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Abstract

Deception researchers widely acknowledge that cues to deception - observ-
able behaviors that may differ between truthful and deceptive messages -
tend to be weak. Nevertheless, several deception cues have been reported
with unusually large effect sizes, and some researchers have advocated the
use of such cues as tools for detecting deceit and assessing credibility in
practical contexts. Examining data from empirical deception cue research
and using a series of Monte Carlo simulations, I demonstrate that many
estimated effect sizes of deception cues may be greatly inflated by publica-
tion bias, small numbers of estimates, and low power. Indeed, simulations
indicate the informational value of the present deception literature is quite
low, such that it is not possible to determine whether any given effect is real
or a false positive. I warn against the hazards of relying on potentially illu-
sory cues to deception and offer some recommendations for improving the
state of the science of deception. A preprint of this document is available
at https://osf.io/xt8fq/.

“That Marionette,” continued the Talking Cricket, “is a rascal of the
worst kind.” (Collodi, 1883)

In an effort to temper our hopes of catching lies with unerring accuracy, de-
ception researchers often say there is no “Pinocchio’s nose” (e.g., Frank, Menasco,
& O’Sullivan, 2008; Hartwig & Bond, 2011; Vrij, 2006, 2004). That is, there is
no behavior that perfectly discriminates between truthful and deceptive messages.
For all the talk about Pinocchio’s nose, there are other more urgent lessons from
the story of Pinocchio pertinent to deception research.

In his adventures, Pinocchio causes mischief and mayhem, and among his many
foibles is the ease with which he is tempted to do what is easy and immediately
satisfying but ultimately dangerous, rather than what is difficult and responsible.
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Tricksters often get the better of him because they tell him flattering and favorable
untruths. Throughout the stories, he is stabbed, hanged from a tree, sold to a
circus, and swallowed by a giant fish. All this happens despite the fact that he is
warned in advance of nearly every misfortune that befalls him. For the reader who
sympathizes with the protagonist, reading these stories is an exercise in frustration:
Every time it seems Pinocchio has resolved to do the right thing, he is led astray.
It is only after frequent and serious failings that he follows the guidance of the
Fairy with Turquoise Hair, corrects his mischievous ways, and becomes “a real
boy.”

I am concerned deception researchers (and other psychological scientists), like
Pinocchio, have ignored good advice. Likely because of a combination of perverse
incentives for poor practices and lack of awareness of the consequences of such
practices, much research has been conducted in a way that is highly prone to
error (Agnoli et al., 2017; Bakker et al., 2012; Ioannadis, 2005; John et al., 2012;
Simmons, Nelson, & Simonsohn, 2011). Rather than leading us to being swallowed
by a fish, failing to heed available recommendations may have created a grossly
distorted view of human deception.

It is widely accepted among researchers that cues to deception are weak (De-
Paulo et al., 2003; Hartwig & Bond, 2011). Nevertheless, researchers continue to
hunt for deception cues and offer practical recommendations for what behaviors
to look for in order to more accurately detect lies. For example, Evans and her
colleagues (2013), Johnston and his colleagues (2014), and Akehurst and her col-
leagues (2017) have developed checklists of cues to deception, designed to help
practitioners make important decisions about who to believe and who to distrust.
In many cases, the inclusion of particular cues in such tools is explicitly justified
by the effect sizes for those cues reported in the literature.

The meta-analytic review of cues to deception by DePaulo and her colleagues
(2003) found that cues to deception are generally quite weak but also found sev-
eral cues that significantly distinguished between truthful and deceptive messages,
some of which with moderate or large effect sizes. Indeed, DePaulo et al. (2003) is
often directly cited both to make the point that cues to deception are weak (e.g.,
Vrij & Granhag, 2012) and to justify recommendations of examining certain cues
to detect deception in practical contexts. For example, Evans and her colleagues
(2013) suggest observers should examine, among many other cues, the plausibility
of the message (a cue with a meta-analytic estimate of d = 0.23 in DePaulo et al.,
2003), the amount of detail in the message (d = 0.30), and how nervous and tense
the speaker is (d = 0.27). At face value, it seems that although most behaviors
do not distinguish between truthful and deceptive messages, some do – and might
be effective for catching lies with reasonable levels of accuracy.

