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Abstract. With the MPI-Sintel Flow dataset, we introduce a natural-
istic dataset for optical flow evaluation derived from the open source
CGI movie Sintel. In contrast to the well-known Middlebury dataset, the
MPI-Sintel Flow dataset contains longer and more varied sequences with
image degradations such as motion blur, defocus blur, and atmospheric
effects. Animators use a variety of techniques that produce pleasing im-
ages but make the raw animation data inappropriate for computer vision
applications if used “out of the box”. Several changes to the rendering
software and animation files were necessary in order to produce data
for flow evaluation and similar changes are likely for future efforts to
construct a scientific dataset from an animated film. Here we distill our
experience with Sintel into a set of best practices for using computer
animation to generate scientific data for vision research.

1 Introduction

In recent years standardized datasets have been a driving force in various sub-
fields of of computer vision such as object recognition and optical flow [1]. The
benefits to the field are twofold: First, they make algorithms objectively compa-
rable and, by creating challenges, inject a sense of competition into the commu-
nity. Second, by providing a large corpus of data, ideally representative of the
world, they make it possible to use learning-based techniques.

Today the Middlebury flow dataset [1] remains the most widely used optical
flow benchmark. However, current top methods perform similarly on this dataset,
making it hard to determine which differences in performance are significant. In
this sense, the Middlebury flow dataset may no longer be challenging enough to
drive continued innovation in the field.

In order to provide a more challenging optical flow benchmark, we have devel-
oped a new dataset based on the open source CGI movie Sintel1, which we call
MPI-Sintel [2]. Compared to Middlebury, it contains larger motions, non-rigidly

1 http://www.sintel.org
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Fig. 1. Examples. Example frames from 8 of the 35 scenes contained in our dataset.
The ground truth optical flow is shown below the corresponding rendered frame. Color
coding as in [1].

moving objects, and image degradations such as motion and defocus blur. Fig-
ure 1 shows 8 example scenes from our dataset and the associated ground truth
optical flow. This paper serves as a companion to the primary publication intro-
ducing the dataset and benchmark [2]. Our main contributions in this paper are
1) to describe how state-of-the-art rendering software can be used to generate
a high-quality synthetic optical flow dataset; 2) to point out the pitfalls that
arise when using existing 3D data to generate such a dataset as well as possible
solutions; and 3) to draw general conclusions relevant for users of synthetic data
for computer vision applications.

1.1 The Value of Synthetic Datasets

To train and evaluate optical flow algorithms, one would ideally use a large
number of natural video sequences and the corresponding ground truth optical
flow. Unfortunately, no sensor currently exists that can measure optical flow di-
rectly. In some cases, one can compute the flow from auxiliary information such
as special texture patterns [1] or range imagery [3,4]. Hidden texture patterns,
however, can only be used in laboratory environments with controlled illumi-
nation [1]. Optical flow maps generated from depth and camera motion suffer
from occlusion artifacts, noisy depth data, and interpolation error. In [4], for
example, only about 50% of the pixels contain usable ground truth optical flow.
Furthermore, depth-based methods only work for rigid scenes.

One of the goals of optical flow estimation is to deal with arbitrary scenes and
non-rigid motions. To circumvent the problems described, we use a synthetic
(computer-generated) dataset. In this case the scene geometry and its change
over time are known so one can trace each pixel pt from the image plane to
its origin point Pt in the scene, track that point to its location Pt+1 in the
next frame, and compute the projection pt+1 in the next frame. Up to machine
precision, the ground truth optical flow is then given by ut = pt+1 − pt.
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In addition to high accuracy, using computer-generated scenes has two further
benefits. First, even realistic-looking scenes are relatively easy to create in large
quantities, which is important for methods that use machine learning techniques.
Second, the creator of the scene potentially has total control over all aspects of
the data generation, from the raw geometry to the image rendering process.
Thus, one can change aspects of the scene, such as the materials, the light, or
the motion of the camera or the objects, and generate multiple renderings of the
same scene using varying parameters. This allows one to evaluate the impact of
individual parameters on the performance of optical flow algorithms.

