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Abstract

Modern datacenters increasingly use flash-based solid state

drives (SSDs) for high performance and low energy cost.

However, SSD introduces more complex failure modes com-

pared to traditional hard disk. While great efforts have been

made to understand the reliability of SSD itself, it remains

unclear what types of system level failures are related to

SSD, what are the root causes, and how the rest of the sys-

tem interacts with SSD and contributes to failures. Answer-

ing these questions can help practitioners build and maintain

highly reliable SSD-based storage systems.

In this paper, we study the reliability of SSD-based storage

systems deployed in Alibaba Cloud, which cover near half a

million SSDs and span over three years of usage under repre-

sentative cloud services. We take a holistic view to analyze

both device errors and system failures to better understand

the potential casual relations. Particularly, we focus on fail-

ures that are Reported As “SSD-Related” (RASR) by system

status monitoring daemons. Through log analysis, field stud-

ies, and validation experiments, we identify the characteris-

tics of RASR failures in terms of their distribution, symp-

toms, and correlations. Moreover, we derive a number of

major lessons and a set of effective methods to address the

issues observed. We believe that our study and experience

would be beneficial to the community and could facilitate

building highly-reliable SSD-based storage systems.

1 Introduction

Flash-based solid state drives (SSDs) have become an indis-

pensable component of modern datacenters due to its supe-

rior performance and low power draw [6]. Various applica-

tions, including databases [14], social network [15], and on-

line shopping [41], have been supported by large-scale SSD-

based storage systems. Therefore, the reliability of such sys-

tems is of critical importance.

However, it is challenging to maintain the high reliability

of SSD-based storage systems. First, unlike hard disk drives

(HDDs), SSDs may experience unique flash errors (e.g. pro-

gram errors [20, 38]) which are sensitive to the environment

(e.g., temperature [30]). Therefore, our decades of collective

wisdom on HDDs is not fully applicable. Second, issues in

the traditional HDD-based storage stack (e.g., faulty inter-

connection and human mistakes [28]) may continue to haunt

SSD-based storage systems. In addition, due to the complex-

ity of storage systems, the potential correlations among var-

ious events across different levels/components are not well-

understood, rendering extreme difficulty in pinpointing the

root causes of system failures or comping up with effective

fixes.

To address the challenges, substantial efforts have been

made to understand the reliability of SSD itself [24, 33, 38,

44]. For example, Schroeder et al. [38] study flash errors and

discover correlations between flash errors and other device

attributes (e.g., age, wear, lithography). Zheng et al. [44] an-

alyze the behavior of SSDs under power faults. Narayanan

et al. [33] analyze a diverse set of device factors (e.g., design

and provisioning) and their correlations with failed SSDs.

Hao et al. [24] study the performance instability involv-

ing millions of drive hours, especially the device latency in

RAID groups. While these studies provide valuable insights

on the characteristics of SSDs, it remains unclear how SSDs

interact with the rest of the system and contribute to system

failures.

Besides the work on SSDs, studies on HDD-based stor-

age systems are also abundant [7, 8, 28, 35, 37]. Apart

from understanding HDD errors in the field [7, 35, 37], re-

searchers analyze the correlations between HDD errors and

system failures [8, 28]. However, since SSD-based systems

are significantly different from HDD-based systems (e.g., the

TRIM command support throughout the OS kernel [2]), it is

unlikely that these studies and findings are directly applica-

ble to SSD-based storage systems.

In this paper, we look into the storage systems deployed

in 7 datacenters of Alibaba Cloud, which includes around

450,000 SSDs over 3 years’ deployment. Similar to other

large-scale deployed systems [16, 17, 29, 42], our target

systems are equipped with system monitoring daemons de-
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ployed on each node of the clusters. The daemon monitors

abnormal behaviors by constantly checking the BIOS mes-

sages at boot time, the kernel syslog at runtime, and the func-

tionality and availability of the cloud services. Upon an ab-

normal event, the daemon will report a failure ticket with the

timestamp, the component involved, and a snippet of corre-

sponding logs.

Among all failure tickets, we focus on failures that are

Reported As “SSD-Related” (RASR) in this paper. Also,

we collect the corresponding repair logs of the failures as

well as the SMART [4] logs of the SSDs involved. By holis-

tically analyzing the three datasets (i.e., failure tickets, re-

pair logs, and SMART logs) in the context of the storage

systems design and deployment, we identify a number of in-

teresting characteristics of RASR failures in terms of dis-

tributions, symptoms, and correlations. Moreover, we per-

form field studies and validation experiments to understand

in depth the factors affecting RASR failures, and to derive

a number of major lessons as well as realistic remedies for

hardware architects, software engineers, and system admin-

istrators. More specifically, our contributions include the fol-

lowing:

(1) Characteristics of RASR Failures. We collect about

over 150K failure tickets in total from the target systems.

Among these failure tickets, we find that 5.6% are RASR

failures (i.e., about 10K instances), which manifested in five

symptoms: Node Unbootable, File System Unmountable,

Drive Unfound, Buffer IO Error, and Media Error. By corre-

lating the RASR failures with the repair logs, we find that a

significant number (34.4%) of RASR failures are not caused

by the SSD device. For example, plugging SSDs into wrong

drive slots, a typical human mistake, accounts for 20.1%

of RASR failures. Moreover, for RASR failures caused by

SSDs, we find that both the location of devices (i.e., in dif-

ferent datacenters) and the type of cloud services may affect

SSD failure rates.

(2) Lessons and Actions for Hardware Architects. We find

that the suboptimal intra-node SSD stacking and intra-rack

node placement can lead to passive heating (i.e., heating on

idle SSDs by neighboring active SSDs), which may in turn

cause a large number of device errors and high failure rates.

Moreover, by experimenting on a dedicated cluster with con-

tinuous temperature monitoring, we are able to verify that the

poor rack architecture can increase the temperature of idle

SSDs by up to 28 C◦, resulting in 57% more device errors

after 128 hours of passive heating.

To reduce the impact of passive heating, we formulate a

new strategy for intra-rack node placement. Furthermore, we

propose a proactive approach to alleviate the passive heating

by routinely scanning the entire device to trigger the FTL in-

ternal read refresh [11]. Different from the traditional data

scrubbing [5, 31], the scanning is lightweight enough to be

scheduled more frequently to reduce the effect of passive

heating. Our results show that performing a scanning every

4 hours can offset most negative impact of passive heating.

Although not observed in our experiments, the scanning may

potentially lead to more read disturbs [10], affecting the de-

vice negatively. Therefore, we believe it would be ideal for

the vendors to implement the proactive scanning at the FTL.