However, this consensus may be incorrect. It is possible that suboptimal re-
search practices have produced a literature rife with false positives. Here, using a
series of Monte Carlo simulations, I demonstrate just that: observed effect sizes
of deception cues may be greatly inflated by low numbers of estimates, selective
reporting, and low power, and in fact, the extant literature is consistent with there
being no real cues to deception at all. The informational value of the present lit-
erature is so low as to make it virtually impossible to distinguish real effects from
false positives.
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Lessons from Pinocchio

When a large number of variables are measured to find differences between two
groups, small samples and small numbers of estimates can produce the appearance
of numerous strong effects even when all effects studied in the literature are in
fact zero or negligibly small. This problem arises not only because researchers can
selectively report “what works” and infrequently replicate results but also because
significant effects are massively inflated when power is low. This is a problem in
psychological science at large (Simmons, Nelson, & Simonsohn, 2011; Vul et al.,
2009; Yarkoni, 2009). However, features of the deception literature make this
problem especially likely. The paradigm in which deception cue data are collected
offers unusually high flexibility in coding and analysis, such that a large number of
illusory effects can potentially accumulate. The proliferation of uncorrected false
positives permits researchers to easily find evidence in the literature for at least
some cues to deception that appear to distinguish between truth and deception
but in fact may not. Unaware of the error, we can then base further research and
practical recommendations on such illusory cues.

How could this problem go on unnoticed and uncorrected? Selective report-
ing practices and the habit of running low-power studies can be self-reinforcing
because they produce what appear to be large effects but are often false positives
(Nelson, Simmons, & Simonsohn, 2018). In the face of repeated apparent suc-
cess, researchers would not necessarily see a need to change their methods (e.g.,
increase sample sizes) or impose restrictions on their data collection habits or
analytic strategies.

As this is essentially a problem of an overabundance of freedom, I call this the
Land of Toys problem. In the classic story (Collodi, 1883), Pinocchio’s journey to
becoming a “real boy” takes a long detour when he is tempted by his friend Lamp-
Wick to travel to the Land of Toys – a place where children may do as they please
and never have to attend school. Although Pinocchio has been repeatedly implored
by the Turquoise Fairy and the Talking Cricket not to succumb to laziness, the
allure of the Land of Toys is too much for him, and he accompanies Lamp-Wick
there. However, Lamp-Wick fails to mention (because he does not know) the high
cost of staying too long in the Land of Toys: a magical fever that transforms its
victims into donkeys. Pinocchio ends up worse off than he began.

The Land of Toys is a useful analogy because, as we will see, it represents
both the causes and consequences of this scientific problem: Researchers deviate
from available statistical and methodological recommendations, partly because re-
searchers do not realize how problematic some of their decisions are and partly
because there are incentives to engage in questionable research practices. The un-
intended consequence of this conduct is an outcome antithetical to our objectives
– a staggering number of undetected potential false positives. In this analogy,
we, deception researchers collectively, are Pinocchio; we have acted in ways that
undermine our own goals.

The Land of Toys problem represents a failure (or substantially delayed appli-
cation) of science’s purported feature of self-correction (see Nosek, Spies, & Motyl,
2012). Science is believed to correct its own mistakes over time, as further evi-
dence accumulates to disconfirm previous erroneous conclusions. However, false
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positives can live on in a literature, particularly when the evidence typically pro-
duced in that literature has a high rate of potential error and when little or no
further evidence accrues to correct errors that have occurred (Stroebe, Postmes,
& Spears, 2012). Widespread problematic research practices underpin the high
error-rate, and when researchers are slow to respond to methodological innovation,
the potential for self-correction is especially low.

