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Abstract
What are desirable and undesirable features of virtual-environment (VE) software architectures?
What should be present (and absent) from such systems if they are to be optimally useful? How
should they be structured? To help answer these questions we present experience from application
designers, toolkit designers, and VE system architects along with examples of useful features from
existing systems. Topics are organized under the major headings of: 3D space management,
supporting display hardware, interaction, event management, time management, computation,
portability, and the observation that less can be better. Lessons learned are presented as discussion
of the issues, field experiences, nuggets of knowledge, and case studies.

1 Introduction
Over the past 20 years, the authors and our colleagues have built and evaluated dozens of virtual
environment (VE) systems. The purposes of these systems have been varied: developing VE
hardware (Eyles, Molnar, Poulton, Greer, & Lastra, 1997; Fuchs et al., 1989; G. Welch et al.,
1999; R. B. Welch, Blackmon, Liu, Mellers, & Stark, 1996), VE toolkits (Robinett & Holloway,
1992; Russell M. Taylor II et al., 2001), interaction techniques (Burns et al., 2006; Kohli &
Whitton, 2005; Lok, Naik, Whitton, & Brooks, 2003; Mine, 1997a, 1997b; Mine, Jr., & Sequin,
1997), building walk-through applications (Aliaga et al., 1999; Mine & Weber, 1995),
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scientific visualization applications (Jen et al., 2004; Leech & II, 1992; Marshburn et al.,
2005; Ouh-young, Beard, & Brooks, 1989; Qi, Taylor II, Healey, & Martens, 2008; Quammen
et al., 2008; Russell M. Taylor II et al., 1993), and locomotion interfaces (Feasel, Whitton, &
Wendt, 2008; Peck, Fuchs, & Whitton, 2009; Razzaque, 2005; Usoh et al., 1999). Each of these
systems has had real-world evaluation through either controlled user studies or daily use by
external clients. Several have been re-implemented using different programming languages
(Burette et al., 2007; Jen et al., 2004), rendering libraries (Ouh-young et al., 1989; Robinett &
Holloway, 1992; Russell M. Taylor II et al., 1993) or VE toolkits (Whitton, 2004).

1.1 Organization of the paper
This paper collects and organizes experiences gained from doing this work, also drawing on
discussions with colleagues (Russell M. Taylor II, 1995), positive examples of work done
elsewhere, and negative design choices that prevented adoption of our and others’ VE toolkits.

These experiences have been classified into four types:

• Discussions lay out our thoughts on issues, including both desirable features and
dangerous features of VE toolkits. These are based on our overall experience, but also
include extrapolations beyond our direct experience. This is the default classification
for the text and is often unlabeled at the start of each section.

• Field Experiences describe lessons learned based on experience with systems
deployed in active use;

• Nuggets are brief insights from current and past designers, describing features they
found useful or describing hazards to be avoided; and

• Case Studies provide examples of systems we have encountered that provide solutions
to problems encountered in the design of VE systems (some of which are non-VE
systems).

Although the lessons learned are sometimes application-specific, taken together they guide our
current decisions about VE toolkits and systems. Our intent in this paper is not to cover all
topics important to VEs (notably absent are audio, collaboration, and persistent state), but to
make our experiences available for those who design VE toolkits in the future. The paper
includes our successes, our failures, what we loved, what we hated, what we still yearn for,
and what we could not tolerate.

We begin with a discussion of 3D space management; proceed to the topics of supporting
display hardware*; interaction*; event management (including input device abstraction); time
management*; separating rendering from computation; portability*; and conclude with a
counter-intuitive truth about VE toolkit design that a VE library that includes fewer features
can be better than one that includes more. We also include case studies of porting applications
from one toolkit to another*. Within each section, the experience is labeled by type (field
experience, case study, nugget, or discussion).

2 Managing Space
At its heart, each VE toolkit manages a hierarchy of spaces; it enables the placement of
viewpoints, screens, and rendered objects based on reports from tracking devices and user
interaction. The most basic interactions involve self-motion within the world (head tracking,
hand tracking, and navigation through flying, scaling, or grabbing the whole world). Systems

*Partially or wholly located in the supplemental material accompanying the online version of this article.
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often include the ability to render both 3D objects representing the user (hand, vehicle) and the
world, as well as 2D user-interfaces or information displays.

We have found the basic VE transformation hierarchy and methods of interaction described in
(Robinett & Holloway, 1992) to adequately support our various virtual-environment
applications over the years. A version of the left-hand side of Figure 1 from that paper is shown
here (modified from the original based on as-built experience):

One way the diagram differs from the original is the addition of optional screens in Room space
for fixed-screen projection systems such as our GROPE, (Brooks, Ouh-Young, Batter, &
Kilpatrick, 1990), PIT (Arthur et al., 1998), nanoWorkbench (Grant, Helser, & II, 1998), and
other displays such as CAVEs (Cruz-Neira, Sandin, & DeFanti, 1993). A second modification
is the addition of Sensor spaces, required because a tracker sensor’s pose is often not co-located
with the user’s head or hand.

Nugget: You should be able to track body parts in addition to the head and hand.