(3) Lessons and Actions for Software Engineers. We find

that both the data allocation scheme in the service software

stack and the I/O pattern of cloud services play important

roles in affecting SSD reliability and leading to RASR fail-

ures. For example, the Block service, empowered by a di-

rect mapping based data allocation scheme, can cause severe

imbalance of SSD usage when running on top of an HDFS-

like distributed file system (DFS): 15-20% SSDs are overly

used, which causes up to 77.3% more device errors and up

to 18.7% higher device failure rate. Inspired by the log-

structured file system [36], we optimize the data allocation

scheme on the target systems by adding a shared appending

log, and thus mitigate the imbalance issue.

(4) Lessons and Actions for System Administrators. By

co-analyzing device-level and system-level logs, we discover

a strong correlation between one type of RASR failures (i.e.,

those caused by faulty interconnection) and one type of de-

vice errors (i.e., Ultra-DMA CRC or UCRC). Based on this

observation, we design an indicator for the faulty intercon-

nection issue based on the accumulation of UCRC errors,

which significantly improves the repair procedure of rele-

vant failures. In addition, we find that SSDs on the target

systems serve three different purposes (i.e., system drives,

storage, and buffering), but they all use the same SATA inter-

face. This causes much confusion for system administrators

who need to replace drives. To reduce the chance of plug-

ging SSDs into wrong drive slots (cause of 20.1% RASR

failures), we adapt the systems to use different SSD inter-

faces for different purposes (e.g., U.2/M.2 for system drives

and SATA for storage). This optimization effectively elimi-

nates the confusion and reduce the corresponding failures.

To the best of our knowledge, our work is the first effort on

understanding the characteristics of RASR failures as well as

the causal relation between SSD errors and the system design

and usage, in large-scale production systems. Based on this

study, we have significantly improved the reliability of prac-

tical systems through a number of simple yet effective mech-

anisms (e.g., proactive data scanning, UCRC-based indicator

and specializing interfaces). We believe that our study and

lessons would be beneficial to the community, and could fa-

cilitate building highly-reliable SSD-based storage systems.

The rest of the paper is organized as follows: §2 intro-

duces our methodology; §3 analyzes the characteristics of

RASR failures; §4 - §6 discusses our lessons and actions

for hardware architects, software engineers, and system ad-

ministrators, respectively; §7 discusses related work, and §8

concludes the paper.
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Figure 1: Architecture of target systems.

Model Capacity Lithography Age Vendor

M1 480 GB 20 nm 2-3 yrs A

M2 800 GB 20 nm 2-3 yrs A

M3 480 GB 16 nm 1-2 yrs A

M4 480 GB 20 nm 2-3 yrs B

M5 480 GB 20 nm 1-2 yrs C

Table 1: Characteristics of SSDs in the target systems.

2 Methodology

2.1 System Architecture

We study SSD-based large-scale storage systems deployed

in 7 datacenters. The architecture of the target systems is

shown in Figure 1.

At the device level, the systems include around 450,000

SSDs spanning three years of deployment. As shown in

Table 1, these SSDs cover a spectrum of variability in terms

of capacity, lithography, age, and vendors. Note that all five

models in our dataset are using SATA interfaces and based

on MLC NAND cells.

Each node in the systems employs one of three different

setups of SSDs: (1) Single: a node contains one SSD for

storing temporary data; (2) Multiple: a node contains 12 to

18 SSDs for persistent storage; (3) Hybrid: a node contains

2 SSDs and 12 to 36 HDDs where the SSDs are used for

buffering incoming writes. In addition, each node has one

SSD serving as the system drive.

A rack consists of 16 to 48 nodes, and a DFS cluster spans

12 to 18 racks. On top of the DFS, the system supports three

types of cloud services, including Block service, NoSQL ser-

vice, and Big Data service. As shown in Table 2, the cloud

services may run on different setups where the SSDs are used

for different purposes.

2.2 Raw Datasets

The target systems include sophisticated monitoring mecha-

nisms, similar to other large-scale systems [16, 17, 29, 42].

The monitoring daemons are deployed on each node of the

clusters, and they log various events either periodically or

upon the occurrence of an event.

At the system level, the daemons monitor BIOS messages,

Service SSD Model Setup Usage

Block all models Hy/Mul Pers/Buf

NoSQL M1, M3, M4, M5 Hy/Mul Pers/Buf

Big Data M1, M2, M4 Single Temp

Table 2: Cloud services and SSD usages. Hy: Hybrid; Mul:

Multiple; Pers: Persistent storage; Buf: Buffering writes; Temp:

Temporarily storing intermediate data.

kernel syslogs, and the service-level verification of data in-

tegrity. Upon an abnormal event, the daemon reports a fail-

ure ticket with the timestamp, the related hardware compo-

nent, and a log snippet describing the failure. Each failure

ticket is tagged based on the component involved. For ex-

ample, if an SSD appears to be missing from the system, the

failure ticket is tagged as ”SSD-related”. If there is no clear

hardware component recorded in the logs, the ticket would

be tagged as Unknown.

At the device level, the daemons record SMART at-

tributes [4] on a daily basis, which cover a wide set of device

behaviors (e.g., total LBA written, uncorrectable errors).

Besides the failure tickets and SMART logs, we collect the

repair logs of all RASR failures, which are generated by on-

site engineers after fixing the failures. For each failure event,

the corresponding repair log records the failure symptom, the

diagnosis procedure, and the successful fix.

2.3 Study Approaches

After collecting the failure tickets, the SMART logs, as well

as the repair logs, we apply the following approaches to de-

rive insights:

• Log analysis: We calculate the distributions of failure

events along multiple dimensions (e.g., hardware types,

manifestation symptoms). Moreover, since the number

and the variety of events in the logs is large, we leverage

classic statistical algorithms (e.g., Spearman Rank Corre-

lation Coefficient [12]) to analyze the characteristics of in-

dividual events as well as the potential correlations among

different events.

• Field studies: Besides the log analysis, we visit the dat-

acenters in person to investigate the potential variance

of target systems in terms of cluster architectures, which

turns out to be critical for discovering the passive heating

phenomenon (§4). Also, we discuss with on-site engineers

to empirically verify our hypothesis on RASR failures.

• Validation. We build a dedicated cluster to validate our

hypothesis. Moreover, to address the issues exposed in our

study, we design a set of remedy methods, and validate the

effectiveness and practicability on production systems.

2.4 Limitations

Failure Reporting. Our study relies on the failure tickets

reported by distributed daemons that automatically monitor

the health condition of system components from hardware

to software. The daemons may fail to record (e.g. network
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RASR Failure Symptom Meaning Distribution

Node Unbootable Unable to boot the OS on a node 2.6%

File System Unmoutable Unable to mount a local file system 7.4%

Drive Unfound A device cannot be found by the system software 53.7%

Buffer IO Error Unable to write data from memory buffer to the device 17.3%

Media Error Unable to read correct data from the device 19.0%

Table 3: Distribution of RASR failures based on manifestation symptoms. This table shows five different symptoms of RASR failures and

the corresponding percentage.