To illustrate how the Land of Toys problem may be real and present in the
deception literature, I draw substantially from the aforementioned widely-cited
meta-analytic review of the deception cue literature by DePaulo, Lindsay, Mal-
one, Muhlenbruck, Charlton, and Cooper’s (2003; hereafter DLMMCC). Though
it is more than a decade old now, DLMMCC remains the most comprehensive
review of the deception literature. Here, I use DLMMCC’s data as a representa-
tion of the deception literature. One can reasonably question the appropriateness
of using data from a meta-analyses from so long ago as a representation of the
contemporary literature. There are several indications that DLMMCC remains
current in numerous ways. First, DLMMCC continues to be cited as an author-
itative resource on cues to deception, as can be seen in more recent overviews of
the literature (e.g., Hartwig & Bond, 2011, 2014; Bond, Hartwig, & Levine, 2014).
Second, as we will see below, research conducted in the years following DLMMCC
entails largely the same methodologies (including their shortcomings).

Although I am critical of the DLMMCC’s substantive theoretical conclusions
and the manner in which deception researchers have used DLMMCC, I do not
doubt the rigor with which DLMMCC’s data were extracted from the literature.
The data I use come principally from two sources: (1) the published version of
DLMMCC’s review, from which I extracted much quantitative information, and
(2) the original data DLMMCC extracted from the literature1.

Trouble in the Land of Toys

The obvious precaution is computation. - Tversky and Kahneman
(1971, p.110)

“DOWN WITH ARITHMETIC.” – Graffiti in the Land of Toys (Col-
lodi, 1883)

The deception cue paradigm. Vul and his colleagues (2009) (in)famously
noted the reporting of numerous implausibly strong correlations (e.g., r = |.80|
and above) in social neuroscience research – colloquially, “voodoo correlations.”
These correlations appear to be the result of nonindependent analysis and low
statistical power (Yarkoni, 2009). One of the features of social neuroscience that
supported the reporting of voodoo correlations is that fMRI datasets comprise a

1Some years ago, I requested a copy of the data from Bella DePaulo, first author of DLMMCC,
as there is a note in the published version indicating the data were available from her. She
indicated that she was willing to share the data but no longer had the file. Ultimately, I obtained
the original data from Charlie Bond, who is not an author of DLMMCC but who had received
a copy of it from Bella DePaulo in order to conduct prior reanalyses (e.g., Bond, Hartwig, &
Levine, 2014).
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large number of voxels that can be selected, grouped, and analyzed in a variety of
ways. This flexibility can lead researchers to perform selective searches for signif-
icant correlations. A similar situation exists in deception cue research, although
it likely offers somewhat less analytic flexibility than fMRI data.

Deception cue studies produce or obtain records of truthful and deceptive mes-
sages. These records can be written, audio, and/or visual. The records are then
coded by human raters or automated coding software for variables (i.e., cues)
that may be related to deception. Researchers can then perform significance tests
and calculate effect sizes measuring the extent to which liars and truth-tellers
differ. Observable differences between deceptive and truthful messages have po-
tential theoretical and practical importance, so cues that discriminate between
lies and truths are desiderata of deception research. Indeed, because the decep-
tion literature is concerned with all potential discernible differences in truthful and
deceptive behavior, coding virtually any behavior can be justified, and results in
both positive and negative directions are desirable. Research designs often involve
manipulations not only of the veracity of messages but also of potential modera-
tors of cues to deception (e.g., preparation, motivation to succeed). As such, there
are often numerous groups that can be compared.

Additionally, because researchers are free to choose how to code the messages
they have, it is possible to code any number of cues. It is common for researchers to
code numerous cues to deception. In DLMMCC, studies on average reported M =
6.65 cues (SD = 5.72, median = 4, range 1 to 27). If untethered by preregistration
or standardized coding, researchers are limited in their ability and flexibility to
code data primarily by resource constraints and incentives to report results quickly
(rather than spend an indefinite amount of time coding new variables).

In some ways, flexibility is desirable. It provides researchers with the freedom
to explore their data thoroughly for interesting patterns and to make unexpected
discoveries. But the two demons of virtually limitless flexibility and desire to
publish interesting significant results can tempt researchers toward questionable
practices (Nosek, Spies, & Motyl, 2012). They might code numerous cues and
report only some of them. They might analyze their data in several ways (e.g.,
subsetting data, collapsing or dropping conditions, excluding participants), until
they find favorable results (see Simmons, Nelson, & Simonsohn, 2011).

