. The proxy publishes
an alias for the machine for each domain name with content in the
cache, and serves content out of the Chrome cache if requested.

As an example, consider a case where Alice and Bob are con-
nected to the same network, and Alice has a cached copy of CNN
headlines while Bob is looking for it. Upon acquiring a link-local
IP address, Alice’s ad hoc proxy publishes domain name cnn.com
over mDNS. Bob enters cnn.com to fetch the CNN headlines and
his browser initiates a DNS lookup for cnn.com. Without a con-
figured DNS server to contact, Bob’s name switching service sends
an mDNS query for cnn.com, which resolves to Alice’s machine
address. Bob’s browser now initiates an HTTP connection to Al-
ice’s ad hoc proxy to request cnn.com (via an HTTP GET) that
the proxy serves out of Alice’s browser cache. A limitation of this
scheme, due to its reliance on DNS, is that if different machines
have content for the same domain, only one of them will be able
to publish it. Deployment of the flat names (L.P.idicn.org),
however, addresses this issue.10

6.3 Mobility Support
To support mobility over HTTP, idICN requires applications to,

first, incorporate session management (e.g., via HTTP cookies for
stateful, or byte ranges for stateless, communications) and, second,
update their location using dynamic DNS. With session manage-
ment, applications can seamlessly work upon reconnection. This
form of session management is quite common over HTTP (e.g.,
sessions spanning several days) and may even be a good substrate
for DTN applications. With dynamic DNS updates, mobile servers
must announce their locations. Upon loss of connectivity (e.g., be-
cause of moving the client, the server, or both), the application at-
tempts to re-establish the communication. If the server has moved,
the client’s name lookup resolves to the server’s new IP address.

6.4 Summary
We have outlined a dirty-slate, incrementally deployable design

called idICN, which uses edge caching to gain most of the caching
benefits of ICN, and end-to-end mechanisms to get the key qualita-
tive properties of ICN. The design mainly utilizes previously stan-
dardized and widely used techniques from the past decade, requir-
ing small changes to hosts or their protocols. We believe this is a
key strength of idICN, as it significantly enhances its deployability.

idICN does, however, involve three changes to the Internet: (1)
infrastructure deployment by ADs, which we expect to be a small
barrier given the eagerness of ISPs to enter the CDN arena; (2)
caching behavior, which can be realized on an AD-by-AD basis and
need not be subject to global standards; and (3) actions by content
providers to publish content within idICN, but allowing providers

8http://www.avahi.org/
9http://www.apple.com/support/bonjour/

10Here, documents would be published over mDNS.

156

to adopt idICN independently. At first glance, these may appear
as potential stumbling blocks, but in comparison with clean-slate
ICN designs that require changing every router, every application,
and every networking stack, we believe the changes mandated by
idICN are minimal and incrementally attainable.

To demonstrate the feasibility and ease of use of idICN, we
have developed a prototype for the reverse proxy (generating Met-
alink metadata and signatures) based on the Metalink plugin of the
Apache Traffic Server. We emulate the support for a few web-
sites to show idICN’s operations using legacy clients. Please visit
http://www.idicn.org/ for more information.

7. DISCUSSION

Workload evolution: Internet workloads are in a constant state of
flux. For instance, a combination of technology trends—social net-
works, user-generated content, and smartphones—is creating more
“long-tailed” content [48]. Even if in the worst case, we approx-
imate these trends using a combination of low α and high spatial
skew as in Section 5, the marginal benefit of pure ICN architectures
seems to be low. While we cannot further speculate how this evolu-
tion will play out, this only serves to reiterate the spirit of our work
and parallel efforts to avoid “overfitting” the network infrastructure
to specific workloads [19, 22].

Economic and policy aspects of idICN: As noted elsewhere [18],
there are valid economic (e.g., analytics for providers), legal (e.g.,
serving content with access restrictions), and privacy concerns
(e.g., caches know what you are requesting) surrounding ICN. It
is likely that idICN inherits some of these difficulties as well and
we do not have good answers yet. We do believe, however, that
by scoping the degree of caching and making it easier to attribute
where a request was served from, idICN might simplify solutions
to address some of these concerns. For instance, we know exactly
which caching proxy the resolver redirected a client to; this proxy
can provide the necessary accounting and reporting. These are open
and valid concerns for both ICN and idICN that need to be ad-
dressed in future work.