2.1 Transformation Hierarchy vs. Scene Graph
The transformation tree in Figure 1 is all that is required to enable viewpoint determination
and navigation within a static scene. It requires no knowledge of or interoperability with
whatever transformation hierarchy or scene graph the application is using to describe objects
within the world. The UNC Vlib toolkit’s implementation of the model presented in Figure 1
included the ability to grab and manipulate application objects, based on the PPHIGS scene
graph used on the Pixel-Planes 5 (Fuchs et al., 1989) graphics supercomputer. This scene graph
included the ability for Vlib to traverse the entire tree structure (including user-specified
objects), enabling it to automatically support grabbing and scaling of user objects. This
capability disappeared when Vlib was ported to the OpenGL rendering framework, although
the library and world-space-root manipulation continued to work without rewriting user
applications.

Extending the transformation hierarchy to include the application’s scene graph requires
traversing a difficult and narrow road. Ditch on one side of the road: The selection of a specific
scene graph for a VE toolkit will exclude the toolkit’s use by the majority of applications (all
those using other scene graphs) and will limit its useful lifetime. Ditch on the other side: If a
VE toolkit is to work with multiple scene graphs and rendering libraries, then there is no
completely automatic way to enable the toolkit to manipulate application-space objects.

Discussion—We believe that the least-bad resolution to the scene graph issue will be to
provide a transformation hierarchy for the VE toolkit (which is required for the determination
of viewpoint and navigation) and then provide hooks for application developers to use, but not
to use any scene graph natively within the toolkit. As the most basic display recipe, the toolkit
should provide the application with a viewpoint, screen, and modeling transformation suitable
for rendering the objects from each point of view (hand space, room space, world space) for
each eye. Helper methods can provide the ability to import and export the transformations to
a variety of formats (Vlib supported PPHIGS, OpenGL, row-major and column-major 4×4
transforms).

The most basic hook between the application scene graph and the VE hierarchy is the
construction of a hierarchy that shadows that of the application’s scene graph, with the
application copying transformations back and forth as they change. A better model could be
to provide integration of the toolkit with the most common scene graphs, using their existing
callback or update mechanisms to hide the data transformation from the application developer.
In this solution, the application developer owns the right-hand side of the graph (shown as a

Taylor et al. Page 3

Presence (Camb). Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cloud in the figure) and can decide how much interactivity to provide via the toolkit, and how
much to implement on their own.

We recommend that a new toolkit be initially implemented with direct hooks to support
rendering using OpenGL, Direct3D, and VTK as the rendering libraries to ensure that it can be
generalized, and to include rendering to a 3D audio-only environment to ensure that it does
not make assumptions about visual-only rendering.

Field experience—An example of problematic tying to a specific rendering library came
when one of the force-feedback vendors changed from a toolkit that used its own internal
representations of the objects in the world to one that was built on top of OpenGL. Application
code now had to link with OpenGL. DirectX applications and those that ran on server machines
with no display were in a bind; even applications that used OpenGL for rendering had to draw
the world twice: once to an off-screen buffer for the haptic point of view and again for the
visual points of view.

Nugget: In general, doing things in different spaces (user hand vs. object, for example) is very
difficult. Any support for making this easier will be a big help. Nugget: The use of a self-aware
transformation hierarchy has been shown to make it much easier to design interactions and
animations: Alice/Diver has a generalized transformation tree that enables the specification of
any object’s motion or behavior in any other object’s coordinate system (“keep the bunny head
pointed towards the carrot”) (Gossweiler, Long, Koga, & Pausch, 1993). Nugget: “Smart
models” (like the Division MAZ files or Inventor files) that contain more information than just
geometry may be desirable. Animation and dynamic behavior (specifying that an object should
follow gravity or can be grabbed) could be supported. (More modern systems like VRML and
X3D do enable such specifications.)

2.2 Calibration
Proper calibration of VE systems is more important than that of other graphics systems because
a consistent image update with proper motion is essential for the experience to match that of
moving around in the real world. This requires proper matching of many system parameters,
including: field of view, eye separation, head-sensor location (with respect to the eyes), and
screen placement (with respect to the eyes or tracker).

There are two stages of calibration: coarse and fine. The coarse stage determines the basic
poses of tracker sources and sensors with respect to the room and makes the world move in
approximately the correct direction as the user moves and rotates head and hand. The other is
a fine calibration, some of which depends only on the devices and some of which (eye
separation, eye location with respect to the head tracker) depends on the individual. The
methods described in (R. L. Holloway, 1995) and (Azuma & Bishop, 1994) can form a starting
point for the development of such fine-tuning procedures. It turns out that accurate calibration
is a much more difficult to do than it seems it should be.

Field Experience—Rich Holloway described the sources and relative magnitudes of these
errors for the case of a see-through HMD in (R. L. Holloway, 1995) and (R. Holloway,
1997). He discussed the required tolerances for each measurement in the system (including
optical distortion and other parameters not listed above), along with a method of calibration of
a complete system using a highly-accurate mechanical tracker. Two surprising results were
that eye tracking may not be necessary if the center of the eye is used as the center of projection
and that the addition of a World space to the calibration system can add errors.

