
Less than a Single Pass: Stochastically Controlled Stochastic Gradient

Lihua Lei Michael I. Jordan

University of California, Berkeley University of California, Berkeley

Abstract

We develop and analyze a procedure for
gradient-based optimization that we refer to
as stochastically controlled stochastic gradient
(SCSG). As a member of the SVRG family
of algorithms, SCSG makes use of gradient
estimates at two scales. Unlike most existing
algorithms in this family, both the compu-
tation cost and the communication cost of
SCSG do not necessarily scale linearly with
the sample size n; indeed, these costs are in-
dependent of n when the target accuracy is
small. An experimental evaluation of SCSG
on the MNIST dataset shows that it can yield
accurate results on this dataset on a single
commodity machine with a memory footprint
of only 2.6MB and only eight disk accesses.

1 Introduction

Optimization problems in machine learning are often
solved by algorithms that either make use of full gra-
dients (obtained by processing the entire dataset) or
stochastic gradients (obtained by processing single data
points or mini-batches of data points). The use of
the former provides guarantees of eventual conver-
gence and the latter yields advantages in terms of
convergence rate, scalability and simplicity of imple-
mentation (Hazan et al., 2007; Nemirovski et al., 2009;
Rakhlin et al., 2012). An impactful recent line of re-
search has shown that a hybrid methodology that makes
use of both full gradients and stochastic gradients can
obtain the best of both worlds—guaranteed conver-
gence at favorable rates; (see, e.g. Shalev-Shwartz &
Zhang, 2013; Johnson & Zhang, 2013; Defazio, Bach, &
Lacoste-Julien, 2014; Lin, Mairal, & Harchaoui, 2015;
Allen-Zhu, 2017). The full gradients provide variance
control for the stochastic gradients.

Proceedings of the 20
th International Conference on Artifi-

cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copyright
2017 by the author(s).

While this line of research represents significant
progress towards the goal of designing scalable, au-
tonomous learning algorithms, there remain some inef-
ficiencies in terms of computation. With the definition
of computation and communication cost in Section 2.1,
the methods referred to above require O(n·C(ǫ, d)) com-
putation to achieve an ǫ-approximate solution, where
n is the number of data points, ǫ is a target accuracy
and d is the dimension of the parameter vector. Some
methods incur a O(nd) storage cost (Roux et al., 2012;
Defazio et al., 2014). The linear dependence on n is
problematic in general. Clearly there will be situa-
tions in which accurate solutions can be obtained with
less than a single pass through the data; indeed, some
problems will require a notionally constant number of
steps. This will be the case, for example, if the data
in a regression problem consist of a fixed number of
pairs repeated a large number of times. For determin-
istic algorithms, the worst case analysis in Agarwal
and Bottou (2015) shows that scanning at least a fixed
proportion of the data is necessary; however, learn-
ing algorithms are generally stochastic and real-world
learning problems are generally not worst case. Re-
cently, Woodworth and Srebro (2016) establish a lower
bound for the computational cost of randomized algo-
rithms in minimizing the finite sums. However, their
result only applies to the case in which ǫ << 1√

n
and

the summands are smooth, leaving open the possibility
that smaller computational complexity can be achieved
when these assumptions do not hold.

An equally important bottleneck for learning algo-
rithms is the cost of communication. For large data
sets that must be stored on disk or distributed across
many computing nodes, the communication cost can be
significant, even dominating the computation cost. For
example, classical stochastic gradient descent (SGD)
makes use of random sampling which can incur pro-
hibitive communication cost. There is an active line
of research that focuses on communication costs; (see,
e.g., Zhang, Wainwright, & Duchi, 2012; Jaggi et al.,
2014; Arjevani & Shamir, 2015; Konečnỳ, McMahan,
& Ramage, 2015).

In this article, we present a variant of the stochastic

Less than a Single Pass: Stochastically Controlled Stochastic Gradient

variance reduced gradient (SVRG) method that we
refer to as stochastically controlled stochastic gradient
(SCSG). In contradistinction to SVRG, the theoretical
convergence rate of SCSG has a sublinear regime in
terms of both computation and communication. The
basic idea behind SCSG—that of approximating the
full gradient in SVRG via a subsample—has been ex-
plored by others, but we present several innovations
that yield significant improvements both in theory and
in practice. The performance of SCSG is superior to
related algorithms when ǫ >> 1

n
. This regime is im-

portant in machine learning problems, notably in the
common situation in which the sample size is large,
(n ∈ [104, 109]), while the required accuracy is low,
ǫ ∈ [10−4, 10−2]. The analysis in this article shows that
SCSG is able to achieve the target accuracy in this
regime with less than a single pass through the data.

Although SGD can be shown to incur the same compu-
tational cost as SCSG for non-strongly-convex functions
(for strongly-convex functions we show that SCSG has
a better rate than SGD), it requires tuning the stepsize
based on the information that is unknown in practice,
and it requires fixing the number of steps prior to the
implementation. In other words, without intensive tun-
ing, it is not guaranteed to reach an ǫ-approximate
solution for general convex functions. In contrast, we
propose a simple automatic tuning procedure which
guarantees that SCSG finds an ǫ-approximate solution.

