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Alternative splicing, which can be observed genome-wide by

RNA-Seq, is important in cellular development and evolution.

Comparative RNA-Seq experiments between different cellular

conditions allow alternative splicing signatures to be detected.

However, inferring alternative splicing signatures from short-

read technology is unreliable and still presents many challenges

before biologically significant signatures may be identified. To

enable the robust discovery of differential alternative splic-

ing, we developed the Local Event-based analysis of alternative

Splicing using RNA-Seq (LESSeq) pipeline. LESSeq utilizes in-

formation of local splicing events (i.e., the partial structures in

genes where transcript-splicing patterns diverge) to identify un-

ambiguous alternative splicing. In addition, LESSeq quanti-

fies the abundance of these alternative events using Maximum

Likelihood Estimation (MLE) and provides their significance

between different cellular conditions. The utility of LESSeq

is demonstrated through two case studies relevant to human

variation and evolution. Using an RNA-Seq data set of lym-

phoblastoid cell lines in two human populations, we examined

within-species variation and discovered population-differential

alternative splicing events. With an RNA-Seq data set of sev-

eral tissues in human and rhesus macaque, we studied cross-

species variation and identified lineage-differential alternative

splicing events. LESSeq is implemented in C++ and R, and

made publicly available on GitHub at: https://github.

com/gersteinlab/LESSeq
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Introduction

Alternative splicing of precursor-messenger RNA (pre-

mRNA) generates multiple transcripts (or isoforms from a

single gene locus) that may differ in localization, function

or other biological features. Alternative isoform usage is

thought to be a major source of biological complexity dur-

ing development and evolution (1). In humans, alternative

splicing variations have been implicated in differential dis-

ease associations and drug responses (2). These implications

highlight the need for a deeper understanding of the associa-

tions, or even causal relationships, between alternative splic-

ing and human biological variations. During evolution, al-

ternative splicing leads to transcriptome (and sometimes pro-

teome) expansion in organisms through differential inclusion

and exclusion of exonic sequences. This expansion is be-

lieved to underlie lineage-specific phenotypic traits (1).

Over the past few years, high-throughput RNA sequencing

or RNA-Seq (3) has dramatically expanded our knowledge

of alternative splicing. Almost all human multi-exonic pre-

mRNAs were discovered to undergo alternative splicing and

that tissue-specific regulation of alternative splicing may be

pervasive (4), which suggests a functional relevance for al-

ternative isoform usage. However, it has also been shown

that noisy products from alternative splicing are extensive (5),

emphasizing the need to distinguish biologically important

alternative splicing events from those of no functional con-

sequences, which could be achieved in part through compar-

ative RNA-Seq experiments that include multiple biological

conditions.

Computationally, many methods have been developed to as-

semble and quantify RNA transcripts from RNA-Seq data.

Since the transcriptome of any given condition is unlikely to

be fully captured by a reference annotation, it is desirable to

assemble condition-specific transcripts by leveraging avail-

able RNA-Seq data. Expression levels of the newly assem-

bled transcripts can then be calculated before downstream

analysis (e.g., differential transcript usage detection between

two conditions). However, there are many challenges that

exist when inferring transcripts from RNA-seq data. First,

assembling the correct isoforms from short-read data for the

sample(s) of a study is very difficult, especially for mam-

malian genomes (6). In most transcript assembly methods

designed for mammalian genomes, RNA-Seq reads are first

mapped to the reference genome. The resulting exonic and

spliced reads are then used (sometimes in conjunction with

a reference transcriptome annotation) to construct a splicing

graph for each gene locus. This gene locus is then used to de-

rive isoform structures according to a specific graph-traversal

algorithm. Since short-read technology does not provide full

connectivity of different regions in the splicing graph, the

strategy for traversing such graphs varies wildly across meth-

ods (i.e., generate the most parsimonious set of graphs, all

possible graphs, or somewhere between these two extremes),

and none have been shown to yield satisfactory full-transcript

annotation in human (6). Second, even if the ‘correct’ tran-

scriptome annotation is provided, determining the level of

expression for each transcript is not trivial (7) as short-read

technology necessitates probabilistic estimation of transcript
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abundances. Most transcript quantification tools calculate the