The major result of his experience was that delay (latency) swamps all other error sources. The
sources of delay include tracker delay, host-computer delay (buffering, O/S), image-generation
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delay, video-synchronization delay, frame delay, and delay inside the image device itself. The
unfortunate reality is that, for the motions he observed, the worst case was 1mm off-set error
for every 1ms of total system delay – which turns out to be 1.6cm just during the scan-out time
of a 60Hz display!

To help combat this error, Ron Azuma looked at how far ahead we can predict the motion of
a user’s head (Azuma & Bishop, 1994). He found that prediction could reduce registration
errors by 2.5-3 times over no prediction and that by mounting inertial sensors on the head to
track acceleration and rotation, prediction errors could be further reduced by a factor of 2-3.
These improvements depend on how far into the future the prediction is made, but remain better
than no prediction out to at least 200ms. He also describes a technique for determining the
static registration of his system that could be incorporated into the calibration portion of other
VE libraries.

Nugget: The toolkit must provide the capability to both calibrate the transformations associated
with the trackers and screens and to test the calibration of the system. This could be done using
a test application, but it needs to have some way to bypass/control the calibration parameters
and save the new setup. For example, it should be possible to adjust the transformation that
describes how the tracker sensor is mounted on a hand-held device (Russell M. Taylor II,
1995).

Some modern toolkits such as FreeVR, Virtools, and VRUI include routines to help with
calibration. Others only provide calibration tables whose values must be filled in by
measurement or using custom application code.

3 Supporting Display Hardware
A discussion of some of the issues related to supporting various display hardware
configurations can be found in the supplemental material accompanying the online version of
this article.

4 Object Interaction
A description of some of the issues surrounding a VE toolkit’s support of user interaction with
objects in the scene can be found in the supplemental material accompanying the online version
of this article.

5 Event Management
Communication between components in a VE toolkit and the application code is a key feature
to enabling extensibility: when a toolkit-provided button is pressed, application code needs to
be notified. Between the different components of a VE toolkit itself, collision events (such as
hand-object collisions), system control elements (such as tracker information and button
presses), new simulation data, and other events drive interaction and system response. VE
libraries should carefully consider how this event handling is implemented: it is highly visible
within application code and directly affects programmer’s experiences.

Field Experience
Event communication (a specific case of the Observer pattern) has been implemented many
ways – to varying effect. We describe three that we have had experience with (callbacks,
inheritance, and slots-and-signals) and the implications they have for application code.

Callbacks—Many callback systems are implemented in a way that requires the object
handling the callback to continue to exist. In C/C++, this means they are either C-style global
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methods, or static class method. Either way, the method does not belong to an instance of an
object, requiring either a global pointer to an object instance, or a void*-style input parameter
(which points to the “owning” instance). Furthermore, when implemented in such a way that
a non-static class method may be passed as an input to a callback, the callback reference can
remain even after that instance is out of scope – potentially leading to program failure at strange,
hard-to-debug times after the object has been deleted.

Inheritance is a second common implementation of inter-object communication (for example
implementations, see Java’s java.util.EventListener interface, FLTK’s handle method within
all Fl_Widget subclasses, or VR Juggler (Bierbaum et al., 2001)). In the inheritance
implementation, the class interested in events from some toolkit object inherits from that object
type and implements specific methods. In the two examples above, the process is implemented
as a single method with an input type which specifies the type of action performed. The user
code must check for one (or many) “interesting” event types and act in response to only that
type – leading to long case-selection blocks in the event handler. To obtain cleaner code, these
events can be separated into different event-specific methods (for instance, separate methods
for buttonPressed and for buttonReleased). Even so, if a single class wishes to listen to events
from two different sources – and both dictate a method with the same signature (common if
the two sources are the same type) – this can lead to confusing code.

Slots and Signals—The cleanest approach to communication between objects we’ve seen
is known under various names: Trolltech’s Qt calls them “slots” and “signals”; C# calls them
“events” and “delegates”; herein we will use Qt’s names. When an event occurs within some
part of the system, an object emits a signal. Interested parties connect their slots (user-specified
methods which accept the output from signals) to signals they are interested in and receive
updates when signals are sent. The slots and signals maintain information about their
connections so that when one goes out of scope, it unregisters itself from all connections –
avoiding the crash failure mode of standard callbacks. Furthermore, because the user specifies
the name of each slot – independent of the signal name – and the connection between slots and
signals, a single user instance can receive inputs from toolkit-owned, same-named signals at
different slots.

While C#’s events and delegates are natively supported within the language, most other
languages do not have native support: Qt preprocesses custom language features to produce C
++ code for a class that implements slots or signals. However, this slots and signals
communication pattern does not require language support.

Finally, while this discussion began by specifying single-process, inter-object communication,
between-process, inter-object communication could follow the same pattern if inter-process
messages were received at a single endpoint within a process and then emitted as a signal from
that single endpoint.

Nugget: It would be good to map user events to application events through well–defined hooks.
This would allow an application to run with different menu systems or interaction paradigms
without much change.