The main argument against synthetic data is that the rendered images may
differ from images of the real world in important ways. This critique certainly
applies to previous synthetic flow benchmarks shown in Fig. 2. However, the re-
alism and complexity of CGI that is possible today makes synthetic data worth
reconsidering. Feature films, for example, often use graphics that is indistin-
guishable from real scenes and seamlessly combine real and CGI elements.

The dataset we propose here is derived from the CGI movie Sintel, a 14-minute
short movie. It was created and rendered using the rendering software Blender2.
Both Blender and the complete production data for Sintel are released as open
source. The availability of the Blender’s source code allowed us to understand
and control how exactly the images were generated, something that would not
have been possible using a proprietary rendering software. Furthermore, since
the production data is freely available, we can modify, extend, and re-generate
all parts of the movie.

2 Previous Data Sets

Datasets for optical flow evaluation can be subdivided into three categories:
natural, containing relatively unaltered photographic images, semi-synthetic,
containing either heavily processed or elaborately staged images, and synthetic,
containing completely computer-generated images. Since the dataset we present
here is completely synthetic, we limit this section to synthetic datasets. A review
of datasets of natural and semi-synthetic datasets is given in [1].

Barron et al. [5] developed the first synthetic dataset for optical flow evalu-
ation, which included the widely used Yosemite sequence. Yosemite is still part
of the Middlebury dataset [1] but contains only grayscale images, rigid motion,
no atmospheric effects such as haze, no shading, and few occlusions.

McCane et al. [6] proposed a synthetic dataset containing varying degrees
of scene complexity, object motion, and camera motion, with only the highest
level of scene complexity resembling a real scene (see Fig. 2). Compared to the
Yosemite sequence, it contains color images and separately moving objects, but
only very simple textures.

The Middlebury dataset [1], today’s most widely used optical flow evaluation
dataset, introduced new synthetic sequences, Urban1-3 and Grove1-3, resembling
a city and natural outdoor scenes, respectively. Compared to the complex scenes

2 http://www.blender.org

http://www.blender.org
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Fig. 2. History: Evolution of synthetic flow datasets. Example frames are shown on
top, the corresponding color coded optical flow at the bottom. From left to right:
Yosemite sequence from [5]; Complex sequence from [6]; Grove3 sequence from [1];
009 Crates1 sequence from [7]; Bamboo3 sequence from MPI-Sintel [2].

from [6], these sequences contain lighting effects such as shadows, rich textures,
and more complex object structure. They do not, though, contain atmospheric
effects or image degradations, and display only very little independent object
motion and mostly small velocities.

UCL-Flow [7] introduces 20 new image pairs with strong rigid object motion
and more complex light situations with colored light sources and ambient light-
ing. Its intended use is to train a mechanism to locally select the best optical
flow algorithm, given a set of image features.

Whether synthetic datasets are in fact realistic enough to predict performance
on real images remains an open question. Vaudrey et al. [8] compare performance
on synthetic and semi-synthetic sequences from Middlebury to performance on
a real-world dataset, recorded from a driving car, and find that the results are
worse on the natural scenes. The main differences between the synthetic Mid-
dlebury sequences and these real sequences are motion blur and violations of
brightness constancy.

Meister and Kondermann [9] re-create a real scene in graphics software en-
abling them to compare performance on real and CGI sequences. They find that,
while the locations of the errors are somewhat different, the average errors for
the synthetic sequence and the real sequences are similar when using advanced
rendering techniques such as global illumination and carefully selected textures.

In summary, existing synthetic datasets fall short on a number of dimensions,
making them less complex than real video sequences: the rendering quality is
often unconvincing, motions are limited to rigid objects and very small velocities,
no degradations such as motion and focus blur are included, and the available
data is often limited to image pairs.

3 Generating Synthetic Data

When generating synthetic flow data, two things are important: The production

data that describes the 3D shape, appearance, and motion of the scenes, and
the rendering method used to transform the production data into actual video
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sequences. Below we describe both components and the modifications required
to make the output usable as an optical flow evaluation dataset.

3.1 Production Data

All production data (geometry, textures, compositing setups etc.) for Sintel is
available as open source. We used the latest version of the data3, which contains
all the data and software used to create the original Sintel film.