Another line of work explores the convergence of first-
order methods within one pass of data under a stochas-
tic framework; e.g., streaming SVRG (Frostig et al.,
2015) and dynaSAGA(Daneshmand et al., 2016). The
analyses in this framework assume that data points are
independent and identically distributed, an assumption
that is often unrealistic in the streaming setting. In
contrast, SCSG does not make such an i.i.d. assump-
tion; indeed, it does not assume any randomness for the
observed data. Admittedly, it is interesting to explore
SCSG under the i.i.d. framework to understand impli-
cations for generalization error, but such an analysis is
beyond the scope of the current paper.

The remainder of the paper is organized as follows.
In Section 2, we review SVRG, discuss several of its
variants and we describe the SCSG algorithm. We
provide a theoretical convergence analysis in Section 3.
Our analysis involves a data-dependent quantity, Gn,
which is defined at the beginning of Section 3. We show
in Section 4 that Gn is estimable for generalized linear
models. We present an experimental evaluation in
Section 5. In Appendix A we compare the computation
and communication cost with state-of-art methods. All
technical proofs are relegated to the Appendix B. Other
relevant issues are discussed in Appendix C.

2 Assumptions and Algorithm

Throughout this paper we consider the following mini-
mization problem:

min
x∈Rd

f(x) =
1

n

n
∑

i=1

fi(x), (1)

where fi(x) are convex functions. Let x∗ denote a
minimizer of f , x̃0 denote the initial value and D0 =
‖x̃0 − x∗‖2. A point y, possibly random, is called an
ǫ-approximate solution if

Ef(y)− f(x∗) ≤ ǫ.

The following assumptions will be used in various con-
texts in the paper:

A1 fi is convex with L-Lipschitz gradient,

fi(x)− fi(y)− 〈∇fi(y), x− y〉 ≤ L

2
‖x− y‖2,

for some L <∞ and all i ∈ {1, . . . , n};

A2 fi is strongly convex with

fi(x)− fi(y)− 〈∇fi(y), x− y〉 ≥ µ

2
‖x− y‖2,

for some µ > 0 and all i ∈ {1, . . . , n};

A3 f is strongly convex with

f(x)− f(y)− 〈∇f(y), x− y〉 ≥ µ̄

2
‖x− y‖2,

for some µ̄ > 0.

If Assumption A2 holds, then Assumption A3 also
holds with µ̄ ≥ µ. For unpenalized linear regression
where fi(x) = (yi−aTi x)2, Assumption A2 fails to hold
for any i if d > 1. However, f(x) is strongly convex if
1
n

∑n
i=1 aia

T
i is positive definite. On the other hand, an

L2-regularization term is often added to (1) such that
the problem is to minimize f(x)+ µ

2 ‖x‖2 for some µ > 0,
in which case fi(x) can be replaced by fi(x)+µ/2‖x‖2.
Thus, Assumption A2 is also reasonable for practition-
ers and it results in tighter convergence analysis and
a simpler tuning procedure than Assumption A3 (as
shown in Section 3). In the presence of strong convex-
ity, κ = L/µ (resp. L/µ̄) denotes the condition number
under Assumption A2 (resp. A3).

2.1 Computation and Communication Cost

To formally compare the algorithms, we need to de-
fine the computation cost and the communication cost.
In this article we adopt the IFO framework (Agarwal

Lihua Lei, Michael I. Jordan

& Bottou, 2015; Reddi et al., 2016) under which the
sampling of an index i and the evaluation of the pair
(fi(x),∇fi(x)) incurs one unit of computational cost.
Note that we ignore the effect of dimension, treating
it as a constant; if desired, we could multiply the IFO
complexity by dimension to track dimension depen-
dence.

To define the communication cost, we consider two
computational models. In the first model, we have a
single machine and the data is too large to fit into the
memory and has to be stored on the disk. We assume
that accessing one data point from the disk incurs
one unit of communication cost. In the second model,
we consider a distributed system with a datacenter
and multiple worker machines. The data are stored
remotely in the workers and the main computation
tasks are implemented in the datacenter. This setting
has been considered in various recent papers; (see, e.g.,
Zhang et al., 2012; Arjevani & Shamir, 2015; Konečnỳ
et al., 2015). Similar to the first model, we assume
that accessing or sampling one data point from a node
incurs one unit of communication cost. It turns out
that these two models give the same communication
cost for algorithms we consider in this paper and hence
we do not distinguish them in the following discussion.

Algorithm 1 Stochastic Variance Reduced Gradient
(SVRG) Method

Inputs: Stepsize η, number of stages T , initial iterate
x̃0, number of SGD steps m.
Procedure

1: for j = 1, 2, · · · , T do

2: gj ← ∇f(x̃j−1) =
1
n

∑n
i=1∇fi(x̃j−1)

3: x0 ← x̃j−1

4: Nj ← m
5: for k = 1, 2, · · · , Nj do

6: Randomly pick ik ∈ {1, . . . , n}
7: νk−1 ← ∇fik(xk−1)−∇fik(x0) + gj
8: xk ← xk−1 − ηνk−1

9: end for

10: x̃j ← xNj

11: end for

Output: (Option 1): x̃T (Option 2): x̄T =
1
T

∑T
j=1 x̃j .