Maximum Likelihood Estimate (MLE) of transcript abun-

dances based on a specific objective function, whose form

and complexity differ across methods and are dependent on

the modeling of RNA-Seq data. In addition, transcript quan-

tification algorithms based on similar ideas can generate dif-

ferent results (6), with agreement between algorithms gen-

erally decreasing as the number of isoforms of a gene in-

creases (8). Moreover, the assembly and quantification steps

are tightly linked, as incorrect transcript annotation exacer-

bates the quantification problem (8). Combined, the inaccu-

racies and uncertainties in both transcript assembly and quan-

tification make transcript-based comparative study extremely

challenging.

We thus propose an upstream approach to the transcript-

based RNA-Seq inference problem. Here, we devise a Lo-

cal Event-based analysis of alternative Splicing using RNA-

Seq (LESSeq) analytical approach that focuses on nearby re-

gions in genes, where isoform structures may diverge (e.g.,

skipped or included exon encompassed by two constitu-

tive exons) (4, 9). By assessing local alternative splicing

events, our method sidesteps several aspects of uncertainty in

transcript-based analysis and generates more robust results.

Local alternative splicing events are essentially local parts of

splicing graphs that contain diverging paths, and analyzing

such regions abrogates the need to accurately reconstruct full-

length transcripts. Since transcript assembly methods output

different transcripts even with the same underlying splicing

graph, circumventing the step of whole transcript assembly

bypasses the errors produced from it. In addition, the number

of local events in a given gene is never greater than that of

all the isoforms of a gene, thus yielding more robust quan-

tification results - as has been shown previously, fewer iso-

forms per gene lead to more consistent quantification results

between methods (8). Moreover, focusing on a set of defined,

simple patterns for local events yields regions that are guar-

anteed to be computationally identifiable (10), which is not

always true for transcript-level inference.

Materials and methods

The four major steps of the LESSeq pipeline are described

below (see Fig. 1A).

Refining gene models using RNA-Seq data. LESSeq’s

first step is to derive comprehensive splicing annotations for

the specific sample(s) of a study. For species with a reference

annotation, this step is optional but strongly recommended

when deep sequencing data is available. Alternative splicing

is highly tissue-specific and there may exist splicing events in

the condition of interest that are not annotated in a reference

transcriptome. The current implementation of LESSeq em-

ploys Cufflinks (11) for splicing annotation, where the Refer-

ence Annotation Based Transcript assembly (RABT option)

for well annotated organisms (e.g., human) is recommended.

With the RABT method, faux-reads that tile the reference

transcripts are used together with RNA-Seq reads to assemble

splicing structures. However, alternatives to Cufflinks may

Start  End

Start  End

Case 1 (included) 

Case 2 (excluded) 

B

Mapped
RNA-Seq reads 

Reference gene annotation 
(e.g. Ensembl)

Refined gene annotation 
(e.g. Cufflinks)

Local alternative splicing 
events

Raw read counts 
compatible with events

Relative expression 
levels of events

Differential test with 
parametric model 

Differential test with
non-parametric model 

A

Skipped exon (SE) 

Fig. 1. Local event-based analysis of RNA-Seq data. (A) Pipeline overview. (B)

Local event identification. A splicing graph is built for each gene locus, with each

isoform represented as one path in the graph (red, blue and brown lines – panel

B). In LESSeq, a local event (in black lined boxes) is identified such that the out

most two exons (dark green) are present in all isoforms (i.e., constitutive), with all

in- and out-edges going through the 5’ and 3’ exons, respectively. The shortest

such local graphs are always taken, so that no other constitutive exons are present

within the identified local graphs. Such a conservative definition of local events

ensures the accurate quantification of each alternative form of the local events. In

the example shown in Case 1, three isoforms collapse into two alternative forms of a

local ‘skipped exon’ event. Constitutive and variables exons are colored in dark and

light green, respectively. Orange and cyan lines represent the connection between

exons in two alternative forms of a local event. Case 2 represents a local event (3’

constitutive exon missing) that is excluded by the LESSeq pipeline.

also be used. For species that do not have a reference genome

and/or reference transcriptome annotation, de novo methods

to build transcript models are available (12). Users should

substitute their preferred approach for the current Cufflinks

integration in LESSeq, while the remainder of the pipeline

remains unchanged.