Like most CGI-based films created for entertainment, Sintel contains a number
of effects that help achieve a certain look, but pose problems for the scientific
use of the data. In order to make the Sintel data usable for an optical flow
evaluation data set, a number of changes had to be made. These changes can be
subdivided into two categories: changes due to limitations of current optical flow
representations, and changes due to problems with the data and/or Blender.

Changes due to Limitations of Optical Flow Representations. Optical
flow is usually represented as a two-dimensional, pixel-based map, with velocities
in x and y direction at each pixel. Since each pixel can only have a single motion,
the complexity of the scene is limited. A transparent surface, for example, cannot
be realistically captured, since a pixel cannot be assigned both the motion of the
surface and the motion of the background visible through it. A similar problem
arises when an object (such as a single hair) is smaller than a pixel, or when object
boundaries are anti-aliased. In this case, a single pixel contains multiple, poten-
tially different velocities. The intensity value of such a pixel might be a weighted
combination of the foreground and background. In an optical flow representation,
though, such a blending does not make sense, since it would assign a pixel the
average velocity between the foreground and the background.

Therefore, we disable all transparencies of objects such as glass or feathering of
hair, and render the optical flow without anti-aliasing. The optical flow value for
a pixel is then the motion at its center. Additionally all strands of hair are set to
be rendered at least 2 pixels wide. While this makes the hair appear somewhat
“cartoon-y”, it ensures correct optical flow at every pixel that predominantly
displays hair. Fig. 3 shows an example of a scene before and after these changes.

Changes Due to Problems with the Data. Several problems were caused
by bugs within Blender or by artistic “shortcuts”, which go unnoticed in the
movie but introduce artifacts in the still images or the optical flow fields.

Scene-wise hair problems. Rendering hair as described above effectively broke
the relatively complex hair shading system4, resulting in hair that was often
lit inconsistently with respect to the rest of the scene – sometimes too bright,
sometimes too dark. We solved this problem by manually adjusting the hair
shading for each scene to match the ambient lighting.

3 Available at http://download.blender.org/durian/svn/
4 For more details on hair shading in Sintel, and the resulting difficulties, see
wiki.blender.org/index.php/Org:Institute/Openprojects/Durian/HairNotes

http://download.blender.org/durian/svn/
wiki.blender.org/index.php/Org:Institute/Openprojects/Durian/HairNotes
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Fig. 3. Illustration of the hair transparency issue. Comparison of the rendered
images and optical flow maps in the original form (left) and with our changes applied
(right). Due to transparency effects, a large amount of hair is not captured in the
optical flow of the original data.

Motion blur. The motion blur in Sintel is simulated using the optical flow field.
The choice of the number of samples used in the blur filter represents a trade-off
between accuracy and computing time. We found that in most of the scenes, it
was set to a relatively low value, sometimes leading to visible artifacts. To fix
this, we set the number of samples to 1024.

Texture problems. In Blender, displacement maps (i.e. textures that deform an
object based on their intensity) are integrated into the scene after the object
motion is computed. For this reason, the computed optical flow field contains
the motion of the undeformed object, leading to slight inaccuracies for objects
with such displacement maps. The displacement component for all textures was
therefore disabled. We find that this step does not significantly impact the data,
both visually and in terms of optical flow accuracy. It should be noted, though,
that bump maps were retained, since they do not alter the rendered vertex
positions, but only the normal directions. Thus, textural structure is preserved.

Animation adjustments. In Blender, it is possible to animate a change in speed
of a cyclic animation (for example, to let a bird flap faster or slower). However,
due to a bug in Blender, this change of motion speed is not incorporated into
the optical flow field, introducing errors. We solve this by setting the speed of
all cyclic animations to a constant speed.

Threading. Certain settings in the global illumination computation in Blender
lead to visible tiling artifacts if different parts of the images are rendered by
different threads. Since our dataset consists of a large number of scenes, we can
parallelize the rendering on a (scene-)level by computing all scenes in parallel.
Without a loss in performance, we can then disable multithreading for each
single Blender instance, thus eliminating the tiling problem.