2.2 SVRG and Other Related Works

The stochastic variance reduced gradient (SVRG)
method blends gradient descent and stochastic gra-
dient descent, using the former to control the effect
of the variance of the latter (Johnson & Zhang, 2013).
We summarize SVRG in Algorithm 1.

Using the definition from Section 2.1, it is easy to see

that the computation cost of SVRG is O((n +m)T).
Each step of SVRG involves accessing all data points
to compute the full gradient, which incurs a commu-
nication cost of n, and sampling m data points for
stochastic gradient descent, which incurs a communi-
cation cost of m. Thus, the total communication cost
is O((n+m)T). As shown in the convergence analysis
of (Johnson & Zhang, 2013), m is required to be Ω(κ)
to guarantee convergence. Thus, the computation and
communication cost of SVRG are both O((n+ κ)T).

A number of variants of SVRG have been studied. For
example, a constrained form of SVRG can be obtained
by replacing line 8 with a projected gradient descent
step (Xiao & Zhang, 2014). A mini-batch variant of
SVRG arises when one samples a subset of indices in-
stead of a single index in line 6 and updates the iterates
by the average gradient in this batch in line 7 (Nitanda,
2014). Similarly, we can consider implementing the full
gradient computation in line 2 using a subsample. This
is proposed in Harikandeh et al. (2015), which calcu-
lates gj as 1

B

∑

i∈I ∇fi(x̃) where I is a subset of size B
uniformly sampled from {1, . . . , n}. Harikandeh et al.
(2015) heuristically show the potential for significant
complexity reduction, but they only prove convergence
for B = Ω(n) and under the stringent condition that
‖∇fi(x)‖ is uniformly bounded for all x. Similar to
Nesterov’s acceleration for gradient descent, momen-
tum terms can be added to the SGD steps to accelerate
SVRG (Nitanda, 2016; Allen-Zhu, 2017).

Much of this work focuses on the strongly convex case.
In the non-strongly convex setting one way to proceed
is to add a L2 regularizer λ

2 ‖x‖2. Tuning λ, however, is
subtle and requires multiple runs of the algorithm on a
grid of λ (Allen-Zhu & Yuan, 2016). For general convex
functions an alternative approach has been presented
by Allen-Zhu and Yuan (2016) (they generate Nj by a
different scheme in line 4), who also establish a compu-
tation rate O

(

n
ǫ

)

. Another approach is discussed by
Reddi et al. (2016), who establish convergence for non-
strongly convex functions (and non-convex functions
with Lipschitz gradient) by considering a weaker stop-
ping criterion based on E‖∇f(xk)‖2. However, their
algorithm relies on calculating a full gradient, involves
a complicated stepsize-setting scheme and requires a
strong assumption that the ‖∇fi(x)‖ are uniformly
bounded. Other variants of SVRG have been proposed
in the distributed computing setting (Lee et al., 2015;
Reddi et al., 2015) and in the stochastic setting (Frostig
et al., 2015; Daneshmand et al., 2016).

2.3 SCSG

SCSG is similar to the algorithm by Harikandeh et al.
(2015) in that it implements the gradient computation
on a subsample I of size B. However, there are three

Less than a Single Pass: Stochastically Controlled Stochastic Gradient

key differences:

• For non-strongly convex functions, Nj is gener-
ated from a geometric distribution with failure
probability γ = 1

B
(line 4 of Algorithm 1);

• For strongly convex functions, Nj is generated
from a truncated geometric distribution with
P (Nj = k) ∝ γk, ∀k ∈ {1, . . . ,m} (with γ and
m as determined in Algorithm 3 below);

• The data point index is generated from I instead
of {1, . . . , n} (line 6 of Algorithm 1).

The final point is of particular importance in a practical
implementation. By restricting the stochastic gradient
step to the batch I, an iteration of SCSG needs only to
load that batch into the memory; this can be feasible
on a laptop even for large datasets.

We present SCSG in Algorithm 2 and present the
method for setting parameters in Algorithm 3.

Algorithm 2 Stochastically Controlled Stochastic Gra-
dient (SCSG) Method

Inputs: Stepsize η, batch size B, number of stages
T , initial iterate x̃0.
Initialization: Get distribution P by Algorithm 3.
Procedure

1: for j = 1, 2, · · · , T do

2: Uniformly sample a batch Ij ⊂ {1, · · · , n} with
|Ij | = B

3: gj ← 1
B

∑

i∈Ij
∇fi(x̃j−1)

4: x0 ← x̃j−1

5: Generate Nj ∼ P
6: for k = 1, 2, · · · , Nj do

7: Randomly pick ik ∈ Ij
8: νk−1 ← ∇fik(xk−1)−∇fik(x0) + gj
9: xk ← xk−1 − ηνk−1

10: end for

11: x̃j ← xNj

12: end for

Output: (Strongly convex case): x̃T (Non-strongly

convex case): x̄T = 1
T

∑T
j=1 x̃j .