Identifying local events. In this step, LESSeq builds a

splicing graph for each gene locus utilizing assembled splic-

ing structures from the previous step (see ‘Refining gene

models using RNA-Seq’). Locally diverged structures are

identified in the locus graphs and defined as ‘local events’

(Fig. 1B). As illustrated in the two scenarios described in

Fig. 1B, the definition of local events is conservative, so that

any transcript-splicing structure from a gene locus must go

through one of the paths in a local event. In the current imple-

mentation, the shortest, conservative local graphs are taken.

However, the identified local events for some genes can still

be very complex, and suffer from similar quantification diffi-

culties as those in transcript-based analysis, such as uniden-

tifiability (10). Therefore, the pipeline generates predefined

and simple patterns of local events (4). In these cases, all

splicing models of a gene can be grouped into one of two al-

ternative forms at a local event. The simple event patterns,

as defined in Wang et al. (2008) (4), included in LESSeq

are: Skipped Exon (SE), Retained Intron (RI), Alternative 5’

Splice Site (A5SS), Alternative 3’ Splice Site (A3SS), Mu-

tually eXclusive Exon (MXE), Alternative First Exon (AFE),

Alternative Last Exon (ALE) and Tandem 3’ UTRs (T3). It
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should be noted that the events selected are restrictive so that

downstream analyses yield robust results.

Counting reads that are compatible with alternative

forms of local events and estimating their relative ex-

pression levels. A metric to quantify isoform usage is the

relative expression level of an isoform, where each isoform’s

expression level is divided by the total expression from all

isoforms of a given gene. As such, the relative expression

level represents isoform abundance relative to other isoforms

of a given gene, and the sum of all isoforms’ relative expres-

sion levels for a gene is 1.0. This metric is useful if one aims

to compare alternative isoform usage independent of gene ex-

pression level changes. For the local events identified from

the previous step, such a concept leads to the natural def-

inition of relative expression levels of alternative forms for

each local event (Fig. 2A). For each pre-defined simple event

type, there are two fractional values representing the relative

expression level of either of the two possible forms of a lo-

cal event. Such metric provides a quantitative measurement

of the extent of alternative splicing at each given locus, and

the values can be used to examine the relationships between

samples with clustering (Fig. 2B).

To calculate the relative expression levels of each alterna-

tive form in a local event, LESSeq counts the number of

reads that are compatible with either forms at each locus

(Figure 2A) and then derives the Maximum Likelihood Es-

timates (MLE). MLEs are thus calculated using RNA-Seq

read counts for local event annotations. LESSeq implements

a similar methodology as described in Du et al. (2012) (8),

which estimates relative isoform expression levels. In this

methodology, RNA-Seq data is modeled as a probabilistic

partial sampling process, based on a generative model of

reads from alternative forms of each local event. A uniform

distribution of short-reads along each isoform is assumed and

an Expectation-Maximization (EM) algorithm is used to infer

the MLE. The output from this step of the LESSeq pipeline is

the raw number of reads associated with each form of a local

event as well as the estimated relative expression levels.

Testing differential alternative splicing events. In the fi-

nal step of the pipeline, LESSeq determines the statistical sig-

nificance of differential alternative splicing events between

conditions. Parametric tests (two-sided Fisher exact and log-

linear model for one or more replicates, respectively) are per-

formed when very few replicates (e.g., three replicates or

fewer) are available for each condition. A non-parametric

test (Wilcoxon rank sum) is performed when there are many

replicates per condition. In studies where many replicates are

generated, the non-parametric test can supplement the para-

metric tests for two purposes: i) to compare the abundance

of significant differential alternative splicing events and ii) to

derive the most confident candidates (by taking the intersec-

tion of results from multiple tests). When only one replicate

is generated for each condition, a two-way contingency table

is constructed for each local event, where each cell’s value is

the raw read-count compatible with one form of a local event

in one condition (see Fig. 2A and Table 1).
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Fig. 2. Local event expression estimation and comparative analysis. (A) The gen-

erative process of RNA-Seq underlying the partial probabilistic sampling-based ap-

proach to estimate relative expression levels of local events, using ‘skipped exon’