5.1 Input Device Abstraction Case Study: VRPN
VE systems make heavy use of devices such as trackers, wands, game pads and/or joysticks
and trackballs. In many instances, there are multiple products from multiple vendors that can
serve the same function in the VE system.

Field Experience—It can be desirable to provide low-latency, robust, and network-
transparent access to VE input devices because some devices only work on particular

Taylor et al. Page 6

Presence (Camb). Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



architectures or can attached to only particular brands of computers. We have encountered the
following issues:

• VE toolkits should provide a uniform interface to input devices providing identical
or highly similar functionality. An application that uses different devices for the same
function should not require custom code for each device. Good software development
practice suggests that unless there is a compelling reason, applications should not be
written for specific devices, but for more generic abstractions.

• Some devices require specialized connections (PC joysticks) or have drivers only for
certain operating systems yet are useful to drive applications on other platforms.

• Some VE devices perform more reliably when left on continuously, and require
lengthy reset procedures when closed and re-opened.

• VE applications require minimum latency, and need to know at what time events occur
in the system.

Design and Implementation
The above criteria, along with others, led us to develop the Virtual-Reality Peripheral
Network (VRPN) (Russell M. Taylor II et al., 2001), an architecture where input/output devices
at each display station are connected to one or more local device servers. The design decisions
resulted in a package that is compatible with many different software systems: members of the
VE community have used VRPN with CAVELib, VR Juggler, FreeVR, VRUI, Panda3D,
VMD, the Virtools VR Pack, Syzygy, AVANGO, OpenSceneGraph, WorldViz, OpenTracker,
DART, DIVERSE, VTK, and other packages. The design supports many types of devices: it
has drivers for nineteen trackers and twenty-four other device types. In several cases the drivers
have been implemented by the vendor of the device. We summarize here some of the design
decisions that we feel led to this wide applicability. These decisions and others are described
in detail in (Russell M. Taylor II et al., 2001).

Device Factoring—It has been fruitful to think of VRPN as providing interfaces to a set of
functions, not as providing drivers for a set of devices. Particular devices can be factored into
one or more canonical device types. Each type specifies a consistent interface and semantics
across devices implementing that function. The most-commonly-used types are Tracker
(location plus orientation), Button (press and release events), Analog (one or more values),
Dial (incremental rotation), and ForceDevice (an output device used to specify forces and
force-fields).

Factoring a set of devices to canonical types requires mapping the different capabilities of each
device onto a common interface. There is a tension between providing a very simple interface
(which does not enable access to particular advanced features) and providing a feature-rich
interface (where many devices do not implement many of the features, forcing application code
to deal with special cases). VRPN dealt with these issues by:

• factoring devices based on their functions,

• enabling devices to export multiple interfaces,

• silently ignoring unsupported message types (for downward compatibility), and

• providing application-level access to all messages (for extensibility).

A VRPN driver for a multi-function physical device exports interfaces for multiple VRPN
device types. For example, the driver for SensAble Technologies’ Phantom haptic display
exports Tracker, Button, and ForceDevice interfaces under the same device name. The
application deals with a Phantom as if it were three separate devices, one for each of its
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functions. Because all devices mapped to the same server automatically share a communication
interface, this is done without increasing bandwidth or latency.

A special case of multiple interfaces is the layered device. In this case, higher-level behavior
is built on top of an existing device. An instance is the AnalogFly server, designed to enable
flying using joysticks: the joystick driver reports analog values for each of its axes and the
AnalogFly integrates these values into Tracker messages. Clients can connect both to the low-
level device (to read the buttons on a joystick, for example) and to the higher-level tracker
device.

Do one thing and do it well: VRPN provides only a device-layer interface, not a scene graph
or a set of interaction techniques or graphics output. This was not a design choice as much as
a fortunate characteristic, but it was clearly a feature that enabled wide adoption of the toolkit
(discussions on the mailing list have made it clear that if VRPN had included a specific scene
graph or graphics library or directory services choice, then it would have become unattractive
to users of other scene graphs or directory services).

6 Representing and Managing Time
A discussion of the representation and management of time (including motion paths) in a VE
toolkit can be found in the supplemental material accompanying the online version of this
article.

7 Computation: Separating Simulation and Rendering
Latency, the delay between when a user makes an action and when that action is reflected in
the state of the virtual environment and on the display, is the primary enemy of effective VE
systems (R. Holloway, 1997) and computation time can be a major component of end-to-end
latency. Simulation and rendering, two of the major computational processes in VE systems,
almost always operate at different rates. To minimize the impact of one computation on another,
it is therefore desirable to separate them into different threads or processes.

In our experience, the aggregate processing requirements of virtual environment software
usually exceed the capability of one thread, one process, or even one computer. Furthermore,
the benefits of being able to run different parts of a VE application in different processes have
been widely recognized in the literature (Adachi, Kumano, & Ogino, 1995; Bryson & Johan,
1996; Mark, Randolph, Finch, Verth, & II, 1996; Shaw, Liang, Green, Sun, & 1992;
Sokolewicz, Wirth, Böhm, & John, 1993; Ståhl & Andersson, 1994). There are two essential
needs to be satisfied when considering multithreading: multiprocessing and distributed
processing. The first is to provide enough raw compute capability. There must be enough CPU
and GPU cycles, enough memory and memory bandwidth, enough network bandwidth, enough
main processor cycles, and so forth to meet the throughput needs of all application components.
Second, the computational resources must be deployed so that each component of VE
application is able to achieve its required update rate.