The average computation cost of SCSG is BT +
∑n

j=1 Nj . By the law of large numbers, this is close to
O((B + EN1)T), which has a similar form to SVRG.
Table 1 in Appendix A summarizes the complexity of
SCSG as well as 11 existing popular algorithms. The
conclusion is that SCSG and SGD are the only two
methods which could find an ǫ-approximate solution
with less than a single pass of data.

For the general convex case, as discussed in Section 1,
SCSG requires much less tuning than SGD and SCSG

does not require fi to be Lipschitz. For the strongly
convex case (Assumption A3), SCSG has a complexity
of O

((

1
ǫ
+ κ
)

log 1
ǫ

)

, which is strictly less than that

of SGD, which is O
(

κ
ǫ
log 1

ǫ

)

. In both cases, SCSG
outperforms SGD in terms of computation and amount
of tuning.

On the other hand, all of the other methods in Table
1 have a communication cost that is the same as the
computation cost since they all sample the stochastic
gradient index uniformly from {1, . . . , n} and hence
needs to communicate with disk/worker machines. In
contrast, SCSG is communication-avoiding since it only
needs to communicate when calculating gj (line 3) and
the ensuing SGD steps do not incur communication
costs since the batch is fit into the memory. As shown
in Table 2 the communication cost of SCSG is free of n
and even free of the condition number κ. In other words,
in contrast to most other methods, ill-conditioned prob-
lems do not overload the communication.

One might argue that the methods listed in Table 1 are
not designed for communication efficiency. To make a
comparison to algorithms that explicitly aim for com-
munication efficiency, we consider CoCoA (Jaggi et
al., 2014), DANE (Shamir et al., 2014) and DiSCO
(Zhang & Lin, 2015), and present the results in Table
2 in Appendix A. We found that these methods all
involve a tradeoff between the computation cost and
communication cost, controlled by the number of work-
ers, and at least one of them will depend on the sample
size even when ǫ is large. In contrast, SCSG is able to
control the communication cost and the computation
cost simultaneously to be independent of the sample
size and the number of the worker machines . We will
discuss it in more details in Appendix A.

Finally, in contrast to many existing proposals, our
tuning procedure is straightforward. Generally, only
η and B need to be tuned and a default stepsize is
given in Algorithm 3. For certain problems such as
generalized linear models, the block size B can also
be set automatically. Furthermore, Algorithm 2 is
guaranteed to reach an ǫ-approximate solution with
our recommended set of parameters, regardless of the
initial iterate x̃0 (a better initial value will accelerate
the algorithm by a constant factor). In addition, the
stepsize η does not depend on the number of stages T .
Thus, the parameters T and x̃0 are not essential. This
is in contradistinction to SGD, which depends crucially
on these parameters to achieve the same convergence
rate as SCSG (for the general convex case).

3 Convergence Analysis

In this section we present a convergence analysis of
SCSG. Note that SCSG is similar to SVRG when B = n.

Lihua Lei, Michael I. Jordan

Our theoretical results are similar to those for SVRG
in this case; our focus, however, is the case in which
B < n, where additional sampling variation enters in.
To capture the effect of such variation we define the
following quantity:

Gn =
1

n

n
∑

i=1

‖∇fi(x∗)‖2, (2)

where ‖ · ‖ denotes the L2 norm. We then have the
following lemma.

Lemma 1 Let I ∈ {1, · · · , n} be a random sub-
set of size B, and define the random variable g =
1
B

∑

i∈I ∇fi(x∗). Then Eg = 0 and

E‖g‖2 =
(n−B)Gn

(n− 1)B
.

The proof, which appears in Appendix B.1, involves
a standard technique for analyzing sampling without
replacement. Note that the extra variation vanishes
when B = n and in general is inversely proportional to
the batch size. To further control the variance, we need
to bound Gn. Obviously, Gn is bounded if ‖∇fi(x)‖ is
uniformly bounded as is often assumed in the literature.
However, via a more refined analysis, we can discard
this stringent condition and only require Assumption
A1. The next lemma provides a bound on Gn; the
proof appears in Appendix B.1.

Lemma 2 Under Assumption A1, for any x ∈ R
d,

Gn

L2
≤ 2

L2n

∑

‖∇fi(x̃0)‖2 + 4‖x̃0 − x∗‖2.

If further f(x) ≥ B is bounded below by B ∈ R, then

Gn

L2
≤ 2

L2n

∑

‖∇fi(x̃0)‖2 + 4(f(x̃0)−B).

In practice, the loss function is non-negative and
Lemma 2 provides a way to estimate Gn. This es-
timate can be significantly improved in special cases
such as Generalized Linear Models. Generally, Gn has
the same order as L2D0 and we should treat it as O(1)
if D0 is treated as O(1); see Section 4 for a thorough
discussion.

3.1 Non-Strongly Convex Case

Our convergence result for non-strongly convex func-
tions is stated in Theorem 1. This theorem is stated
for arbitrary γ ∈ (0, 1); the choice in Algorithm 3 is a
special case.