Halos. For dramatic effect, some scenes include relatively large, transparent
halos. Besides the transparency problems described above, we found that the
presence of these halos causes problems in Blender’s image generation pipeline,
rendering the output images unusable. Therefore, halo effects were disabled.

3.2 Generation Process

With the changes described above, the images were rendered using Blender’s
internal raytracing engine. It supports a number of advanced techniques, such
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Fig. 4. Illustration of the optical flow interpolation problem. From left to right:
The original optical flow map, containing triangulation artifacts; the same optical flow
map, rendered with our modifications; a magnification of the marked region of the
original rendering; the endpoint error in the marked region (difference between the
correct 3D flow and the original Blender 2D flow).

as flexible material and specularity shaders, effects such as subsurface scattering,
and global illumination, all of which are used heavily in Sintel. To create realistic
looking images, the lighting is especially important. Blender uses ambient occlu-
sion (causing a darkening of cavities), environment lighting (ambient light based
on a sky texture), and indirect lighting. These illumination effects are computed
using a Quasi-Monte-Carlo raytracing method, randomly sampling rays while
trying to keep the spacing between the rays as even as possible. While this pro-
vides a good trade-off between accuracy, image quality, and computing time, it
can introduce noise artifacts, as described in Sec. 4.1. Furthermore, it should be
noted that, while these effects increase the perceived quality and realism of a
scene, they only approximate real-world lighting.

A typical Sintel scene consists of a number of layers, defined by the artist.
These layers correspond roughly to background/static and foreground/animated
parts of the scene. Each layer is rendered separately and then combined with the
other layers using a given compositing layout. The compositing layout defines
the post-processing stages (e.g. color correction) for each layer, and how they
are combined (for example based on their transparency or depth values) to form
the final rendering. Since the compositing layout is mainly used for image post-
processing, it cannot be used to combine the data (optical flow and depth). For
example, a non-linear color correction would result in a meaningless distortion
of the optical flow. When rendering the optical flow and depth, we thus collapse
the whole scene onto a single layer, and render the data from that layer.

Blender computes optical flow as part of its rendering process for the purpose
of simulating motion blur. Unfortunately, the computed flow is wrong, since for
efficiency reasons, the computation is performed in 2D. Each vertex is projected
onto the image plane in two subsequent frames, resulting in the true flow at
these locations. However, the motion of pixels inside a triangle in between three
vertices is given by linearly interpolating the 2D motions of the vertices. The
resulting inaccuracies become noticeably large in case of triangles slanted in
depth. An example is shown in Fig. 4. To fix this, we modified Blender itself,
and integrated a true 3D interpolation of the optical flow that is projected onto
the image plane after the interpolation. Fig. 4 shows an example.
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Using our modified version of Blender, the data was rendered into OpenEXR
files. These files contain different layers: the data, such as the depth and flow
information, as floating point values, and the images from the individual render
passes as linear values. The images are then gamma-corrected using γ = 0.4641,
the power Blender uses to generate standard image data (such as PNG files).

3.3 Data Selection

Without producer credits, the full movie has a length of approximately 18,000
frames, each of which has a size of about 7 MB (including depth and optical
flow), amounting to a total data volume of 123 GB. We felt this was too large
to be practical and use a subset of the movie containing 1628 frames from 35
scenes, chosen based on the following criteria:

Rendering consistency. Despite the efforts described above, some sequences re-
mained problematic. In a few sequences, the depth ordering of the layers in the
composite layout was inconsistent with the actual scene geometry. This leads to
an object being in front of another in the images, but behind that same object
in the flow and depth data, which are generated from the scene collapsed onto a
single layer. Scenes where this posed a problem were excluded from the dataset.

Variability. Since the ultimate goal of this dataset is to evaluate optical flow
algorithms, we wanted the contained data to be as varied and interesting as
possible. We therefore exclude scenes that are mostly static, or that have similar
optical flow to scenes already in the dataset.

Difficulty. One motivation for this dataset is to be more challenging than Mid-
dlebury. However, we also do not want it to be impossible to get good results.
Therefore, scenes that are too easy (i.e. contain constant or very small motion)
or too hard (scenes for which a human can not identify what is happening, based
on an isolated, two-second snippet) are discarded.