This kind of problematic flexibility – and the freedom to make numerous undis-
closed decisions about data collection, coding, and analysis – is, of course, not
unique to the deception literature, but the typical paradigm of deception cue
research may provide especially fertile ground for questionable practices. Specif-
ically, the number of measurements deception researchers regularly take and the
extensive flexibility in coding decisions exacerbate the risks incurred by problem-
atic research practices that are highly prevalent in psychological science, namely
conducting studies with low power and selectively reporting results.

Problematic research practices in the deception literature: Low power,

selective reporting, and too many positive results.

One might think that after 1969, when I published my power handbook
that made power analysis as easy as falling off a log, the concepts
and methods of power analysis would be taken to the hearts of null
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hypothesis testers. So one might think. (Stay tuned.) - Jacob Cohen
(1990, p.1308)

“Don’t you know that if you go on like that, you will grow into a perfect
donkey and that you’ll be the laughingstock of everyone?” - The Talking
Cricket, shortly before Pinocchio kills him with a hammer (Collodi,
1883)

The slowness, if not resistance, of psychological scientists to adopt better sta-
tistical and methodological practices has been well-documented (see, e.g., Cohen,
1994, 1990; Cumming et al., 2007; Fidler et al., 2004; Gigerenzer, 2004; Sharpe,
2013). Despite the long existence of an extensive methodological literature iden-
tifying poor scientific practices and proposing solutions (e.g., Cohen, 1969, 1962;
Meehl, 1978; Sterling, 1959), researchers frequently misunderstand and inade-
quately address statistical concepts fundamental to their methodologies, such as
power (Bakker et al., 2016; Tversky & Kahneman, 1971) and p-values (Gigeren-
zer, 2004; Greenland et al., 2016). Separately but relatedly, meta-scientists have
also documented the alarmingly wide prevalence of questionable research practices
in psychology (and other sciences), such as selective reporting, data peeking, un-
planned statistical analyses, and hypothesizing after the results are known (see,
e.g., Agnoli et al., 2017; Bakker et al., 2012; Fraser et al., 2018; John, Lowen-
stein, & Prelec, 2012; Kerr, 1998; Simmons, Nelson, & Simonsohn, 2011). There
is ample evidence that methodological flaws in psychology and other disciplines
have persisted in spite of clear evidence of their occurrence and the existence of
productive alternatives. For example, methodological developments and studies
thereof throughout past decades have been accompanied by few changes in statis-
tical practice (Cumming et al., 2007) and only nominal increases in sample sizes
(Rossi, 1990; Sedlmeier & Gigerenzer, 1989). Although the advice is old, it is only
relatively recently that a robust movement toward better practices appears to
have taken hold (Cumming, 2014; Nelson, Simmons, & Simonsohn, 2018; Vazire,
2018a).

Does the deception literature share problematic practices with the rest of psy-
chology? Evidence suggests it does. Below, I examine data to assess statistical
power, selective reporting, and the rate of reported significant results in the de-
ception literature.

Statistical power. The statistical power of a test refers to the probability
of correctly rejecting the null hypothesis, assuming that a true effect exists in
the population. Power is a function of the alpha level (i.e., the threshold for sig-
nificance), the true effect size, and the size of the sample. Because significance
levels are generally decided by the conventions of the broader field and because
the true effect size is unknown, sample size is the source of power primarily un-
der researchers’ control. Achieving adequate power to detect plausible effects is
critically important, as it directly determines the informational value of a study’s
results. Low power can render nonsignificant results uninterpretable (Cohen, 1988;
Morey & Lakens, 2016; Tverskey & Kahneman, 1971) and can render significant
results untrustworthy (as we will see in more detail later).

To assess power in the deception literature, I drew from two meta-analytic
reviews: DLMMCC, which comprehensively reviewed the deception cue literature
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from 1920 to 20012, and Amado, Arce, Fariña, and Vilariño (2016), which synthe-
sized research on Criterion-Based Content Analysis (CBCA; for an introduction
see, e.g., Vrij, 2015), a deception detection approach that measures numerous cues
to deception. For a separate project, I recently collected and reanalyzed the lit-
erature from Amado et al. (2016; see RabbitSnore, 2018, for a description of how
the data were assembled). Their review encompasses literature from 1993 to 2015,
and here I examined data for 36 of the studies included in the review that reported
individual cues (rather than composites of multiple cues).