Theorem 1 Assume A1 holds. Let D0 = ‖x̃0 − x∗‖2
and η = θ

L
,

Algorithm 3 Initialization of SCSG

Inputs: Stepsize η, batch size B.
Optional Inputs: gradient Lipschitz constant L,
strong convexity modulus µ.
Procedure:

if µ is unknown then

γ ← B−1
B

;
P ← geometric distribution with P({k}) ∝ γk−1;

else

if L is known then

γ ← 1− ηµ,m = ⌈ 1
2Lµη2 ⌉;

else

γ ← √1− ηµ,m =
⌈

log(1
1−γ

)/ log(γ
1−ηµ

)
⌉

;

end if

P ← truncated geometric distribution on
{1, . . . ,m} with P({k}) ∝ (γ/(1− ηµ))k

end if

Output: Distribution P.

1. If B = n and θ ∈ (0, 1
2), then

E(f(x̄T)− f(x∗)) ≤ 1

T
· LD0

2θ(1− 2θ)γ
;

2. If B < n and θ ∈ (0, 1
2), then

E(f(x̄T)−f(x∗)) ≤ C1
1

T
·LD0

θγ
+C2

θ

γ

(n−B)

(n− 1)B
·Gn

L
,

for some C1 and C2, which only depend on θ. In
particular, when θ < 1

5 , we have C1, C2 ≤ 2.5.

Corollary 1 Assume A1 holds and select the batch
size B, number of stages T and decay rate γ such that

B ≥ min

{

n,

⌈

10θ

ǫ
· Gn

L

⌉}

, γ =
B − 1

B
, T ≥

⌈

5D0

θγ
·L
ǫ

⌉

.

Letting η = θ
L

with θ ∈ (0, 1
5), then E(f(x̄T)−f(x∗)) ≤

ǫ with

ECcomp = O

(

min

{

n,
Gn

L2
· L
ǫ

}

D0L

ǫ

)

,

ECcomm = O

(

min

{

n,
Gn

L2
· L
ǫ

}

D0L

ǫ

)

.

3.2 Strongly Convex Case

First we assume that f(x) is strongly convex in the
sense that the Assumption A2 holds. Our main result
in this case is stated in Theorem 2 for arbitrary decay
rate γ ∈ [1−ηµ, 1) and truncation parameter m (again
the specific choices in Algorithm 3 are a special case).

Theorem 2 Assume A1 and A2. Let D0 = ‖x̃0 −
x∗‖2 and η = θ

L+µ
. Assume that one of the following

conditions holds:

Less than a Single Pass: Stochastically Controlled Stochastic Gradient

(i) γ > 1− ηµ, m ≥ log
(

1
1−γ

)

/

log
(

γ
1−ηµ

)

,

(ii) γ = 1− ηµ, m ≥ 1
2Lµη2 .

Then

1. if B = n and θ ∈ (0, 1
2),

E(f(x̃T)− f(x∗)) ≤ 10LD0 · (2θ)T−1;

2. if B < n and θ ∈ (0, 1
2),

E(f(x̃T)− f(x∗)) ≤ 10LD0 · (2θ)
T
2
−1

+C3θ
(n−B)

(n− 1)B
· Gn

L
.

for some C3, which only depends on θ. In particu-
lar, when θ < 1

5 , C3 ≤ 20.

Similar to the non-strongly convex case, we can derive
the computation and the communication cost of SCSG.
Corollary 2 summarizes the result for fixed θ with
uniform sampling (γ = 1− µη).

Corollary 2 Assume A1 and A2. Let κ = L
µ

denote

the condition number and θ ∈ (0, 1
5). Select the param-

eters such that

B ≥ min

{

n,

⌈

40θ

ǫ
· Gn

L

⌉}

, γ = 1−ηµ,m =

⌈

1

2Lµη2

⌉

;

T ≥
⌈

log

(

10D0L

θǫ

)/

log

(

√

1

2θ

)

⌉

,

Then E(f(x̃T)− f(x∗)) ≤ ǫ and

ECcomp = O

((

n ∧ Gn

L2
· L
ǫ
+ κ

)

log
D0L

ǫ

)

,

ECcomm = O

((

n ∧ Gn

L2
· L
ǫ

)

log
D0L

ǫ

)

.

One might argue that the analysis in this section re-
quires each fi to be strongly convex in contrast to much
of the literature which only requires f to be strongly
convex. We also establish the result by only assuming
A3 and state the analysis in Appendix C due to the
constraint of length. However, unlike our analysis in
Section 3.1 and Section 3.2, in this case the parameters
are complicated and depend on the condition number
κ̄ , L

µ̄
which is hard to obtain in practice. We should

emphasize that other methods such as SVRG also face
this problem. In particular, SVRG requires

1

µ̄η(1− 2Lη)m
+

2Lη

1− 2Lη
< 1,

which implies that m � κ̄. Thus intensive tuning is
required to achieve the theoretical rate. If a case arises
in practice in which only Assumption A3 is satisfied,
we recommend treating it as a non-strongly convex
function and setting parameters as in Section 3.1.