For VE applications that include haptics, a separate haptics thread running faster than the
graphics rendering thread is required (Mark et al., 1996). Similarly, applications with
simulation or device-control threads that operate more slowly than rendering or user interaction
often require their own thread (Mark et al., 1996). Several other pieces of VE functionality
may warrant separate threads, as well: a thread for 2D user interface elements; simulation and
animation threads; a thread for device communication, or even one thread per device. In
addition, particular VE application may include unforeseen pieces of functionality requiring a
separate thread; a good VE system will enable this gracefully.

Taylor et al. Page 8

Presence (Camb). Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Examples of starkly different update rates include running a haptic server (1kHz update rate)
with a rendering application (30 Hz update rate) (Mark et al., 1996), or an interactive graphics
application with a simulation (which may run at several seconds per frame) (Bryson & Johan,
1996).

Alice/Diver included a rendering process separate from the application loop to enable real-time
rendering even when the application loop slows down (Gossweiler et al., 1993). Many VE
libraries, e.g., CAVElib, VR Juggler, FreeVR, and VRUI, do this by default; any application
written with those libraries automatically split rendering into a separate thread.

Field experience
Our nanoManipulator system (Russell M. Taylor II et al., 1993) is an example of a multi-
threaded, multi-processing application. A haptic thread is started by the SensAble Technologies
device driver to update a Phantom haptic device at the desired 1000 Hz. A device-control
process runs on a computer controlling a scanned-probe microscope to receive commands and
send data. Rendering and 2D GUI interaction occur in yet another process (often on a third
computer). This configuration was effective in most cases, but the 2D GUI and 3D rendering
were handled in one thread that also communicated with the other two external threads through
reliably-buffered channels. This caused system lock-ups when a user navigated through a series
of 2D menus, causing the 3D rendering to hang and the network buffers between the microscope
and haptic device to go un-serviced – resulting in system lock-up until the menu choice was
completed. In this particular case, the result was barely acceptable because the user’s attention
was focused on the 2D interface widgets and not the 3D rendering.

Case Study: VRPN Error Reporting
When an application uses servers on remote machines and there is an error condition, there is
the question of how to indicate this to the user (who may not even be logged into the machine).
Early versions of VRPN did not provide support for error reporting back to the application.
VRPN now handles this by enabling each object to send text messages. These messages have
associated severity (normal, warning, or error), and they propagate across network connections.
VRPN includes a static text-printing object that prints these messages on the application end.
By default, it prints warnings and errors to standard output. This mechanism enables device
drivers and servers anywhere in the system to send human-readable warning and error reports.
This has proven to be very useful when debugging system behavior.

Another example of distributed error notification is the VRUI (Kreylos, Bethel, Ligocki, &
Hamann, 2000) toolkit which allows warning signals—including audio and flashing objects—
to be delivered to the VE user while immersed. For example, VRUI warns users when one of
the 6-DOF trackers gets within one foot of a display screen. The application flashes a green
grid so that the user can see where the screen is located and thus avoid damaging it.

Discussion
Distributing the work of a VE across threads, processes and machines, while fixing or
ameliorating a number of problems, can introduce a number of other problems, for instance
deadlock, improper synchronization, and locking issues. These issues are all documented in
parallel computing, distributed computing, and concurrent computing texts and literature. VE
systems, in providing for parallelism, must provide ways to control that parallelism effectively.

To a large extent, VE systems just use and export whatever parallel facilities are provided by
the programming language (e.g. Java) or operating system. Beyond that, though, VE systems
should provide parallelization facilities that are specifically adapted to the tasks of VEs. The
client-server model of VRPN is particularly appropriate for distributed devices, for instance.
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Nugget: For the case of VE devices, client and server should be run as separate processes when
they have very different update rates, when server initialization takes a long time, when
message timing is critical, or when the server requires frequent access to a device.

Nugget: A good VE system will include the capability to render in a separate thread, i.e.
separate rendering from all other application computation. Rendering is the most pervasive VE
feature and is also the feature for which degradation in performance is most noticeable. For
immersive VEs in particular, rendering freezes or stalls induce breaks in presence, the term
coined by Slater and Steed to mean attending more to the real world than the virtual (M Slater
& Steed, 2000).

Nugget: A good VE system should also provide a way to identify which pieces of VE
functionality run in which threads; should provide a way to name, start, and control the update
rate of those threads; should ensure the VE code is thread-safe; and should provide to the those
who extend the VE system mechanisms to ensure that their own code is thread-safe.

8 Portability
The VE applications developed within our groups have used a variety of operating systems,
rendering libraries, and languages. Long-lived applications such as the nanoManipulator
(Russell M. Taylor II et al., 1993), have been implemented on as many as six combinations as
platforms come and go. The libraries on which the applications are built need to be ported to
each new combination as well. The issues for each are different, and we describe them in order.