(1 − θ) as an example. Conditions A and B portray how the estimated parameters

(i.e., relative expression levels, θ and 1 − θ) give rise to the observed RNA-Seq

read distribution at local splicing events. Reads colored black are compatible with

both forms of a local events, while the orange and cyan reads come from different

forms of a local event. The parameter estimation procedure uses all three types of

reads and builds a data matrix (panel B top) that records the compatibility informa-

tion between the reads and the exons in a local event. The Maximum Likelihood

Estimation (MLE) of relative expression levels is then derived, assuming uniform

generation of RNA-Seq reads along each form of a local event. For differential

alternative splicing testing, two hypothetical conditions are considered. Raw read

counts are used in the parametric methods, while the estimated relative expression

levels are used in the non-parametric method. When counting raw reads, the num-

ber of reads compatible with one form of a local event is the sum of black reads plus

orange or cyan reads, with the choice of orange or cyan dependent on which form

is being tested; the total number of reads in a local event is the sum of all black,

orange and cyan reads. (B) Expression levels of local events can be used to exam-

ine the relationship between samples through clustering. The illustrated process is

used to generate heatmaps in Figures 3A and 4A (left). A data matrix (top) is built

from relative expression levels of all local events, and subsequently used to con-

struct a sample correlation matrix (Spearman’s Rank-Order Correlation Coefficient,

ρ, is used in the analyses throughout this paper). Clustering of samples is based on

the sample correlation matrix. For Figure 4A, the heatmap on the right is generated

using a similar procedure with the relative expression levels (two values for each

event) replaced by the total expression levels (one values for each event).

When more than one replicate is available in each condition,

the parametric test is based on a log-linear model fitted with

a Poisson link and subsequent likelihood ratio test based on

model fit (13–16). In this model, the number of raw reads

compatible with one form p of a local event in sample i is

denoted as Xpi and modeled as:

log(E[Xpi | Xi]) = logXi +λpj(i) +θpi, (1)

where Xi is the total number of raw reads mapped in the lo-

cal event for sample i, λpj(i) is the condition-specific splic-

ing level for condition j and θpi is the replicate error term.

λpj(i) and θpi are learned by R’s built-in linear model func-

tion when fitting the data.

For each event, p can be either of the two forms of a lo-

cal event, where two tests are performed resulting in two p-

values generated for each event. The significance of differ-

ential alternative splicing for each event can be represented

by either the smaller or the greater p-value (the smaller p-

value was used in our analysis of RNA-Seq data). Raw read

counts, compatible with one form in a simple-patterned local
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Table 1. Example two-way contingency table for a two-form local event between hypothetical conditions A and B.

Local event form 1 Local event form 2

Condition A number of compatible A1 reads number of compatible A2 reads

Condition B number of compatible B1 reads number of compatible B2 reads

event, are compared between conditions and normalized for

the total raw read counts in the entire locus. Normalization

was performed to ensure that the effect of differential alter-

native splicing is tested, independent of total expression level

changes.

When many replicates exist for each condition, a non-

parametric test can also be applied. The non-parametric test

takes as input the relative expression levels estimated (from

‘Counting reads that are compatible with alternative forms of

local events and estimating their relative expression levels’),

as opposed to raw read counts in the parametric tests. Using

relative expression levels in each form of a local event, the

method performs a Wilcoxon rank sum test on the distribu-

tions between different conditions. Here, relative expression

levels for one form of a local event are represented as a vec-

tor with the length equal to the number of samples in a given

condition. Two vectors representing different conditions are

then compared to each other using the Wilcoxon rank sum

test.