When is it viable to deploy a cache: Providers need incentives to
deploy caches in idICN (and ICN for that matter) and thus a natural
question here is where in the network should they choose to do
so. Operating a cache involves both fixed upfront costs and several
operational costs (e.g., rack space, bandwidth, power, and cooling).
Based on informal and anecdotal evidence with CDN operators,
a rough rule of thumb is that the lifetime of caching hardware is
roughly 3–5 years and that this cache should serve enough traffic to
be profitable. We speculate that idICN deployment will be driven
by such economic considerations.

What idICN does not provide: We do acknowledge that a clean-
slate ICN architecture may provide other benefits (e.g., broadcast
support or unifying caching and error recovery) that fall outside the
scope if idICN. Our focus in this paper is on the most prominently
perceived benefits of ICN.

For instance, idICN does not attempt to address two less well-
understood benefits of ICN: protection against denial of service and
congestion control. ICN eliminates some simple DoS attacks due
to IP spoofing [16]; the biggest benefit, however, comes from the
caching to defend against request floods. We do not believe that
there is anything fundamental here; the benefit here is simply am-
plifying the effective number of servers similar to commercial ser-
vices that offer DoS protection today [12]. Note that an architecture
based on edge caching, such as idICN, provides approximately the
same hit-ratios as a pervasively deployed ICN, indicating that such
an edge cache deployment can provide much of the same request

flood protection as pervasively deployed ICNs. There is also some
perception that the hop-by-hop flow control of some ICN proposals
(maintaining flow balance) substantially reduces the dependence on
end-to-end congestion control [23]. idICN does not attempt to pro-
vide a clean-slate solution and simply retains standard congestion
control, but with separate congestion management on individual
segments: proxy-to-proxy and proxy-to-host.

8. RELATED WORK
The ICN related work is vast, including at least three ACM SIG-

COMM ICN workshops, two Dagstuhl gatherings, an ICNRG re-
search group, and numerous journal special editions. Covering this
here is impossible due to space constraints. We therefore focus on
the biggest research projects as well as the research papers that are
most relevant to our focus.

DONA consistently uses nearest-replica routing while CC-
N/NDN uses a hybrid of nearest replica (in LANs) and shortest
path to origin (in WANs). Qualitative features, such as intrinsic
binding and naming, can be made to only use end-to-end support
as we suggested. For example, NDN supports both human-readable
names and self-certifying names. The latter could be used in a sim-
ilar fashion to our idICN design.

The PSIRP project and its successor PURSUIT [15] take a dif-
ferent approach based on the publish-subscribe paradigm. Many
of the core contributions of these projects, such as zFilters [26],
will be useful in network architecture designs. The rendezvous
back-end of the project would, however, require major pervasive
changes to the architecture. It can, nevertheless, be deployed in-
crementally; the name resolution service can be implemented in a
way that does not require pervasive caching, nor replacement of the
existing switching infrastructure on the Internet.

The NetInf design from the 4WARD project is also based on
a name lookup resolution mechanism, using a DHT implementa-
tion [2]. We believe that the suggested clean slate design could be
adapted to be deployed in a way that does not require pervasive
caching. Furthermore, their support for an information abstraction
model, which allows multiple different representations of the same
object to exist, is highly useful and can be used in an end-to-end
fashion with architectures like our idICN.

The Serval project is not an ICN, but rather focuses on support-
ing a service-centric network [32]. As such, Serval does not require
a pervasive caching infrastructure. Serval shares many things with
our idICN design, including self-certifying names and much func-
tionality placed on end hosts. In particular, Serval provides details,
such as API design, about how ICNs or service-centric networks
could be integrated into the stack of modern computers.

We are not the first to raise questions about the value and via-
bility of ICN architectures. These include concerns regarding the
scalability of ICN-capable routers [34], the privacy implications of
ICN [3], legal (e.g., access restrictions and copy right conerns [1])
and economic considerations (at an Internet scale deployment [34])
underlying such an infrastructure [1], and the performance benefits
that ICN can provide [18]. While our work follows in this spirit,
our contribution here is two-fold. First, we provide a quantitative

basis to analyze the performance benefits of universal caching and
nearest-replica routing. Second, we provide a reference design for
an incrementally deployable ICN architecture that retains most of
the advantages of hitherto proposed ICNs.