In DLMMCC, the average total sample size was N = 41.18 (SD = 31.83,
median = 34); the largest was N = 192 and the smallest was N = 5. Figure 1
depicts statistical power in the literature reviewed by DLMMCC. The curves on
the plot illustrate the largest sample, smallest sample, mean sample, and median
sample, with power on the vertical axis and effect size on the horizontal axis. One
can see, for example, that the largest sample in DLMMCC had approximately .80
power to detect an effect of 0.40 – and all other studies in the literature had less
power.

The median effect size (of effect sizes with at least three estimates) found in
DLMMCC was d = |0.10|, for which the included studies were highly underpow-
ered. The average included study had .06 power to detect an effect of this size
(assuming a two-tailed test). The largest included study had less than .11 power.
That is, the largest deception study would fail to detect the median deception cue,
as estimated by DLMMCC, roughly 9 times out of 10. The largest effect (from
at least three estimates) in DLMMCC was d = 0.66. The average included study
had .55 power to detect an effect of this size. Power in the deception literature
has been extremely low3.

Figure 2 depicts statistical power in the literature reviewed by Amado et al.
(2016). Sample sizes in the CBCA literature have tended to be larger than earlier
deception studies, with an average sample size of N = 76.4 (SD = 66.4, median =
60.0). This average may be disproportionately affected by three outlying samples
with N > 250 (two of which are unpublished). Removing these outliers, the
average sample size is N = 58.2 (SD = 24.2, median = 59.0) – still larger than
the literature reviewed in DLMMCC. The power of this literature is, however, still
relatively unimpressive (assuming N = 76, .93 power for d = 0.80, .73 for d =
0.60, .57 for d = 0.50, .14 for d = 0.20), given that cues to deception are likely
to have quite modest effect sizes. The average study reviewed in Amado et al.
(2016) had .80 power to detect d = 0.65 – a massive effect compared to typically
observed deception cue effects.

Sample sizes in the deception literature appear to have increased somewhat
in recent years. This has been the case in other domains of psychological science
as well. But in the words of Rossi (1990), “these increases are no cause for joy”

2Of the 142 samples, data for 139 were published in 1970 or later. The other three were
published in 1920, 1923, and 1943.

3To borrow a reference point from Simmons, Nelson, and Simonsohn (2013, 2018), the effect
size for the difference in weight between men and women is about d = 0.60. The average study in
DLMMCC (assuming N = 41) had .47 power to detect an effect of this size. Thus, the literature
has not only been underpowered to detect effects that we now know are plausible, but it has
also been so underpowered that the average study would, more than half the time, fail to find a
difference that can be detected by casual observation in everyday life.
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Figure 1. Statistical power in DLMMCC, years 1920 to 2001
Each curve represents a different sample size from DLMMCC (i.e., the largest sam-
ple, mean sample, median sample, and smallest sample). Vertical dotted lines are
drawn at d = 0.10 (the median cue effect in DLMMCC) and 0.40 (approximately
the average effect in social psychology; Richard, Bond, Stokes-Zoota, 2003). Hor-
izontal dashed lines are drawn at .33 power and .80 power. Examining the curves,
one can see how much power that sample had to detect effects of a given size. For
example, the median sample had less than .25 power to detect an effect of d =
0.40. Resources to reproduce this figure can be found at https://osf.io/mfq6u/.

(p.650). Power to detect plausible effects in the deception cue literature has been
low and continues to be low.

Selective reporting. The term “selective reporting” can refer to a variety of
questionable practices in which researchers report some but not all of their results,
measurements, conditions, or analytic decisions. Sometimes entire studies are not
reported (Rosenthal, 1979), but selective reporting is a problem in published work
as well, as flexibility in the disclosure of results and methods can greatly increase
the risk of false positives (Simmons, Nelson, & Simonsohn, 2011). In accumulation,
selective reporting cripples a field’s ability to correct its own errors (Bakker et
al., 2012; Ioannidis, 2005; Nosek, Spies, & Motyl, 2012). However, surveys of
psychological scientists and researchers in other fields find that selective reporting
is highly prevalent (Agnoli et al., 2017; Fraser et al., 2018; John et al., 2012;
Martinson et al., 2005).