4 Description of the Dataset

The final MPI-Sintel dataset contains 35 scenes, between 20 and 50 frames long,
for a total of 1628 frames. The rendered images have a resolution of 1024 x 436
pixels at 24 frames per second. Extending previous synthetic datasets, it contains
atmospheric effects, motion and defocus blur, and large velocities. The scenes
span a large variety of environments, characters, and actions.

To investigate when optical flow algorithms break, we render each frame in
three different passes: the Albedo pass contains no shading and satisfies bright-
ness constancy everywhere except in occlusion regions, the Clean pass, which
contains shading, but no image degradations, and the Final pass, which addi-
tionally includes motion blur, defocus blur, and atmospheric effects, and corre-
sponds to the final movie. Fig. 5 shows examples of the different passes.

The dataset is split into a 1064 frame training set and a 564 frame test set5.
The training and test sets are balanced in terms of first-order statistics of the

5 All data can be obtained from http://sintel.is.tuebingen.mpg.de

http://sintel.is.tuebingen.mpg.de


176 J. Wulff et al.

Fig. 5. Render passes. Two examples for the different passes contained in the pro-
posed dataset. From left to right: Albedo pass, Clean pass, Final pass

images and optical flow maps, and their respective spatial and temporal deriva-
tives. For the training set, we provide ground truth optical flow, depth infor-
mation, masks of invalid pixels, extrinsic and intrinsic camera data, maps of
occluded regions, and motion boundaries. For the test set, this data is withheld
for evaluation. Fig. 1 shows frames from 8 example scenes and their correspond-
ing optical flow maps. A detailed investigation of the realism of the dataset, as
well as the performance of optical flow algorithm, can be found in [2].

4.1 Remaining Problems

We took great care to eliminate problems with the data as much as possible.
However, a few issues remain. The most obvious of these are occasional inter-
penetrations of objects, for example the main character’s hair going through her
collar. While comparable situations can in theory appear in the real world (for
example, if a sharp object cuts through a piece of fabric), one expects these to
appear far less often than in our dataset. We would advise against learning a
physics-based world model from the data we present here.

In some cases, specular, highly structured textures contain too much high-
frequency information for the anti-aliasing to work properly, causing a “sparkling”
appearance. A similar effect with a different cause is a faint low-frequency noise
in some textures. This is caused by the Global Illumination algorithm, which uses
a limited, random sampling of light rays bouncing back from surfaces. Since the
random sampling changes with each frame, the surfaces are effectively illumi-
nated by a noisy light source. Both of these effects are quite subtle, and we
believe that optical flow algorithms should be robust against them.

Another rendering-related issue is visible when an object of single pixel width
is motion-blurred. Since foreground and background optical flow cannot be
meaningfully blended, the flow is aliased. When part of an object has a width of
less than a pixel, it my not be assigned a foreground flow value since the back-
ground flow is dominant. This causes the affected area to not be motion-blurred
resulting in thin objects that can be partially motion blurred and partially sharp.
To eliminate this effect, we rendered the affected scenes with double the resolu-
tion, and downscaled the images afterwards. This mostly eliminated the effect
and, where it remains, it is confined to a very small spatial area.
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5 Conclusion

We described the detailed process of generating the MPI-Sintel optical flow
dataset from the open source CGI movie Sintel. This required several modi-
fications to the data and the rendering method to to make the data suitable for
use in such a benchmark. Summarizing, we find 3 key issues in using synthetic
data: 1. Physical implausibilities. Synthetic movies are made to look good,
not to be physically accurate. They only roughly approximate the real world
and we think it is important to compare them statistically with natural scenes
to validate how realistic they are. 2. Control. To make data usable in a scien-
tific environment, it is important to have full control over the production data
as well as the mechanisms and software used to generate or transform this data.
3. Representation. Optical flow is usually represented as a two-dimensional
motion vector field, which cannot model multiple motions at the same point.
This representation limits the possible contents and complexity of the dataset.
Future work should address richer representations, and evaluation measures, to
allow datasets to include more complex phenomena.

With these principles, and progress in photorealistic rendering, we believe
that synthetic data can play an increasing role in computer vision.
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