9. CONCLUSIONS
Our work can be viewed as an application of the end-to-

end argument—we should impose significant changes to the net-

157

work only if doing so will offer substantial performance im-
provements [38]. We apply this principle to many of the per-
ceived benefits of ICN architectures. We find that the compo-
nents of ICN that might need drastic changes to the network as
envisioned by some ICN proposals (pervasive caches and nearest-
replica routing) do not appear to be fundamentally necessary. Fur-
thermore, the other components of ICN can be implemented in a
backwards-compatible fashion using techniques that already exist
today. Building on these insights, we presented a roadmap for an
incrementally deployable architecture that can achieve the benefits
of ICN without a forklift upgrade to existing networks.

10. ACKNOWLEDGMENTS
We would like to thank our shepherd David Oran, the SIG-

COMM reviewers, and Zafar Ayyub Qazi for their feedback.
Barath Raghavan contributed significantly to early discussions that
informed the idICN design. This work was supported in part by
NSF grants CNS 1117161 and 1040838, and AFRL grant FA8750-
11-1-0262. Seyed Kaveh Fayazbakhsh was supported in part by a
Renaissance Technologies Fellowship.

11. REFERENCES
[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman. A survey

of information-centric networking. Communications Magazine, IEEE, 50(7),
july 2012.

[2] P. A. Aranda, M. Zitterbart, Z. Boudjemil, M. Ghader, G. H. Garcia,
M. Johnsson, A. Karouia, G. Lazar, M. Majanen, P. Mannersalo, D. Martin,
M. T. Nguyen, S. P. Sanchez, P. Phelan, M. Ponce de Leon, G. Schultz,
M. Sollner, Y. Zaki, and L. Zhao. 4WARD.
http://www.4ward-project.eu/, 2010.

[3] S. Arianfar, T. Koponen, B. Raghavan, and S. Shenker. On preserving privacy in
content-oriented networks. In Proc. SIGCOMM Workshop on ICN, 2011.

[4] Browser Support for PAC and WPAD.
http://findproxyforurl.com/browser-support/.

[5] B. Baccala. Data-oriented networking.
http://tools.ietf.org/html/draft-baccala-data-

networking-00, 2002.

[6] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a needle in
haystack: Facebook’s photo storage. In Proc. OSDI, 2010.

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching and
Zipf-like distributions: evidence and implications. In Proc. INFOCOM, 1999.

[8] A. Bryan, N. McNab, T. Tsujikawa, P. Poeml, and H. Nordstrom.
Metalink/HTTP: Mirrors and Hashes. RFC 6249 (Proposed Standard), June
2011.

[9] Emerging Network Consortium Brings Industries Together to Innovate with
Content-Centric Networking (CCN). http://www.mach.com/en/News-
Events/Press-Room/Press-Releases/Emerging-Network-

Consortium-Brings-Industries-Together-

to-Innovate-with-Content-Centric-Networking-CCN.

[10] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4
Link-Local Addresses. RFC 3927 (Proposed Standard), May 2005.

[11] S. Cheshire and M. Krochmal. Multicast DNS. Technical report, IETF,
December 2011.

[12] CloudFlare security.
http://www.cloudflare.com/features-security.

[13] COntent Mediator architecture for content-aware nETworks (COMET).
http://www.comet-project.org/.

[14] I. Cooper, P. Gauthier, J. Cohen, M. Dunsmuir, and C. Perkins. Web proxy
auto-discovery protocol. Technical report, IETF, May 2001.

[15] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos. Developing information
networking further: From PSIRP to PURSUIT. In Proc. BROADNETS, 2010.

[16] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. DoS and DDoS in named-data
networking. CoRR, abs/1208.0952, 2012.

[17] A. Ghodsi, T. Koponen, J. Rajahalme, P. Sarolahti, and S. Shenker. Naming in
Content-Oriented Architectures. In Proc. SIGCOMM Workshop on ICN, 2011.

[18] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox.
Information-centric networking: seeing the forest for the trees. In Proc.

HotNets, 2011.

[19] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J. Wilcox.
Intelligent design enables architectural evolution. In Proc. HotNets, 2011.

[20] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. YouTube traffic characterization: A
view from the edge, imc. In Proc. IMC, 2007.

[21] M. Gritter and D. R. Cheriton. TRIAD: A New Next-Generation Internet
Architecture. http://www-dsg.stanford.edu/triad/, 2000.

[22] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado, A. Mukundan,
W. Wu, A. Akella, D. G. Andersen, J. W. Byers, S. Seshan, and P. Steenkiste.
XIA: efficient support for evolvable internetworking. In Proc. NSDI, 2012.

[23] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard. Networking named content. In Proc. CoNEXT, 2009.