8.1 Operating System/CPU
Case Study: VRPN—Our VRPN (Russell M. Taylor II et al., 2001) was initially developed
for four different architectures (MIP, Sparc, Intel, and PA-RISC), including a mixture of big-
and little-endian machines. It was also compiled for a variety of operating systems (Irix,
HPUX, and Windows). We found that enforcing wide applicability from the beginning
produced a code base that was readily ported to new architectures (ARM, PowerPC) and
operating systems (Linux, MacOSX, WinCE). It also turned up a variety of bugs (such as non-
initialization of variables) that show up on some architectures but not on others.

When the initial implementation targets two or more alternatives, it is more portable.

8.2 Languages
Many VE systems involve the use of two languages: the language that the basic toolkit is written
in (requiring low latency and low-level connections to device drivers) and scripting language
(s) that support animation and perhaps interaction development within the environment
(supporting rapid prototyping and flexibility). This raises the question of what the base
language for a VE toolkit should be, and also how to best support one or more scripting
languages. The variety of favorite languages for different groups indicates that a VE toolkit
must work with a number of (existing and future) languages if it is to be widely adopted.

Field Experience—Regarding the language used to implement the toolkit, we have seen a
transition in languages from C and Fortran to C++, Tcl/Tk, Java, C#, and Python. Several
languages have come into existence since the early 1990s and new ones are still arriving, Ruby
being a recent example. The changes in languages suggest that long-term viability of a VE
toolkit will require that it be able to grow to support languages that did not exist at the time it
was developed. Such adaptability will require the capability for automatic translation found in
tools such as SWIG (SWIG), which automatically converts annotated C++ code to a variety of
other languages. This implies that today (mid-2009) the base language should probably be C
++, unless new translators arrive that accept other languages for conversion. C++ is also

Taylor et al. Page 10

Presence (Camb). Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



presently the language that is most compatible with low-level device drivers that must at some
level be part of the system.

Case Study: VTK—The Visualization ToolKit (VTK) takes the approach of using C++ as a
base language with automatic translation to other languages (Law, Martin, & Schroeder,
1999). This has enabled our NIH National Research Resource team at UNC to implement
visualization and data-manipulation applications in C++, Tcl/Tk, Python, and Java. In one case
an application was prototyped in Python and then rewritten in Java (and is now being considered
for implementation in Qt/C++) without rewriting the basic C++ and VTK-pipeline-based
application core. Such portability enables us to develop local expertise on VTK basics, while
providing the freedom to implement projects in the language that best suits the problem, data
types, and programmer skills.

Case Study: Alice—The Alice toolkit provides an excellent example of providing both a
low-level language and an interpreted language to control interaction and animation (Pausch
et al., 1994). This layered approach enabled teams including non-programmers to develop
interactions based on abstract interfaces to the lower-level toolkit. In the course of its
development, Alice has supported two different scripting interfaces: the original Python
interface was recently changed to Java (using Jython to maintain support for Python scripts).

Nugget: The ability of a system to be converted to multiple languages can enable flexibility
in choice of a scripting language. The fact that the basic graphics and device functions are
written in C++ enables the rapid processing needed for real-time, low-latency operation while
an interpreted language is fast enough for the animation/interaction functions.

8.3 Licensing
Case Study: VRPN—To encourage wide adoption among both open-source toolkits and
commercial vendors, and to enable use by companies that sell virtual-environment systems,
we chose to release VRPN into the public domain. The GNU General Public License (at that
time the GNU Public License) was considered and not selected because it was too restrictive
for comfortable use by commercial entities. Other licenses, such as the BSD license model,
would also allow this flexibility.

9 Extensibility
Nugget: The application programmer should have to learn as little as possible to attain a certain
goal (rather than having to understand the whole API to make what seems to be a minor change
to one part of it).

9.1 Case Study: VTK
The Visualization ToolKit (VTK) is a good example of appropriate code factorization that
affords extensibility to provide the types of features needed by VE applications (Kitware,
2003). A discussion of the techniques that deserve to be emulated can be found in the
supplemental material accompanying the online version of this article.

10 Case Study: Selecting a Toolkit for EVEIL and EVEIL2
One of the most popular virtual environments at UNC is the “Pit,” a variation of a similar
environment first developed at University College London (Mel Slater, Usoh, & Steed,
1995). UNC’s year 2000 version of the Pit was used to validate the use of physiological stress
measures as surrogates for questionnaire based measures of presence (Meehan, 2002). In the
environment, participants were asked to drop objects onto targets located on the virtual floor,
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located twenty feet below a narrow ledge. The natural-walking interface coupled with the
simulation’s visual fidelity proved highly immersive (as evidenced by the fear response it
induced). Four years later, we redesigned the application to use modern libraries. We selected
Wild Magic 3.0 (Eberly, 2008) as our rendering toolkit for three reasons: heritage, minimalism,
and documentation.

Heritage
The UNC 2000 Pit demo had used the original Wild Magic, and our implementation team had
some experience already with the second version of that engine. While the internals of the
renderer had changed dramatically between the three versions, the API design remained
relatively static. We would not have to radically redesign our application loop.