Hardware Type Distribution

CPU 0.7%

Memory 8.5%

Network 34.0%

Motherboard 5.4%

Storage
HDD 22.1%

SSD 5.6%

Unknown 23.7%

Table 4: Distribution of failure tickets based on hardware types.

This table shows the distribution of failure tickets that are tagged as

related to major hardware components.

failure during log collection) or inaccurately tag the events

(e.g. a node crash tagged as “Unknown” due to insufficient

logs). However, to the best of our knowledge, the way the

tickets are reported is the common practice widely used in

major large-scale production systems and previous studies

on large-scale deployed systems also rely on similar mecha-

nisms for collecting datasets [16, 17, 29, 42].

Software Stack Design. Our software stack includes OS,

DFS and service components. Apart from using a major dis-

tribution of Linux, our DFS and service software are not

open-source. Nonetheless, they share generic similarities

with popular large-scale storage systems such as HDFS [39]

and Google File System [19], and similar high-level services

are provided by other companies such as EBS [1] and Data-

Store [3].

Hardware Products. Like previous works [32, 33], the

target systems use off-the-shelf hardware products such as

SSDs and interconnects. Many products are also widely de-

ployed in the datacenters of other organizations. Therefore,

users from other organizations may encounter the same or

similar hardware-related issues, and we hope they can bene-

fit from our experiences.

3 Characteristics of RASR Failures

3.1 Overview of Failure Tickets

We collect all failure tickets reported as related to hardware

components, over 150K tickets in total. Table 4 shows the

distribution of the failure events based on the types of hard-

ware components involved, including CPU, Memory, Net-

work, Motherboard, HDD/SSD, and Unknown. The Un-

RASR

Failure Symptom

Affected Rate (‰)

M1 M2 M3 M4 M5

Node Unbootable 0.24 0.42 0.15 0.13 0.07

FS Unmountable 1.28 1.05 0.42 2.90 2.04

Drive Unfound 11.19 8.58 5.31 11.51 4.38

Buffer IO Error 3.73 1.34 1.36 4.06 1.21

Media Error 3.42 5.24 2.81 5.73 1.33

Table 5: Distribution of RASR failures among five SSD models.

This table shows the affected rate of each SSD model (M1-M5),

which is the number of SSDs involved in one type of RASR failures

divided by the total number of SSDs with the same model.

known type refers to the failures where a relevant compo-

nent is not specified in the daemon-reported ticket. The sec-

ond column shows the percentage of failure events for each

type of hardware. According to our daemon setup, no failure

event is tagged with more than one type.

As shown in Table 4, storage components (i.e., HDD and

SSD combined) contribute to 27.7% (i.e., 22.1% + 5.6%) of

all hardware-related failure events. RASR failures alone ac-

count for 5.6%. Compared with other hardware components

(e.g., Network which accounts for 34.0%), RASR failures

are much fewer in our dataset. This is consistent with the

findings from previous studies that SSD is a relatively reli-

able component among all hardware components deployed

in datacenters [6, 33].

Nonetheless, since the total number of failure events is

large (i.e., over 150K), even a relatively small percentage

(i.e. 5.6%) of failures cannot be ignored. Therefore, we per-

form an in-depth analysis on RASR failures in this study and

present detailed results in the following sections.

3.2 Symptoms of RASR Failures

After analyzing all RASR failure logs, we find that RASR

failures can manifest in multiple ways. As shown in Table 3,

there are five different types of manifestation symptoms, in-

cluding Node Unbootable, File System Unmountable, Drive

Unfound, Buffer IO Error, and Media Error. The meaning of

each symptom is described in the second column of the ta-

ble. Also, the distribution of each type of symptoms is listed

in the last column of Table 3.

Among the five symptoms, the Drive Unfound type, which

means the device cannot be found by the system software,

is the dominant one (i.e., accounts for 53.7%). Based on
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Node

Unbootable

File System

Unmountable

Drive

Unfound

Buffer IO

Error

Media

Error

1.Slot Check(53.8%) 1.Mnt. Opt. Check(5.4%) 1.Rebooting(22.2%) 1.FSCK(79.8%) 1.Data Check(30.2%)

2.Repl. SSD(46.2%) 2.FSCK(40.5%) 2.Slot Check(34.8%) 2.Repl.SSD(20.2%) 2.Repl. SSD(69.8%)

3.Repl. SSD(54.1%) 3.Repl. Cable(25.9%)

4.Repl. SSD(16.1%)

Table 6: Repairing procedures of RASR Failures and their successful rates grouped by symptom. The first row shows five manifestation

symptoms of RASR failures. The 2nd row lists repairing procedures for each symptom. The repairing follows an order as indicated by the

number before each fix approach. The rate in the parentheses after each fix indicates within that symptom group the percentage of failures

fixed by that approach. Repl.: replacing; Mnt. Opt.: Mount Options.

RASR

Failure Symptom

Affected Rate (‰)

Block NoSQL BigData

Node Unbootable 0.27 0.12 0.35

FS Unmountable 1.43 1.05 1.42

Drive Unfound 13.25 10.58 9.31

Buffer IO Error 5.73 2.34 5.36

Media Error 8.42 3.24 3.77

Table 7: Distribution of RASR failures among cloud services.

This table shows the affected rate of each cloud service (i.e. Block

service, NoSQL service and Big Data service), which is the number

of M1 SSDs involved in one type of RASR failures divided by the

total number of M1 SSDs within the same cloud service.

RASR

Failure Symptom

Affected Rate (‰)

DC1 DC2 DC3 DC4 DC5

Node Unbootable 0.35 0.31 0.21 0.27 0.23

FS Unmountable 1.08 1.25 1.42 1.90 1.04

Drive Unfound 10.33 12.72 13.31 13.96 14.10

Buffer IO Error 2.95 2.14 1.98 1.86 2.12

Media Error 2.06 3.04 2.85 7.73 3.75

Table 8: Distribution of RASR failures among datacenters. This

table shows the affected rate of each M1 SSD under the Block ser-

vice from 5 datacenters (DC1-DC5), which is the number of M1

SSDs involved in one type of RASR failures divided by the total

number of M1 SSDs under the Block service within the same data-

center.

our discussion with on-site engineers, a Drive Unfound event

may be masked by the system software (e.g., automatic re-

direction of I/O requests and re-replication of data), and may

not necessarily lead to data loss. However, the event can

still cause additional latency on the I/O requests involved,

and usually requires engineers to diagnose the issue on site.

Similarly, other types of RASR failures may also affect sys-

tem performance and consume manual efforts. Therefore, it

is important to understand the root causes of RASR failures

and improve the failure handling. We discuss the analysis on

fix procedures in §3.3.

After observing the distribution of RASR failure symp-

toms, we further study the correlation between RASR failure

symptoms and other important factors, including SSD mod-

els, service workloads, and datacenter locations.