4 More Detail on Gn

We show that Gn is the key component that determines
whether SCSG is able to find an ǫ-approximate solution
with less than a single pass of data. If ‖∇fi‖ is uni-
formly bounded, we immediately conclude Gn = O(1).
If the uniform boundedness is not satisfied, as in nu-
merous applications, Lemma 2 provides a useful bound
for Gn. In the stochastic setting (cf. Frostig et al.,
2015), where fi are i.i.d. with E‖∇f1(x̃0)‖2 <∞, then
the law of large numbers implies that

1

n

∑

‖∇fi(x̃0)‖2 ≈ E‖∇f1(x̃0)‖2,

and by Lemma 2, we conclude that

Gn

L2
= O

(

D0 +
E‖∇f1(x̃0)‖2

L2

)

.

In many applications, D0 is treated as O(1). Since the
second term is irrelevant to the sample size, it can also
be treated as O(1) and hence Gn

L2 = O(1). In summary,
Gn is well controlled if the data is homogeneous.

When data is heterogenous or the dimension is scaled
as n, then Gn could be large. Heuristically, optimizing
the objective with less than a single pass of data in
this case is impossible since any subset of data loses
a significant amount of information from the whole
dataset. Here we present a pathological example in
which Gn = Ω(n)1. Let fi(x) = ‖x − ei‖2, where
ei ∈ R

n has j-th element equal to 0 and all others
equal to 1. In this case, Gn = n − 1 = Ω(n). Recall
that the SCSG has a multiplicative factor

(

n ∧ Gn

Lǫ

)

for
minimizing both general convex functions and strongly
convex functions and the factor is equal to n if Gn =
Ω(n). Nonetheless, no algorithm performs well in this
case since in general D0 is also of order n and the
performance of other algorithms depends on ǫ through
D0L
ǫ

. But such pathological example is arguably not
realistic in practice since the goal of optimizing 1 is to
extract common features from the data. If the data are
extremely heterogeneous, the minimizer of (1) might
be meaningless.

4.1 Estimating Gn for Generalized Linear

Models

It has been shown in Section 3 that Gn and L deter-
mine the block size B, which is the key to reducing

1We thank Chi Jin for providing this example.

Lihua Lei, Michael I. Jordan

both the computation and the communication costs in
SCSG. For this reason, good estimates of Gn and L
are needed for efficiency. Lemma 2 presents a generic
bound for Gn, provided L can be estimated. How-
ever, we found that more accurate estimates of Gn and
L are possible for generalized linear models (GLMs)
(McCullagh & Nelder, 1989), which include a broad
class of models that are often used in practical ap-
plications. Estimation in the GLM setting reduces
to solving (1) with fi(x) = ρ(yi; a

T
i x), where ai is

the vector of predictors, yi is the response and ρ is
a loss function. This includes popular models such
as linear regression, logistic regression, Huber regres-
sion and others. For multi-class problem in which
yi ∈ {0, 1, . . . ,K − 1} with K > 2, fi(x) can take
the form ρ(yi; a

T
i x1, . . . , a

T
i xK−1) where x ∈ R

d(K−1)

is the concatenation of x1, . . . , xK−1; multi-class logis-
tic regression is of this form. First consider the case
with only one linear component. Let ρ2(z, w) denote
∂
∂w

ρ(z, w) and ρ22(z, w) denote ∂2

∂w2 ρ(z, w). Then Gn

can be expressed as

Gn =
1

n

n
∑

i=1

‖∇fi(x∗)‖2 =
1

n

n
∑

i=1

|ρ2(yi, aTi x∗)|2‖ai‖2,

and L can be set as

L = sup
i

sup
x

λmax

(

∇2fi(x)
)

= sup
i

sup
x
|ρ22(yi, aTi x)|‖ai‖2.

In many cases ρ22(z, w) and ρ2(z, w) are uniformly
bounded; e.g., logistic regression. In the context of
robust statistics (Huber, 2011), the loss function has
a form ρ(yi, a

T
i x) = f(yi − aTi x) where f has bounded

first-order and second-order derivatives, in which cases
the above conditions are satisfied.

Thus for GLMs with bounded ρ22(z, w) and ρ2(z, w),
Gn and L can be bounded by

Gn ≤M1 ·
1

n

n
∑

i=1

‖ai‖2, L ≤M2 · sup
i

‖ai‖2. (3)

The same argument applies to multi-class GLMs. In
particular, via some algebra, it can be shown that M1 =
2,M2 = 1 for logistic and multi-class logistic regression;
see Appendix C.3 for a proof. For moderately large n,
we can calculate Gn and L directly. If n is prohibitively
large, then we can estimate Gn and L based on a batch
of data.

In some cases such as least squares regression, ρ22(z, w)
is bounded but ρ2(z, w) is not. We can improve the
bound in Lemma 2 by taking advantage of the ex-
plicit form of the solution. In particular, we have
x∗ = (ATA)−1AT y and it is easy to show that Gn ≤
sup ‖ai‖2 · ‖y‖

2

n
.

5 Experiments

In this section, we illustrate the performance of SGSC
by implementing it for multi-class logistic regression
on the MNIST dataset2. We normalize the data into
the range [0, 1] by dividing each entry by 256. No
regularization term is added and so the function to be
minimized is

f(x) =
1

n

n
∑

i=1

{log(1+
K−1
∑

k=1

ea
T
i xk)−

K−1
∑

k=1

I(yi = k)aTi xk},

where n = 60000,K = 10, yi ∈ {0, 1, . . . , 9}, ai ∈ R
785

including 28× 28 = 784 pixels plus an intercept term
1 and x = (x1, . . . , x9) ∈ R

785×9 = R
7065. Direct

computation shows that Gn = 174.25 and L = 292.82.
Thu the highest stepsize with a convergence guarantee
is η0 = 1

2L = 0.0017. We treat this stepsize as a
benchmark and also try three more aggressive stepsizes,
η1 = 4η0, η2 = 10η0, η3 = 30η0.