Minimalism
Game engines are often designed around showcase games (e.g., Unreal Engine 3 and the game
Gears of War), and integrate the games’ requirements deeply in their own structure. We rejected
one notable first-person shooter game engine for precisely this reason: despite extensive toolset
support, it made such deep assumptions about avatar motion that integrating it with VRPN
would require significant effort. We rejected another open-source simulation engine for a
similar reason: it integrated several well-designed and modular libraries into a cohesive whole,
but the resulting package was wholly monolithic; even stereo rendering support required
bypassing most of the integration code.

Documentation
We evaluated one high-publicity game engine aimed at hobbyists and independent developers.
Although the engine shipped with documentation, its coverage was uneven. The developers
had concentrated their reference and tutorial documentation on the art content pipeline and in-
game scripting system. Details on the engine’s entity replication system and rendering internals
were scant at best and these systems were almost treated as inviolate black boxes. As these
were the two areas we most needed to modify, we decided to pass on the engine rather than
puzzle out the architecture.

Previous iterations of our code base had made significant changes to the underlying Wild
Magic code to support such features as stereo rendering. Combined with minimal use of
revision control systems, it quickly became impractical to upgrade the Wild Magic components
to newer releases. This had the expected adverse effect on code maintainability; not only were
engine fixes rarely integrated into our custom branch, but there was a great tendency to add
side effects and subtle dependency requirements into the modified code. When we designed
our new Effective Virtual Environment Intermediate Layer (EVEIL) toolkit, we made an
explicit design decision to bar such practices in the new code. Wild Magic, VRPN, and other
libraries were to remain unmodified, even if this led to a larger number of mostly-trivial derived
classes in EVEIL. This approach paid off immediately, as we were able to upgrade between
minor releases of the renderer and other libraries with minimal difficulty. Debugging also
became easier, as we were able to treat these packages as black boxes and focus mainly on
their interaction with our code.

Although we had succeeded with EVEIL in creating a reusable software framework for virtual
environments, the underlying renderer was again beginning to show its age by late 2007.
Shader, shadow, and multi-texturing support were minimal, and we were now contemplating
new studies that required a higher degree of visual fidelity in these areas than our renderer
could provide. Wild Magic 3 had been superseded by Wild Magic 4, a breaking change that
would require significant work to integrate with EVEIL. Because an upgrade would essentially
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involve porting EVEIL to a new renderer, we once again considered the other game engines
available rather than unhesitatingly switching to Wild Magic 4.

Emergent Game Technologies, makers of the Gamebryo game engine, had recently unveiled
an academic license program: qualified educational institutions could receive a binary-only
license for Gamebryo free of charge (Emergent Game Technologies, 2007). We requested an
evaluation copy, and eventually decided to switch to Gamebryo and create EVEIL2. This switch
had several advantages:

As a leading commercial game engine, Gamebryo actively pursued the state of the art in gaming
graphics. The latest shader programming models, including those in DirectX 10, were fully
supported. We now had a shadowing system, per-pixel lighting support, and other graphical
capabilities previously deemed too expensive or time-consuming to implement with Wild
Magic.

Given the massive art requirements for top-of-the-line games, Emergent had invested heavily
in its engine’s content pipeline. Gamebryo’s exporter supported most 3D Studio Max and
Maya functionality without crashing.

Finally, we also had active support resources. While as non-paying customers we were
ineligible for direct technical support, we had access to online forums where our questions
would be answered by Emergent employees and other Gamebryo customers. Additionally, two
of our group members had previously interned at Emergent, thus pre-seeding our group with
Gamebryo proficiency. (Disclaimer: One of the authors is now himself an intern at Emergent.)

10.1 Results of EVEIL and EVEIL2
Despite these advantages, we did run into some difficulties when adapting Gamebryo for
EVEIL2. The license we signed was one source of stress; we were one of the first academic
licensees and thus ran into potential conflicts with the wording of earlier versions of the license.
The license also includes NDA provisions, making it somewhat more difficult to set EVEIL2
up at other sites. While binaries are freely distributable under the terms of the academic license,
the protection system for Gamebryo 2.3 made it difficult to distribute compiled code to non-
licensees. (This defect was later corrected in the next version of Gamebryo.)

Gamebryo does not support OpenGL as a rendering interface, implementing only a Direct3D
backend on PCs. Quad-buffering for hardware stereo support is therefore unavailable and
multi-monitor 3D acceleration is impaired under Windows XP regardless of the specific engine
used. We eventually resorted to nonstandard features of the video driver to achieve a reasonable
frame rate, and are investigating newer versions of Windows and the video driver to see if the
flaw is still present. Also, without source code some bugs are naturally harder to find. While
lack of source removes the temptation to modify the underlying engine altogether, we were
occasionally reliant on the forums to answer simple questions about Gamebryo we would have
been able to answer ourselves with brief code inspection.