As mentioned in Table 1, there are five different SSD mod-

els in our target systems. To further understand the potential

impact of SSD models on RASR failures, we calculate the

failure affected rate for each model, which is the number

of SSDs involved in one type of RASR failures divided by

the total number of SSDs with the same model. As sum-

marized in Table 5, the five RASR failure symptoms have

been observed on all five SSD models (M1-M5). The af-

fected rate ranges from 0.07‰ (i.e., M5 SSDs with the Node

Unbootable symptom) to 11.51‰ (i.e., M4 SSDs with the

Drive Unfound symptom). We do not observe statistically

significant difference among SSD models in terms of the af-

fected rate of RASR failures, which suggests that RASR fail-

ures may not be directly related to the characteristics of SSD

models.

To study the correlation between RASR failures and ser-

vice workloads running on the target systems, we use M1

SSDs, a popular model accounting for 35% of the drive pop-

ulation. Table 7 shows the affected rates of M1 SSDs un-

der three cloud services. We observe that the Block service

(2nd column) has the highest affected rates in four out of

five types of RASR failures (except Node Unbootable). This

finding motivates us to further investigate the cloud services

with their designs, drive usage and device level errors in §5.

In addition, we study whether the location (i.e. datacen-

ters) plays a role in RASR failures. We evaluate the affected

rates of M1 SSDs under the Block service (i.e. the main ser-

vice accounting for for 57% of SSD deployment) in different

datacenters (DCs). Table 8 summarizes the results. Note that

M1 SSDs of the Block service are only used in five datacen-

ters, i.e., from DC1 to DC5. From the table, we observe that

while no DC dominates all failure types, DC4 has substan-

tially more Media Errors (i.e. last row), indicating more data

corruptions. To better understand the potential root causes,

we study the uniqueness of DC4 in terms of hardware archi-

tectures, especially the SSD placement in §4.

3.3 Fixes of RASR Failures

To understand the potential root causes of RASR failures, we

further analyze the corresponding repair logs. For each fail-

ure, administrators apply a symptom-based repairing proce-

dure, i.e., trying a pre-defined sequence of fix candidates one

by one based on the failure symptom until the failure dis-
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appears. Each repair log records the repairing process and

the successful fix of a failure event. Table 6 summarizes the

pre-defined sequence of fix candidates for each RASR failure

symptom. Also, for each fix candidate, we calculate its suc-

cessful rate in the group of failures with the same symptom

(shown in the parentheses).

For instance, after observing a Drive Unfound failure (3rd

column of Table 6), administrators will first attempt to re-

motely reboot the node to check whether the failure is tran-

sient (“Rebooting”). If not, administrators will manually

check whether the device is plugged into the correct slot

(“Slot Check”). If the slot is correct, administrators will then

try replacing the cable (“Repl. Cable”), followed by replac-

ing SSD (“Repl. SSD”) as a final resort until the failure is

resolved. Note that all RASR failures are eventually fixed by

replacing SSDs if previous attempts do not work.

One observation on Table 6 initially puzzling us is that

the first fix attempt is not always the most effective one

within each group of failures. For example, “Mnt. Opt.

Check” (Mount Options Check) works only for around 5%

of File System Unmountable failures (2nd column). Simi-

larly, “Data Check” cures 30.2% of Media Error events (last

column). After discussing with administrators, we realize

that the symptom-based repairing procedure overall is sim-

ple yet effective. Specifically, the order of the fix candidates

for each failure symptom is first based on their costs, fol-

lowed by their effectiveness. As a result, the set of software-

based fixes (i.e., checking mount options, rebooting, FSCK,

and data check) are always preferred over the set of man-

ual or hardware-based ones (i.e., slot check, replacing ca-

ble, and replacing SSD). The order within either set of fix

candidates is based on their effectiveness to solve the failure

symptoms in administrators’ past experiences. The sequence

of fix candidates for repairing Drive Unfound (3rd column)

clearly demonstrates the ordering consideration.

Although existing fix procedure is effective to certain de-

gree, it is a black-box approach (trail-and-error) since the ad-

ministrators do not know the root causes before applying the

fix candidates. This motivates us to conduct in-depth study

on the potential root causes of RASR failures for helping

system administrators with better fix strategy. As will be dis-

cussed in §6, we identify an accurate indicator for one type

of failures (§6.1) and propose a method for avoiding another

type of failures (§6.2).

3.4 SMART Logs under RASR Failures

The device level SMART [4] log is an important dataset for

analyzing SSD behaviors and failures in the field [32, 33,

38]. Similar to previous studies [32, 33, 38], we analyze a

subset of SMART attributes (as shown in Table 9) on our

target systems in depth and observe a number of characteris-

tics which are consistent with the prior work (e.g., the preva-

lence of uncorrectable errors and the high raw bit error rate

on failed drives). Due to space limit, we do not discuss the

Device Level Event Definition

Host Read
Total amount of host

LBA read from SSD

Host Write
Total amount of host

LBA write to SSD

Program Error
Total # of errors in NAND

programming operation

Raw Bit Error Rate

(RBER)

Total bit corrupted divided

by total bits accessed

End-to-End Error

(E2E)

Total # parity check failures

between drive and host

Uncorrectable Error
Total # of data corruption

beyond ECC’s ability

UDMA CRC Error

(UCRC)

Total # of CRC check failures

during Ultra-DMA

Table 9: Device level events collected in our study.. Device level

events are collected via SMART [4]. All events are recorded in a

cumulative manner.

observations or the distribution of SMART attributes that are

similar to prior work. Instead, we correlate the SMART logs

with RASR failures in later sections and analyze the impact

of different factors (e.g., hardware architecture and software

design) on drive behaviors.

4 Lessons & Actions for Hardware Architects

During our characteristics study of RASR failures (§3), we

observe that SSDs deployed in one particular datacenter

(DC4) experience much more Media Error under the Block

Storage service (Table 8). Moreover, these SSDs have higher

Raw Bit Error Rate (RBER) and Uncorrectable Bit Error

Rate (UBER) based on the SMART logs.

To understand why the Block service in DC4 is so unique,

we perform field studies at DC4 and other datacenters. We

find that there are two potential factors. First, in DC4, about

27.1% Block service nodes are equipped with 18 SSDs,

while in other datacenters less than 5.3% Block service

nodes have 18 SSDs (most nodes have 12 SSDs). Second,

in DC4, nodes for different services are often co-located in

the same rack, while in other datacenters a rack is exclu-

sively used for a single service. In this paper, we refer to the

two factors as intra-node SSD stacking and intra-rack node

placement, respectively, both of which affect the SSD place-

ment in the systems. Since NAND flash memory is known to

be less reliable under higher temperature [9] due to the Ar-

rhenius Law[34], we suspect that the SSD placement may

affect the airflow in nodes and racks, which may in turn

affect the operating temperature of neighboring SSDs, and

then lead to abnormal behaviors. We refer to this hypothesis

as passive heating.