Suppose that our target accuracy is ǫ = 0.001. Corol-
lary 1 then implies that B = 2220. Based on this bench-
mark, we try three batch sizes B ∈ {250, 2500, 7500} as
well as SVRG with m = 60000. We record the iterates
xt every half pass through the data where t denotes the
number of passes. Although the theory provides a guar-
antee for E(f(xt) − f(x∗)) ≤ ǫ, the optimal value x∗

is unknown in practice. Instead we report ‖∇f(x̄t)‖2
as an accuracy measure. This value generally has the
same order as f(xt)− f(x∗). To illustrate the average
performance, we run the algorithm for 20 times in each
case and report the norm of the gradient evaluated at
the average of iterates. In all cases, the initial value
is set to be a zero vector. The top row of Figure 1
displays the results. It is clear that SCSG with a batch
size as small as 250 converges faster than SVRG in
the first 50 passes. To achieve an accuracy of 0.001,
SCSG requires less than five passes of data while SVRG
requires around ten passes through the data. In the
best-tuned case (η = 4η0), SCSG only requires two
passes. Moreover, it is seen that performance degrades
for η = 30η0. This implies that our benchmark stepsize
is valid in this case; in practice, we suggest starting
from the benchmark stepsize η0 and trying multiples
of η0 in [η0, 30η0].

Since our theory indicates that SCSG is able to achieve
good accuracy even with less than a single pass through
the dataset, we repeat the above procedure while
recording the iterates x̄t every 0.1 of a pass through
the data, where the batch size B is selected from
{250, 1000, 2500}. The bottom row of Figure 1 dis-
plays the results. It is seen that B = 250 yields the
fastest convergence in the first pass and in the best

2http://yann.lecun.com/exdb/mnist/.

Less than a Single Pass: Stochastically Controlled Stochastic Gradient

η0=0.0017 η1=4η0 η2=10η0 η3=30η0

−4

−3

−2

−1

0

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
Number of Passes

lo
g

1
0
(|

|∇
f|
|.

2
)

Batch Size (B) 250 2500 7500 60000

η0=0.0017 η1=4η0 η2=10η0 η3=30η0

−3

−2

−1

0

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00
Number of Passes

lo
g

1
0
(|

|∇
f|
|.

2
)

Batch Size (B) 250 1000 2500

Figure 1: Plot of ‖∇f(xt)‖22 versus the number of data passes with different batch sizes and stepsizes: (Top)
performance in first 50 passes; (Bottom) performance within one pass.

tuned case, η = 10η0, an accuracy of 0.01 is achieved
within only 0.25 passes through the data for B = 250
and B = 1000. Note that a batch of MNIST dataset
with size 1000 requires no more than 2.6MB of memory
and it involves roughly 0.25n/2B = 7.5 < 8 accesses of
the disk. In other words, a commodity machine with
a very modest memory suffices to achieve reasonable
accuracy.

6 Discussion

We propose SCSG as a member of the SVRG family of
algorithms, proving its superior performance in terms
of both computation and communication cost. Both
complexities are independent of sample size when the
required accuracy is small, for generalized linear mod-
els which are widely used in practice. The real data
example also validates our theory.

For practical use, we develop an automatic parameter-
tuning procedure. For a dataset for which scanning
is possible, we recommend using the benchmark step-
size and batch size produced by automatic tuning and
running SCSG for a few steps. If the desired accuracy
is not achieved, then double the stepsize or the batch
size. The doubling continues until the batch cannot fit
into memory. For massive data for which scanning is
too costly, we recommend estimating Gn and L on a
random batch and repeating the above procedure.

We plan to explore several variants of SCSG in future
work. For example, a non-uniform sampling scheme
can be applied to SGD steps to leverage the Lipschitz
constants Li as in SVRG. More interestingly, we can

consider a better sampling scheme for Ij by putting
more weight on influential observations.

As a final comment, we found that the previous com-
plexity analysis focuses on the high-accuracy compu-
tation for which the dependence on the sample size
n and condition number κ is of major concern. The
low-accuracy regime is unfortunately under-studied
theoretically even though it is commonly encountered
in practice. We advocate taking all three parameters,
namely n, κ and ǫ, into consideration and distinguish-
ing the analyses for high-accuracy computation and
low-accuracy computation as standard practice in the
literature.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments and Chi Jin for his valuable example, which
greatly improved this work. This work was supported
by the Mathematical Data Science program of the Office
of Naval Research under grant N00014-15-1-2670.

References

Agarwal, A., & Bottou, L. (2015). A lower bound for
the optimization of finite sums. In International
conference on machine learning (p. 78-86).

Allen-Zhu, Z. (2017). Katyusha: The first direct
acceleration of stochastic gradient methods. In
Stoc.