The primary design goals of EVEIL remained constant for the new version. We still wanted a
lightweight wrapper around VRPN and wanted our renderer to speed the creation of virtual
environments. In this we succeeded, but scheduling constraints resulted in a more lightweight
application layer than we had originally intended. Many of the advanced rendering options are
implemented in the Gamebryo sample application layer, which we were forced to re-implement
as part of adding stereo support. Although Gamebryo provides a level-editing tool and many
post-processing effects, they are not currently available to EVEIL2 apps. Mindful of our
commitment to modularity, we have left these options open for future development.
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10.2 Further Observations on EVEIL and EVEIL2
Further observations on EVEIL and EVEIL2 are available in the supplemental material
accompanying the online version of this article.

11 Less can be better
Nugget: It is at least as bad to put too much into a VE toolkit as to put too little.

This nugget manifests itself in two ways: excluding audiences by selecting an implementation
they don’t like, and complexity of configuration and building.

Case Study: VRPN
Two examples of complexity reduction turned up during our development of the VRPN library
(Russell M. Taylor II et al., 2001). The first was our decision to produce a heavyweight server-
side version of the library (which had to link with all of the vendor-specific device libraries)
and a more lightweight client-side version (which only had to link with the VRPN-defined
interfaces). This reduced the size of client executables, but more importantly it removed the
build and link complexity from the application programmer. This separation was not carried
over to the Windows build environment, with the result that developers complain about the
difficulty of building applications (it requires re-building the library with different features
disabled).

A particularly frustrating example of build complexity was the set of constraints that kept us
from using the Standard Template Library in VRPN. Initially, this was because of the two
competing versions of the STL (one included vector.h, one vector); continually it has been
because different vendors implement STL in incompatible ways. Other libraries used
incompatible versions of the STL, effectively making it impossible to use both VRPN and the
other library. We solved this within VRPN by keeping all traces of the STL from the header
files (abstracting objects in the header files as needed) so that application code never tried to
include them. We also avoided all use of STL within VRPN itself, which had the unfortunate
consequence of forcing reimplementation of what is essentially the vector class.

Replacing STL by a more modern portable library, such as Boost, would avoid these
inconsistencies but would introduce more of the first type of complexity, where a user of
VRPN also has to download and install another external package that does not come built in to
their compiler. It is surprising how even one or a few such dependencies can form practical
barriers that reduce the number of users of a library. Addressing this complexity by using an
auto-fetch and auto-build system such as CMake requires yet another tool to be downloaded,
installed, and understood and often increases the perceived difficulty of using the library.

Field Experience
At the Desert Research Institute, we attempted to build and run one of the available VE
integration libraries but in the end were unable to get it running and configured in our
CAVE™. The first hurdle, which we did overcome, was the sheer number of dependencies that
had to be set up correctly to get the toolkit to build. We never did get it configured to work
properly in our CAVE™, so we are unable to support it as a toolkit choice for our users.

Field Experience
An example of excluding audiences is listed above in the case study on EVEIL; one toolkit in
particular was rejected because it included hard-coded entity behaviors. Entity architectures
simplify the main application loop by separating the components of the environment (items,
avatars, and non-player characters) into modular, loosely coupled pieces. While not strictly
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required for multi-user simulations, entity systems are usually an integral component of game
engine networking libraries. Because commercial games must run smoothly over the Internet,
a network notoriously prone to jitter and latency, these networking libraries typically include
prediction algorithms for minimizing bandwidth use and movement discontinuity.
Unfortunately, they also tend to interfere with the VRPN tracker update model. We rejected
one first-person shooter game engine for precisely this reason; we would have had to make
significant changes to the player movement system to add head tracking to avatars.

We considered another open-source gaming and simulation engine on the advice of a
collaborator. At first glance, it seemed ideal for our purposes: a thin wrapper layer integrating
a renderer, physics engine, animation system, and more. The project leads had chosen a
different approach from our eventual path, though. They encapsulated these systems within
their own class hierarchy, discouraging use of the underlying engine components. Very few of
these classes were modifiable through inheritance and sub-classing, meaning that extensive
alterations would be required to implement systems as simple as stereo rendering. When the
full extent of these problems became clear, we decided to abandon our prototype and look
elsewhere for an engine.

Nugget: A VE toolkit should make difficult things easier without making easy things more
difficult, and it must not make desirable things impossible.

12 Other sources of nuggets and experience
Gary Bishop and others’ report on research directions for virtual environments has comments
from 18 researchers in the field (Bishop et al., 1992). Mark Mine’s report describes ten years
of work at Disney creating location-based and ride-based virtual environments (Mine, 2003).
Jim Chung and others’ HMD virtual worlds paper describes the issues being dealt with even
before the work described here, including latency, resolution, and field-of-view challenges that
are still relevant today (Chung et al., 1989). Of course, books on VE systems, such as (Sherman
& Craig, 2002), provide in-depth coverage of all aspects of development.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Modified VE-space tree from (Robinett & Holloway, 1992). Dark tree shows spaces: World
space is where the VE-toolkit-specific spaces meet the application spaces; Room space is based
on the vehicle the user flies around in; there is one Tracker space for each tracker in the system,
as many Head and Hand spaces as are tracked, and two eyes for stereo displays. Display screens
for HMD systems are located in Eye space for the appropriate eye; displays for CAVEs, domes,
ImmersaDesks, and other projection systems live in the Room; together with the eye positions,
they determine the viewing transformations.
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