Note that passive heating is different from heating mech-

anisms used in prior work for analyzing NAND flash or
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Figure 2: Intra-node SSD stacking and the airflow. This fig-

ure shows the stacking of SSDs within a node, which include three

groups:front, middle and back. The arrows indicate the direction

of the airflow for cooling. Note that due to confidentiality, we can-

not show the real photo of the node deployed in our target systems;

however, the actual node is very similar to this example.

SSD under high temperatures. Specifically, in the studies on

NAND retention errors, NAND chips are heated to high tem-

perature without power supply (e.g., heating in the oven) [9].

Differently, SSDs in our study are always powered on, where

the FTL may proactively reduce NAND errors. In previous

studies on the impact of SSD temperatures, they mostly fo-

cus on active heating, i.e., heating the SSDs by heavily ac-

cessing them. In such case, high temperature may trigger

the throttling mechanism in FTL to reduce errors [32]. On

the contrary, the passing heating we observe may affect idle

SSDs, which cannot be remedied by throttling (because there

is no heavy on-the-fly flash operations to throttle). Therefore,

we believe it is necessary to investigate the passive heating

further.

4.1 Identify and Verify Passive Heating

With the help of on-site engineers, we identify three poten-

tial scenarios where SSDs may suffer from excessive passive

heating:

• Hot Airflow. Figure 2 shows an example of stacking of

multiple SSDs within a node and the airflow for cooling.

In this design, idle SSDs at the outlet of the airflow may be

heated up when the front SSDs are being accessed heavily.

• Hot Neighbors. If an idle node is close to another node

running intensive workloads, SSDs in the idle node may

be heated up by the hot neighboring node.

• Hot Air Recirculation. When a node is removed out of

the rack, the empty node slot may serve as a channel for

tunneling hot airflow and passing heat to nearby nodes

(one empty node slot away).

To verify and measure the passive heating, we build an ex-

perimental cluster with continuous monitoring of SSD tem-

peratures and controlled workloads. The cluster includes 8

nodes in a dedicated rack, and each node has 18 SSDs. We

perform the following experiments to analyze the passive

heating in each of the aforementioned scenarios.

For Hot Airflow, we first record the initial temperature of

the SSDs near the outlet of the airflow when a node is just

powered on. Then, we run intensive workloads to access the

6 front SSDs (i.e. SSDs close to the inlet of the airflow), but

leave the remaining 12 SSDs idle. We compare the temper-

atures of the idle drives before and after running the work-

loads.

For Hot Neighbors, we run intensive workloads on some

nodes, and keep monitoring the temperatures of the SSDs

on the neighboring idle nodes. We try three configurations

where the hot neighbor(s) is atop, below, or are at both sides

of the idle node.

For Hot Air Recirculation, we remove a node from the

rack and examine whether the temperature of the SSDs of an

idle node can be affected by a hot neighbor that is one node

slot away.

Our experiments show that for an idle SSD initially at 25

C◦, it can be heated up by 23 C◦, 9 C◦, and 17 C◦ (i.e., reach-

ing 48 C◦, 34 C◦, and 42 C◦) via Hot Airflow, Hot Neighbors,

and Hot Air Recirculation, respectively. Moreover, when

combining the three effects, an idle SSD can be heated up

by 28 C◦ (i.e., reaching 53 C◦) on our cluster.

4.2 Effects of Passive Heating on SSDs

After verifying that the suboptimal SSD placement may gen-

erate undesirable passive heating on SSDs, we look into the

impact of passive heating on SSDs’ behavior. In this set of

experiments, we compare the raw bit errors of SSDs at three

levels of temperatures under passive heating: 35C◦, 45C◦,

and 55C◦. Note that we use a fixed temperature interval (i.e.,

10C◦) to make the correlation between errors and passive

heating more clear.

Specifically, in each experiment, we heat up idle SSDs

(initially 25C◦) through passive heating until they reach one

of the three levels of higher temperatures, i.e., 35C◦, 45C◦,

or 55C◦. At each level, we maintain the same temperature for

a range of time durations, i.e., from 1 to 128 hours, by care-

fully adjusting the workloads on neighboring nodes based

on the feedback of the measured SSD temperature. After the

stable passive heating period finishes, we scan the whole de-

vice and measure the Raw Bit Errors1 newly generated dur-

ing the heating period.

Figure 3 summarizes the results. We find that all three

levels of passive heating (i.e., 35C◦, 45C◦, and 55C◦) may

lead to more Raw Bit Errors compared with normal case (i.e.,

25C◦). Additionally, a higher level of passive heating (e.g.,

55C◦) for a longer period of time (e.g., 64 hours) can gen-

erate more Raw Bit Errors, and the increasing trend is non-

linear. Moreover, after 128 hours of heating, we observe that

idle SSDs suffer from 57% more Raw Bit Errors.

Note that our observation in this set of experiments (i.e.,

higher temperature leads to more retention errors) aligns well

with previous studies and industry standards[27, 32]. How-

ever, it contradicts to a recent study on 3D NAND flash chips

[30]. This is likely because the structure and characteristics

of 3D NAND are different from those used in our systems

1We do not use the Raw Bit Errors Rate (RBER) attribute directly be-

cause it is a cumulative value over the entire lifespan of a device.
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Figure 3: Raw Bit Errors generation under passive heating

through time

(e.g., charging trap versus floating gate).

Although in our small scale experiments we do not ob-

serve uncorrectable errors or RASR failures, we believe that

the results (e.g., increasing Raw Bit Errors) indicate that

SSDs may become less reliable due to passive heating, and

the phenomenon deserves more attention.

4.3 Offset the Impact of Passive Heating

Since the idle SSDs that are suffered from passive heating do

not serve any I/O (before measuring the Raw Bit Errors), the

increased Raw Bit Errors are most likely due to a retention

issue. Classic techniques like data scrubbing can effectively

mitigate retention issue by scanning and checking data in-

tegrity. However, it is unrealistic to apply such techniques

frequently due to the prohibitive performance overhead.

On the other hand, we realize that the FTL in SSDs usu-

ally has a mechanism called Read Refresh [11] to correct bit

errors and reallocate data during reading. So we propose to

apply a lightweight regular software-based scanning to trig-

ger read refresh (without computing checksums) to offset the

negative impact of passing heating on idle SSDs. To verify

our proposed method, we experiment on different intervals

of scanning (e.g., 1 to 128 hours) and measure the reduction

of Raw Bit Errors. Our experimental results are very promis-

ing: a routine scanning of every 4 hours can effectively con-

trol Raw Bit Errors without incurring too much overhead in

our target systems. For example, after we perform a 4-hour

routine scanning on the idle SSD during its 128 hours of pas-

sive heating under 55 C◦, we only observe 1% more Raw Bit

Errors, which is in stark contrast to 57% more Raw Bit Er-

rors without scanning. Further increasing the frequency of

scanning do not reduce the errors much. Therefore, the 4-

hour-scanning routine achieves a good balance between the

effectiveness and overhead in our systems.