[24] V. Jacobson, J. D. Thornton, D. K. Smetters, B. Zhang, G. Tsudik, k. claffy,
D. Krioukov, D. Massey, C. Papadopoulos, T. Abdelzaher, L. Wang, P. Crowley,
and E. Yeh. Named Data Networking (NDN) project.
http://named-data.net/techreport/TR001ndn-proj.pdf,
2010.

[25] W. Jiang, R. Zhang-Shen, J. Rexford, and M. Chiang. Cooperative content
distribution and traffic engineering in an ISP network. In Proc. SIGMETRICS,
2009.

[26] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander.
LIPSIN: line speed publish/subscribe inter-networking. In Proc. SIGCOMM,
2009.

[27] D. Kim, J. Kim, Y. Kim, H. Yoon, and I. Yeom. Mobility support in content
centric networks. In Proc. SIGCOMM Workshop on ICN, 2012.

[28] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker,
and I. Stoica. A data-oriented (and beyond) network architecture. In Proc.

SIGCOMM, 2007.

[29] L. Li, X. Xu, J. Wang, and Z. Hao. Information-centric network in an ISP.
http://tools.ietf.org/html/draft-li-icnrg-icn-isp-01,
2013.

[30] D. Mazières, M. Kaminsky, M. F. Kaashoek, and E. Witchel. Separating key
management from file system security. In Proc. SOSP, 1999.

[31] G. Mohr. Magnet uri scheme draft, 2002. http://magnet-
uri.sourceforge.net/magnet-draft-overview.txt.

[32] E. Nordstrom, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Ko, J. Rexford, , and
M. J. Freedman. Serval: An end-host stack for service-centric networking. In
Proc. NSDI, 2012.

[33] Navigator proxy auto-config file format. Netscape Navigator Documentation,
March 1996.

[34] D. Perino and M. Varvello. A reality check for content centric networking. In
Proc. SIGCOMM Workshop on ICN, 2011.

[35] I. Poese, B. Frank, G. Smaragdakis, S. Uhlig, A. Feldmann, and B. Maggs.
Enabling content-aware traffic engineering. ACM SIGCOMM CCR,
42(5):21–28, October 2012.

[36] E. Rescorla and A. Schiffman. The Secure HyperText Transfer Protocol. RFC
2660 (Experimental), August 1999.

[37] Scalable and Adaptive Internet Solutions (SAIL).
http://www.sail-project.eu/.

[38] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2(4), Nov. 1984.

[39] A. Sharma, A. Venkataramani, and R. Sitaraman. Distributing content simplifies
isp traffic engineering. In Proc. SIGMETRICS, 2013.

[40] K. Singh, H. J. Wang, A. Moshchuk, C. Jackson, and W. Lee. Practical
end-to-end web content integrity. In Proc. WWW, 2012.

[41] D. Skeen. Vitria’s publish-subscribe architecture: Publish-subscribe overview.
http://www.vitria.com/, 1998.

[42] D. Smetters and V. Jacobson. Securing Network Content. Technical report,
PARC, October 2009.

[43] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP
topologies with rocketfuel. IEEE/ACM Trans. Netw., 12(1), Feb. 2004.

[44] S. Sun, L. Lannom, and B. Boesch. Handle System Overview. RFC 3650
(Informational), November 2003.

[45] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address
Autoconfiguration. RFC 4862 (Draft Standard), September 2007.

[46] Tibco enterprise message service. http://www.tibco.com/.

[47] Your gadgets are slowly breaking the internet.
http://www.technologyreview.com/news/509721/your-

gadgets-are-slowly-breaking-the-internet/.

[48] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli, N. Laoutaris, and
K. Papagiannaki. Tailgate: handling long-tail content with a little help from
friends. In Proc. WWW, 2012.

[49] C. Tsilopoulos and G. Xylomenos. Supporting diverse traffic types in
information centric networks. In Proc. SIGCOMM Workshop on ICN, 2011.

[50] G. Wachob, D. Reed, L. Chasen, W. Tan, and S. Churchill. Extensible resource
identifier (XRI) resolution version 2.0. Committee Draft, 3, 2008.

[51] M. Walfish, H. Balakrishnan, and S. Shenker. Untangling the Web from DNS.
In Proc. NSDI, 2004.

[52] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Karlin, and H. M.
Levy. On the scale and performance of cooperative web proxy caching. In Proc.

SOSP, 1999.

[53] The IETF Zeroconf Working Group, 2004.
http://datatracker.ietf.org/wg/zeroconf/charter/.

158