Results

To demonstrate the usefulness of the LESSeq pipeline, we ap-

plied LESSeq to two studies of comparative RNA-Seq data:

i) within a single species and ii) across multiple species.

LESSeq identifies within-species variation of human

populations from RNA-Seq data. By investigating com-

parative RNA-Seq experiments obtained from different con-

ditions in a single species, LESSeq was used to identify al-

ternative splicing signatures important to various aspects of

biology. For example, RNA-Seq data could be sampled from

different time points during organism development to yield

insights into the genomic events driving developmental pro-

gression, from different organs to identify signatures under-

lying tissue differentiation or performing a comparison be-

tween healthy vs. disease-state samples to facilitate the dis-

covery of aberrant splicing that is disease specific.

Here, we address the question of variation between in-

dividuals and populations. To accomplish this, LESSseq

was used to study the differences in alternative splic-

ing found within a data set generated by the Geuvadis

Consortium (17). Mapped messenger RNA (mRNA)

reads for RNA-Seq data in Lymphoblastoid Cell Lines

(LCL) of two human populations (CEU and YRI,

with 91 and 89 samples, respectively) were down-

loaded (http://www.ebi.ac.uk/arrayexpress/

files/E-GEUV-1/processed/). Gene annotation re-

finement using RNA-Seq reads and the EnsEMBL (V67) (18)

human annotation led to 2,948 local simple-patterned events

being identified. Each event was required to have no less

than 80nt-long exons and 50nt-long introns. By using the

relative expression levels estimated for all local events, sam-

ples were clustered and revealed that individuals do not seg-

regate by population with regard to alternative splicing in

these local events (Fig. 3A). Statistical tests for alternative

splicing changes yield between 8% to 10% differential events

between the two populations, with 174 events detected by

both parametric and non-parametric methods (Benjamini-

Hochberg corrected p-value, or BHP cutoff at 0.05, Figs. 3B

and 3C).

A B

C

65

Parametric

174 116

Non-parametric

Event Type Total Significant

SE 746 2

RI 694 20

A5SS 115 3

A3SS 93 6

MXE 7 0

AFE 215 3

ALE 148 6

T3 930 134

All 2948 174

Differential alternative splicing 

between CEU and YRI
Relative expression levels

0.6 1
Value

Color Key

CEU

YRI

Fig. 3. Analysis of variation between human individuals. (A) Complete linkage

hierarchical clustering of 91 CEU and 89 YRI samples from Lappalainen et al.

(2013) (17), using the sample correlation matrix calculated from relative expres-

sion levels of 2,948 local events. Distance between samples was measured as 1-ρ.

Individuals were shown not to cluster by population identity as demonstrated by

original authors (17). (B) Overlap of the significant differential alternative splicing

events (BHP cutoff 0.05) found by the log-linear model method (‘parametric’) and

the Wilcoxon rank sum test (‘non-parametric’). (C) Number of events identified (‘To-

tal’) and those found to be significant by both methods (‘Significant’), broken down

by event type: SE - skipped exon, RI - retained intron, A5SS - alternative 5’ splice

site, A3SS - alternative 3’ splice site, MXE - mutually exclusive exon, AFE - alterna-

tive first exon, ALE - alternative last exon, T3- tandem 3’ UTRs and All - the sum of

all event types.

In the original paper, Lappalainen et al. (2013) (17) demon-

strated that populations can be clustered by genotype, but not

by exon-level expression. Exon-level expression is the com-

bined product of gene expression level and alternative splic-

ing. It is not informative to assess these two aspects of gene

regulation separately. Using local event relative expression

levels, we were able to examine quantitatively the variations

of alternative splicing alone at the identified local events. Our

clustering results showed that individuals do not cluster by

population in this regard (Fig. 3A). The original research pa-

per also attempted to identify population-differential alter-

native splicing events. Using GENCODE (19) annotations,

transcript-based (Flux-capacitor (20) and Wilcoxon rank sum

test for transcript quantification and significance testing, re-

spectively) and exon-based (DEXSeq (21)) analyses were

conducted, where approximately 20% and 45% significant

genes were found, respectively. However, these analyses

were based on reference gene annotation, and the transcript-

based and exon-based methods suffer from a number of the

issues discussed in the introduction and discussion sections.
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When we used LESSeq to find population-differential alter-

native splicing events, a much smaller fraction of confident

events was found. This decrease highlights the difference

between local event-based and the original author’s calcula-

tions.