While triggering read refresh by routine scanning is help-

ful for offsetting the impacts from passive heating, there

are other potential issues with its direct deployment on pro-

duction systems. First, the routine scanning requires fine-

grained temperature monitoring to detect passive heating.

Currently, the SSD temperature on our target systems is ob-

tained by querying the SMART logs. Similar to other cloud

companies [32, 33], the SMART logs are pulled on a daily

basis in our production systems, which is insufficient for

monitoring passive heating. Increasing the query rate re-

quires changes to the distributed monitoring daemons and

may affect the quality of service. While some hardware-

based temperature querying methods (e.g., IoT sensors [18])

are relatively lightweight, integrating them into production

systems may require significant efforts.

Second, the scanning might introduce more read disturb

errors [10]. Although the scanning does not necessarily read

the entire disk (i.e. only the stored data) or blindly get exe-

cuted every 4 hours (i.e. only when SSD is in passive heating

for more than four hours), the SSD may still suffer from in-

creasing device errors due to read disturbance. This may fur-

ther deteriorate as the lithography becomes smaller. There-

fore, while effective, it is difficult to directly apply the rou-

tine scanning used in our experiments to production systems.

Alternatively, it is possible to implement our proposed

technique of detecting and remedying passive heating in FTL

with vendors’ support. First, many SSDs today support heat

throttling in the FTL, which implies that the temperature is

already closely monitored by the device. Second, the FTL

has the best knowledge of which parts of the data have higher

error rates, and thus can react accordingly by proactively

read refreshing the corresponding data. Therefore, the FTL-

based solution may be more effective. We hope our study

can raise the awareness of passive heating and facilitate ad-

dressing the issue.

5 Lessons & Actions for Software Engineers

As shown in Table 7, the SSDs under the Block service suffer

more RASR failures than the devices under the other two

services. This finding motivates us to further investigate the

behavior differences of the SSDs among the three services,

as well as the potential causes and fixes.

5.1 Usage Imbalance in Block Service

We start with the SSD usage, the most fundamental statistics

of device behaviors. The three cloud services (i.e. Block,

NoSQL, and Big Data Analytics) supported by our target

systems are intrinsically different in terms of data placement

policies and I/O patterns, which may lead to different usage

patterns of SSDs. To understand the basic usage, we com-

pare two device-level events: Host Read and Host Write,

which measure the amount of data read from or written to

the device by the host.

More specifically, we measure the hourly average value

of host read/write (i.e., total sizes of host read/write divided

by total power-on hours) on all SSDs under each cloud ser-

vice. Moreover, we calculate the variability of the two met-

rics among SSDs under the same service using the coefficient

of variation (CV), which is the ratio of standard deviation to

968    2019 USENIX Annual Technical Conference USENIX Association



Host Read Host Write

Avg.

Value

/Hour

Block 7.69 GB 6.56 GB

NoSQL 6.10 GB 5.28 GB

BigData 1.57 GB 1.22 GB

CV
Block 35.5% 24.9%

NoSQL 3.2% 6.2%

BigData 1.8% 3.7%

Table 10: Comparison of SSD usages under three services in

terms of host read and host write. CV: Coefficient of Variance,

the ratio of standard deviation to mean.

Figure 4: Distribution of SSDs under three services. This figure

shows the distribution of SSDs in terms of hourly host write under

three services. The arrows mark the bimodal usage under the Block

service.

mean. Intuitively, a higher CV indicates that the hourly host

read/write varies more across SSDs.

Table 10 summarizes the results. We can see that the

hourly average value of host read and host write of the Block

service are 7.68 GB and 6.56 GB, respectively, which are

similar to those of the NoSQL service. However, the Block

service has much higher variances for the two metrics (i.e.,

35.5% and 24.9%), which implies that the usage of SSDs

under this service is much more unbalanced.

Figure 4 further illustrates the distribution of SSDs in

terms of hourly host write under the three services by using

a histogram with 0.5 GB buckets along the x-axis. Each dot

on the line (e.g., solid line for Big Data) represents the cu-

mulative count of SSDs in the corresponding usage bucket.

We can see from the figure that the majority of SSDs under

NoSQL and Big Data Analytics services have similar usages

(i.e., one major spike on the corresponding curve). In con-

trast, the SSDs under Block Storage service shows bimodal

usages (i.e., two spikes far apart) as marked in the figure.

Further analysis shows that the overly used drives (i.e. the

right spike) account for around 17% of all SSDs in the Block

Storage service and have 227.1% more write usage. The dis-

tribution of SSDs in terms of hourly host read exhibits simi-

lar pattern.

With such an unbalanced usage pattern, the overly-used

set of SSDs may be worn out quickly. As a result, compared

with averagely-used SSDs (i.e., balanced usage), overly-used

Figure 5: Comparison of overly used SSDs and averagely used

SSDs. This figure shows overly used SSDs exhibit more device

level errors and RASR failures compared with averagely used SSDs.

RBER: raw bit error rate; UBER: uncorrectable bit error rate; PE:

program error count; DU: Drive Unfound; BIOE: Buffer IO Error;

ME: Media Error.

Figure 6: The data path of an update operation (original).

SSDs may exhibit more device-level errors and potentially

lead to more RASR failures. To verify this hypothesis, we

quantitatively measure such difference based on our dataset.

We use the classic 80/20 rule to group the SSDs. The SSDs

with top 20% usage within the Block Service are labeled as

overly-used and the rest are labeled as averagely-used. As

shown in Figure 5, overly-used SSDs have noticeably higher

numbers of device errors including RBER (1.77X), UBER

(1.20X) and PE (1.25X). Moreover, they tend to incur more

RASR failures including Drive Unfound (1.05X), Buffer IO

Error (1.15X), and Media Error (1.18X). This result suggests

that load balancing is indeed important.

5.2 Root Causes of Usage Imbalance

After looking into the design of software stacks of the three

cloud services, we identify two major factors for the unbal-

anced usage of SSDs in the Block service: the update policy

and the user I/O patterns.

Figure 6 shows the simplified update policy in the Block

service (for clarity, irrelevant details such as sharding and

replication are omitted). The Block service offers users

the storage capacity at the granularity of chunks. The left

part of the figure shows that USER1 subscribes one chunk

(“Chunk1”) from the service. The software stack of the

Block service maintains a mapping table from the chunk to

a fixed SSD (i.e., storing “Chunk1” on“SSD1”).
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Figure 7: The data path of an update operation (optimized).