Allen-Zhu, Z., & Yuan, Y. (2016). Improved SVRG
for non-strongly-convex or sum-of-non-convex ob-

Lihua Lei, Michael I. Jordan

jectives. In International conference on machine
learning.

Arjevani, Y., & Shamir, O. (2015). Communication
complexity of distributed convex learning and
optimization. In Advances in neural information
processing systems (pp. 1756–1764).

Daneshmand, H., Lucchi, A., & Hofmann, T. (2016).
Starting small-learning with adaptive sample
sizes. In International conference on machine
learning (pp. 1463–1471).

Defazio, A., Bach, F., & Lacoste-Julien, S. (2014).
SAGA: A fast incremental gradient method with
support for non-strongly convex composite objec-
tives. In Advances in neural information process-
ing systems (pp. 1646–1654).

Frostig, R., Ge, R., Kakade, S. M., & Sidford, A. (2015).
Competing with the empirical risk minimizer in
a single pass. In Conference on learning theory.

Harikandeh, R., Ahmed, M. O., Virani, A., Schmidt,
M., Konečnỳ, J., & Sallinen, S. (2015). Stop
wasting my gradients: Practical SVRG. In Ad-
vances in neural information processing systems
(pp. 2242–2250).

Hazan, E., Agarwal, A., & Kale, S. (2007). Logarithmic
regret algorithms for online convex optimization.
Machine Learning , 69 (2-3), 169–192.

Huber, P. J. (2011). Robust statistics. Springer.

Jaggi, M., Smith, V., Takác, M., Terhorst, J., Krish-
nan, S., Hofmann, T., & Jordan, M. I. (2014).
Communication-efficient distributed dual coordi-
nate ascent. In Advances in neural information
processing systems (pp. 3068–3076).

Johnson, R., & Zhang, T. (2013). Accelerating stochas-
tic gradient descent using predictive variance re-
duction. In Advances in neural information pro-
cessing systems (pp. 315–323).

Konečnỳ, J., McMahan, B., & Ramage, D. (2015).
Federated optimization: Distributed optimiza-
tion beyond the datacenter. ArXiv e-prints
abs/1511.03575 .

Lee, J., Ma, T., & Lin, Q. (2015). Distributed stochastic
variance reduced gradient methods. ArXiv e-
prints abs/1507.07595 .

Lin, H., Mairal, J., & Harchaoui, Z. (2015). A uni-
versal catalyst for first-order optimization. In
Advances in neural information processing sys-
tems (pp. 3384–3392).

McCullagh, P., & Nelder, J. A. (1989). Generalized
Linear Models. CRC Press.

Nemirovski, A., Juditsky, A., Lan, G., & Shapiro,
A. (2009). Robust stochastic approximation ap-
proach to stochastic programming. SIAM Journal
on Optimization, 19 (4), 1574–1609.

Nitanda, A. (2014). Stochastic proximal gradient de-
scent with acceleration techniques. In Advances in

neural information processing systems (pp. 1574–
1582).

Nitanda, A. (2016). Accelerated stochastic gradient
descent for minimizing finite sums. In Proceedings
of the 19th international conference on artificial
intelligence and statistics (pp. 195–203).

Rakhlin, A., Shamir, O., & Sridharan, K. (2012). Mak-
ing gradient descent optimal for strongly convex
stochastic optimization. In International confer-
ence on machine learning (pp. 449–456).

Reddi, S. J., Hefny, A., Sra, S., Póczos, B., & Smola,
A. J. (2015). On variance reduction in stochastic
gradient descent and its asynchronous variants.
In Advances in neural information processing sys-
tems (pp. 2629–2637).

Reddi, S. J., Hefny, A., Sra, S., Póczós, B., & Smola,
A. J. (2016). Stochastic variance reduction for
nonconvex optimization. In International confer-
ence on machine learning.

Roux, N. L., Schmidt, M., & Bach, F. (2012). A
stochastic gradient method with an exponential
convergence rate for finite training sets. In Ad-
vances in neural information processing systems
(pp. 2663–2671).

Shalev-Shwartz, S., & Zhang, T. (2013). Stochastic
dual coordinate ascent methods for regularized
loss minimization. Journal of Machine Learning
Research, 14 (Feb), 567–599.

Shamir, O., Srebro, N., & Zhang, T. (2014).
Communication-efficient distributed optimization
using an approximate Newton-type method. In
International conference on machine learning
(Vol. 32, pp. 1000–1008).

Woodworth, B. E., & Srebro, N. (2016). Tight complex-
ity bounds for optimizing composite objectives.
In Advances in neural information processing sys-
tems (pp. 3639–3647).

Xiao, L., & Zhang, T. (2014). A proximal stochastic
gradient method with progressive variance re-
duction. SIAM Journal on Optimization, 24 (4),
2057–2075.

Zhang, Y., & Lin, X. (2015). Disco: Distributed
optimization for self-concordant empirical loss.
In International conference on machine learning
(pp. 362–370).

Zhang, Y., Wainwright, M. J., & Duchi, J. C. (2012).
Communication-efficient algorithms for statistical
optimization. In Advances in neural information
processing systems (pp. 1502–1510).