LESSeq provides a statistical framework to detect

quantitatively differential alternative splicing patterns

across species. Comparative RNA-Seq experiments across

species improves our understanding of organismal evolution

in terms of transcriptome variation and aids in the identifica-

tion of candidate genes that may underlie phenotypic evo-

lution (i.e., differentially expressed and/or spliced genes).

LESSeq’s approach to differential alternative splicing events

was shown to achieve robust results when studying cross-

species alternative splicing. In such context, transcript-based

approaches are affected by non-uniform gene annotations,

which leads to increased false positive detection in differen-

tial splicing. In addition, analyses that focus on reads that

span splice junctions alone do not contain as much informa-

tion from RNA-Seq data as LESSeq’s local event-based ap-

proach.

To study the variation of alternative splicing between human

and other primates, we utilized messenger RNA (mRNA)

data, observed by RNA-Seq, containing six profiled or-

gans (brain, cerebellum, heart, kidney, liver and testis) in

ten species (22). SRA files (GEO:GSE30352) were down-

loaded for all six organs of human and rhesus macaque

(two replicates were obtained for each organ in each

species). Reads were then aligned using TopHat (23).

UCSC’s LiftOver tool (https://genome.ucsc.edu/

cgi-bin/hgLiftOver) (24) was used to match orthol-

ogous exon coordinates between one-to-one orthologous

genes (EnsEMBL’s V67 annotation was used again for both

species), which yielded 1,683 orthologous ‘skipped exon’

local events at a reciprocal mapping rate of 0.9. Based

on the relative expression levels calculated by LESSeq at

these events, as well as total expression levels (measured by

total read-counts), hierarchical clustering results show that

alternative splicing patterns cluster by species whereas to-

tal expression levels cluster by tissues (Fig. 4A). Lineage-

differential alternative splicing events were also identified in

each tissue (Fig. 4B).

Brawand et al. (2011) (22) originally revealed a strong se-

lection pressure exists for maintaining total gene expression

levels of organs. Our study confirms this by showing that the

total expression levels at local events cluster by tissue iden-

tity. Additionally, we find that the relative expression levels

cluster by species. This observation agrees with two recent

studies that found faster cross-species changes in alternative

splicing compared to total expression level (25, 26). In ad-

dition to the global observation of alternative splicing evolu-

tion, our method provides a statistical framework that can be

used to detect quantitatively differential alternative splicing

patterns across species – by identifying these events, we pro-

vide candidates for generating lineage-specific phenotypes.

Differential skipped exon

between human and rhesus

B

Tissue Significant

Brain 21

Cerebellum 30

Heart 19

Kidney 17

Liver 26

Testis 37

A Relative expression levels

0.5 1
Value

Color Key

                     Total expression levels

Rhesus
Human

Brain
Cerebellum

Heart
Kidney

Liver
Testis

Fig. 4. Analysis of variation between human and rhesus macaque. (A) Com-

plete linkage hierarchical clustering of all 24 samples (two species, six tissues, two

replicates per species-tissue combination) using the sample correlation matrix cal-

culated from expression levels at 1,683 ‘skipped exon’ events. Distance between

samples was measured as 1-ρ. Relative expression levels cluster by species iden-

tity (left), and total expression levels cluster by tissue identify (right). (B) Number

of significant, differential ‘skipped exon’ events (Benjamini-Hochberg corrected p-

value cutoff of 0.05) detected in each tissue between the two species, using log-

linear model method (non-parametric method was not applicable due to the small

number of replicates). Our results support the original authors (22) findings that a

strong selection pressure exists for maintaining total gene expression levels of or-

gans as well as recent studies (25, 26) that found faster cross-species changes in

alternative splicing compared to total expression level.