Upon an update operation, shown in the right part of

Figure 6, the software stack queries the mapping table and

writes the updated chunk to the same SSD (i.e., ”Updated

Chunk1” on ”SSD1”). In other words, in the Block service

performs in-place updates, i.e., updates are always flushed to

the initially-allocated SSDs.

In addition, we find that the Block service receives a di-

verse set of I/O requests from different users. Some users

generate many update operations while others do not. This

diversity and the in-place update policy lead to the unbal-

anced usage of SSDs under the Block service.

Unlike Block Service, the other two cloud services do not

cause severe usage imbalance because they have a different

update policy or I/O pattern. Particularly, the NoSQL ser-

vice merges small updates together and always generates a

new chunk for the updated data, which can be mapped to a

different SSD. In the Big Data service, reading and adding

new data are consistently much more frequent than updating

existing ones. Therefore, SSDs under both services have a

relatively balanced usage.

5.3 Mitigating Usage Imbalance

To address the usage imbalance issue, we optimize the soft-

ware stack of the Block service by adding a shared append-

only log, similar to LFS [36].

Figure 7 shows the update operation after the optimiza-

tion. Similar to Figure 6, USER1 subscribes a chunk from

the Block Service. Unlike the original design, the chunk is

now maintained in a log which appends the latest update to

its end. Upon receiving an update, the software stack invali-

dates the previous chunk (marked with an “X”), appends the

update to the log, and changes the mapping table to map the

updated chunk to a new SSD (“SSD2”). The outdated chunk

will be invalidated for garbage collection. This log-based de-

sign mitigates the usage variance among SSDs, as each up-

dated chunk will be allocated to a different SSD based on the

wear among available drives. Note that, in certain cases, the

updated chunk may still mapped to the original SSD if the

original one happens to be the most appropriate candidate.

After applying the optimized design on a subset of our

target systems for 7 months, we observe that the coefficient

Fix Percentage Root Cause

Rebooting 11.9% Transient

Mount Options Check 0.4% Human Mistake

FSCK 16.5% Undetermined

Data Check 6.0% Undetermined

Slot Check 20.1% Human Mistake

Replacing Cable 13.9% Faulty Cable

Replacing SSD 31.2% Failed Device

Table 11: Working fixes of RASR failures. The first column

shows working fixes of RASR failures. The 2nd column lists the

percentage of RASR failures repaired by each fix. The 3rd column

lists the corresponding root cause derived from the working fix.

of variance (CV) of host read/write under the Block service

reduces significantly (i.e., from 24.9% to 5.2% among all

SSDs under the same service). The log-structured design

also provides other benefits for our target systems (e.g., bet-

ter support for snapshots), which are beyond the scope of this

paper.

6 Lessons & Actions for System Admins

To help system administrators with better fix strategy, we

need better understanding of the root causes of RASR fail-

ures. While the repair log of a RASR failure does not explic-

itly state the root cause, we can infer the potential root cause

based on the successful fix in the log. For example, if a fail-

ure can only be fixed by replacing the SSD, it is likely that

the root cause is a failed SSD. Table 11 shows all the seven

fixes deployed in the repairing procedure of RASR failures,

the percentage of RASR failures being successfully repaired

by each fix, and the potential root causes.

We observe that not all RASR failures are caused by

failed SSDs. There are two main non-SSD causes for RASR

failures: (1) human mistakes contribute 20.5% of RASR

failures, including plugging the device to the wrong slot

(“Slot Check”) and incorrect configuration (“Mount Options

Check”); and (2) faulty interconnections fixed by replacing

cable, which is outside of SSD, account for 13.9% of RASR

failures. Note that, although “Replacing SSD” accounts for

the most (31.2%) of RASR failures, we still leave it as the

last resort in the fix strategy due to the high cost of the de-

vices and labors. Hence, we are interested in whether faulty

interconnections and human mistakes can be quickly diag-

nosed or largely avoided.

6.1 Faulty Interconnection

Faulty interconnection is a well-known issue in large-scale

storage systems [28]. To fix the RASR failures (Drive Un-

found) caused by faulty interconnection, replacing the cable

between SSD and host is an effective method. However, our

symptom-based repairing procedure (shown in Table 6) lists

replacing cable as the third step to try out if a Drive Unfound
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Fix Heavy Group Light Group

Rebooting 4.4% 25.0%

Slot Check 7.6% 35.7%

Repl. Cable 70.6% 24.2%

Repl. SSD 17.4% 15.1%

Table 12: Success rates of fixes in two SSD groups. This table

shows the success rate of each fix for the “Drive Unfound” failures

in two SSD groups classified by the indicator.

failure occurs. This incentivizes us to quest for good indica-

tors of faulty interconnection. If successful, administrators

can directly replace cable instead of trying the first two failed

attempts – significantly improving the repairing procedures

of Drive Unfound (a major source of RASR failures).

6.1.1 Identifying Potential Indicators

To find a suitable indicator for faulty interconnection, we

study the correlation between five representative device er-

rors (i.e., Ultra-DMA CRC (UCRC), RBER, Uncorrectable

Errors, Program Errors, and End-to-End Errors) and faulty

interconnection by using Spearman Rank Correlation Coef-

ficient [12]. The result shows that only the UCRC has strong

correlation with faulty interconnection. This generally indi-

cates that the more UCRC errors an SSD has, the more likely

a Drive Unfound failure is caused by faulty interconnection.

Therefore, we select the number of UCRC errors for design-

ing the indicator.

6.1.2 Refining the Indicator

Since UCRC errors may also occasionally caused by tran-

sient factors (e.g., voltage spike), it is necessary to set a

proper threshold for indicating faulty interconnection. To

this end, we apply a set of classic statistics methods (e.g.,

Kolmogorov-Smirnov Test [13]) to analyze the UCRC er-

rors and derive the optimal threshold. We find that the dis-

tribution of UCRC errors follows the 80/20 rule (i.e., Pareto

Law [13]). So if the accumulation of UCRC errors on an

SSD is in the top 20% among all drives, we assign the SSD

to the “Heavy” group. Our analysis shows that 17 is the best

threshold for our systems. In other words, when an SSD has

17 or more UCRC errors, it is a strong indication of a faulty

interconnection in the target systems. Note that the threshold

can be re-calculated and updated periodically for the change

of systems and environment (e.g., aging of SSDs, workload

changes). We leave the sensitivity study of the threshold as

future work.

6.1.3 Verifying the Indicator

We further use our existing dataset to verify the effectiveness

of the UCRC-based indicator. Specifically, we first divide

all SSDs into two groups based on the threshold: “Heavy”

(above or equal to the threshold) and “Light” (below the

threshold). Then, we calculate the successful rate of each fix

candidate for the “Drive Unfound” failures in each group.