Discussion

In this paper, we described a pipeline (LESSeq) for the analy-

sis of comparative alternative splicing events from RNA-seq

data. LESSeq provides robust differential alternative splic-

ing detection and uncovers localized candidate regions in

genes that exhibit differential alternative splicing. By pin-

pointing specific loci of interest, LESSeq can ease the de-

sign of downstream mechanistic studies (e.g., mini-gene as-

say). The LESSeq pipeline also allows unambiguous design

of PCR primers and microarray probes for large-scale appli-

cations (e.g., healthy vs. disease state biomarkers).

LESSeq employs a local event-based analysis strategy that is

more robust to transcript annotation as well as quantification

errors compared to transcript-based methods. Other methods

have also been built around similar ‘localized’ ideas, such

as DEXSeq (21) — a method that tests differential exon us-

age. However, compared to LESSeq, DEXSeq loses infor-

mation on the local connectivity of exons and does not define

the differential usage of exons as a result of different modes

(e.g., skipped exon in Fig. 1B). DEXSeq also does not pro-

vide the relative expression level estimation, which is a use-

ful metric to assess the degree of alternative splicing. Most

importantly, the estimation of each exon’s expression level

in DEXSeq may be confounded by other alternative splic-

ing events found within the same gene. In comparison, the

estimation of each local event in LESSeq is not affected by

other events due to the strict definition of included events in

the analysis (Fig. 1B). DiffSplice (27) is a method that both

quantifies and tests for differential local events, or ‘alternative

splicing modules’. Compared to LESSeq, DiffSplice does

not filter out complex local events. The results of analyz-

ing these complex events could be very unreliable, as some

of them are computationally unidentifiable using short-read

data (10). Furthermore, DiffSplice uses a permutation-based

test that is not applicable when there are fewer than three

replicates per condition. In such situations, LESSeq provides

parametric tests that can handle very few replicates. When

many replicates are available, LESSeq’s parametric and non-
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parametric tests can both be utilized, which provides the most

confident candidates identified by the intersection of both

methods (28). Mixture-of-ISOforms (MISO) (9) is another

tool that can analyze local variable regions of gene struc-

tures. However, MISO requires user-supplied or curated al-

ternative splicing annotations and does not provide the option

for a user to generate variable region annotations (i.e., inte-

grate different gene transcript models). Furthermore, it does

not provide a statistical framework for differential alternative

splicing testing when multiple replicates are available – a user

must pool reads from replicates of one condition together, in

which one discards the information on sample variations and

is not an ideal statistical practice.

Conclusions

In this paper, we presented LESSeq, a computational pipeline

that infers different RNA splicing events from RNA-Seq data.

LESSeq takes advantage of information found in the RNA-

Seq read distribution at local splicing events (as defined in in

Wang et al., 2008 (4)) to determine unambiguous alternative

splicing. Unlike other transcript-based methods, LESSeq is

robust to transcription annotation and allows for the integra-

tion of different gene transcript models. We demonstrated the

usefulness of LESSeq by applying the pipeline to two RNA-

Seq data sets containing: i) multiple human individuals (17)

and ii) multiple species and organs (22). In the first data

set, LESSeq identified increased variation within individuals

of the same population, revealing that exon-level expression

contains more information than genotype alone (used by the

original authors — Lappalainen et al., 2013 (17)). Finally,

applying LESSeq to RNA-Seq data from six organs across

ten species supported the original authors (Brawand et al.,

2011 (22)) findings that a strong selection pressure exists for

maintaining gene expression levels of organs. Based on our

results and the popularity of RNA-Seq, we see LESSeq be-

coming a useful tool for the transcriptomic community.

Supporting information

To illustrate the advantage of using LESSeq, we simulated

single-end read distributions for mammalian genes under var-

ious cellular conditions. For each example gene, 100 sim-

ulations at four sequencing depths (100, 1000, 10000 and

100000 reads) were generated, where the simulated single-

end reads were 75 bp long and distributed uniformly across

each transcript.
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