Table 12 demonstrates that our indicator for faulty inter-

connection would be very effective for improving the repair-

ing procedure of Drive Unfound failures. Most (i.e., 70.6%)

SSDs in the “Heavy” group have been successfully repaired

by replacing cable. On the contrary, only 12.0% of SSDs in

the group are fixed by the first two candidates (i.e., node re-

booting and slot check). This result suggests that, it can sig-

nificantly improve the successful rate of the first attempt if

we directly replace cables for the drives that are severely af-

fected with UCRC errors. As for the “Light” group of SSDs,

whose root causes are not identified as faulty interconnec-

tion by our indicator, the successful rate of replacing cable

is similar to the first two fix candidates. This shows that the

existing repair procedure is good for “Light” group of SSDs.

6.1.4 Benefits of Using Indicator

We have applied the UCRC-based indicator to our target sys-

tems. With the new repairing procedure for Drive Unfound

failures, if the number of UCRC errors in SSD is higher than

the threshold, on-site engineers will start with replacing ca-

ble first.

One might think that rebooting is simple and it should be

the first attempt no matter what the root cause is. However,

the side effect of rebooting can be notable and cascading in

large-scale production systems. For example, a node may

hang at BIOS during reboot if the system drive is inacces-

sible due to a faulty cable, which may further trigger large

data transfer in a 3-replica system. Therefore, when the root

cause is likely to be a faulty cable (i.e., the heavy group), we

use cable replacement first.

Based on the feedback of the on-site engineers on the new

89 cases of Drive Unfound (not included in our dataset), the

indicator helps them reduce the repairing time by 21.1%, be-

cause of the saving on time that would have been spent on

the first two unsuccessful attempts (i.e., node rebooting and

slot check).

6.2 Human Mistakes & Solution

As shown in Table 11, human mistake is another major

source of RASR failures. Particularly, plugging the device

to the wrong slot (i.e., fixed by “Slot Check”) accounts for

20.1% RASR failures. Although it may be part of human

nature to err, we believe such mistakes should be avoided.

To address the issue, we design an approach called One

Interface One Purpose (OIOP) for our latest and future de-

ployment, where SSDs serve for different purposes use dif-

ferent hardware interfaces. Table 13 lists the interface for

each type of SSD functionality in our target systems. We use

U.2/M.2 interface for system drives as our motherboard usu-

ally has 1 or 2 such sockets. The NVMe interface is used for

temporary storage and buffering as these SSDs require high

bandwidth and low latency. The SATA interface is used for

persistent storage for compatibility concerns (i.e., re-using

current SSDs on new racks). With such an OIOP design, the
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SSD Functionality SSD Interface

System drive U.2/M.2

Temporary storage NVMe

Buffering writes NVMe

Persistent storage SATA

Table 13: Mapping between SSD functionality and interface.

SSDs and slots for different purposes are easily differentiable

by system administrators. Note that these interfaces are un-

likely to be transitional as each interface has its unique mar-

ket/purpose (e.g., U.2/M.2 for embedded, NVMe for high-

performance).

Although simple, the OIOP design has effectively reduced

the RASR failures caused by human mistakes in practice.

In the 6-month deployment of an OIOP storage system with

about 100K SSDs, we only observe 3 RASR failures caused

by plugging a device to a wrong slot. In stark contrast, we

observe an average of 47 such cases on comparable size of

current storage systems without OIOP.

Besides OIOP, another possible solution is to use a sta-

tus light to differentiate the functionalities of drives. Sta-

tus light has been used for indicating drive status in RAID

systems [40], and it can be applied to motherboards without

multiple interfaces. However, adding status lights requires

support from hardware manufacturers.

7 Related Works

Our work is mainly related to the following three lines of

research studies: (1) reliability of SSDs and SSD-based stor-

age systems, (2) reliability of HDD-based storage system,

and (3) large-scale failure studies.

Great efforts have been made on analyzing the reliabil-

ity of SSDs and SSD-based storage systems [32, 33, 38, 43,

44, 45]. For example, Schroeder et al. [38] conduct a large-

scale field study covering millions of drive days and ana-

lyze a wide range of device characteristics and errors (espe-

cially RBER and UBER) as well as their correlation. Meza

et al. [32] study flash memory failures in the field as well as

their correlation with other factors (e.g., data written from

OS). Narayanan et al. [33] analyze the correlation between

failed SSDs and other factors (e.g., hardware utilization).

Our work is different in a number of ways. First, we fo-

cus on RASR failures, which have not been studied before.

Second, our study covers system-level failure symptoms, re-

pair procedures, root causes, as well as the casual relations

among events. Third, we design and validate a set of sim-

ple yet effective solutions. Therefore, we believe our work is

complementary to the existing efforts.

Research efforts on HDD-based storage stack are also

abundant [7, 8, 28, 35]. For example, Jiang et al. [28] study

the logs from around 40K storage systems and discover sev-

eral findings including the significant contribution of physi-

cal components and protocol stacks in failures, the “bursty”

failure pattern, and the benefit of using redundant intercon-

nection. Bairavasundaram et al. [7] analyze over 1.5 million

hard drives and find out the severity differences of data cor-

ruption among enterprise and nearline disks, the spatial and

temporal locality of checksum mismatches, and the correla-

tion of data corruption across different disks. Based on the

same dataset, Bairavasundaram et al. [8] also analyze fac-

tors that contribute to the latent sector errors along with the

trends and further explore possible remedies towards build-

ing a more robust storage subsystem. However, due to the

difference in both hardware design and software support,

their findings may not be directly applicable to SSD-based

storage systems.

In addition, our work is closely related to two groups of

studies on large-scale failures. The first group focuses on us-

ing failure reports (e.g., news and descriptive records) to un-

derstand failures in modern storage systems [21, 22, 23, 43].

For example, Gunawi et al. [23] collect around 100 hard-

ware fail-slow reports across multiple large-scale deploy-

ments from several institutions and study the behaviors, root

causes and lessons for dianosis of fail-slow failures. In the

second group of studies, researchers have made efforts on

diagnosing and detecting failures from software perspective.

For instance, Huang et al. [25, 26] analyze the production

systems deployed at Microsoft and discover a key feature

of the gray failure, differential observability, which leads

them to build a fast detection tool. Regarding the first group,

our work is different as we use multiple log sources (e.g.

SMART logs, kernel logs) to conduct quantitative analysis

and further derive the causal relationships of the failures.

Compared with the second group, our work targets the vari-

ous aspects of system reliability maintenance, including not

only the software but also the hardware and administration.

8 Conclusions

We study the characteristics of RASR failures in large-scale

storage systems in this paper. Our study reveals the distri-

bution, symptoms, and causes of RASR failures. Moreover,

we derive several lessons on system reliability, including the

passive heating phenomenon, the usage imbalance, human

mistakes, etc. In addition, we design and validate a set of

simple yet effective methods to address the issues observed.

We believe our findings and solutions would be beneficial to

the community, and could facilitate building highly-reliable

SSD-based storage systems.
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