By definition, we do not know how many estimates have gone unreported in the
deception literature, but there are signs in the literature that there is extensive
selective reporting: When nonsignficant cues are reported, they are often only
reported in such a way that it is not possible to calculate a precise effect size.
DLMMCC report that of the 1,338 effect sizes in the literature, 787 (58.8%) could

https://osf.io/mfq6u/
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Figure 2. Statistical power in in Amado et al. (2016), years 1993 to 2015
Each curve represents a different sample size from Amado et al. (2016) (i.e.,
the largest sample, mean sample, median sample, and smallest sample). Vertical
dotted lines are drawn at d = 0.10 and 0.40. Horizontal dashed lines are drawn
at .33 power and .80 power. Resources to reproduce this figure can be found at
https://osf.io/mfq6u/.

be extracted precisely from the documents. By simple arithmetic, 551 (41.2%)
of the effects were reported minimally (e.g., reported as nonsignificant with little
supporting information). That is, we are missing about 2 effects out of every 5.
These are, of course, the effects that actually made it into reports; presumably
there are many more estimates that have been lost to the file drawer (see, e.g.,
Easterbrook et al., 1991; Fanelli, 2012; and see Appendix A).

Interestingly, selective reporting is far more prevalent in published studies
(45.1%, 544 out of 1206 effects) compared to unpublished studies included in
DLMMCC (5.3%, 7 out of 132 effects). One possible explanation for this striking
pattern is that selective reporting is a strategic decision made to facilitate pub-
lication (e.g., downplaying nonsignificant results to bolster credibility; removing
“uninteresting” results at the suggestion of reviewers). In contrast, unpublished
work such as theses and dissertations often have much more liberty to be trans-
parent (see Mazzola & Deuling, 2013), as there are fewer space restrictions and
their “success” may depend less on statistical significance than published papers
(Bakker et al., 2012; Easterbrook, 1991; Greenwald, 1975). The majority of un-
published material included in DLMMCC were theses and dissertations.

For more evidence of selective reporting, we can also look to the data from
Amado et al. (2016). When I (re)collected those data, whenever it was not pos-
sible to calculate an exact effect size, I recorded the reason (if one was stated or
discernible) the data were not reported. Data were frequently unreported because

https://osf.io/mfq6u/
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there was no significant difference between truthful and deceptive statements,
sometimes related to restriction of range in the cue. In such situations, best prac-
tices dictate reporting sufficient statistics to facilitate a meta-analysis, so failure
to report the necessary data represents a kind of problematic selective reporting.
Thus, one way to assess selective reporting in the CBCA literature is to examine
the proportion of such unreported effects, out of the total number of measured
effects (minus those not reported for other reasons). Calculated this way, out of
k = 432 effects in the CBCA literature, 80 of them (18.5%) were excluded from
reports. Here, we are missing approximately 1 effect out of every 5.

A word of caution: We do not know how accurate of an estimate of selectively
reporting dependent variables these metrics provide. Additionally, these methods
provide no information about other kinds of selective reporting (e.g., dropping con-
ditions). However, it is clear that selective reporting is prevalent in the deception
literature.

An overabundance of significant results. Yet another potential indicator
of selective reporting (or other questionable practices) is the amount of significant
results in the published literature. When a literature produces more significant
results than there is apparent power to actually obtain, it is a sign of problematic
practices (see, e.g., Nelson, Simmons, & Simonsohn, 2018). Using the extracted
effect sizes and sample sizes in the original data of DLMMCC, I calculated p-values
for each effect (assuming a Student’s t-test). These calculated p-values allow us
to conduct several descriptive analyses and power calculations to assess the health
of the deception literature.

Of the 787 effect sizes that could be precisely extracted from the literature, 129
of them were significant (p < .05, two-tailed). This is approximately 16.3%. On
its face, this seems like an unimpressive percentage – but it is actually oddly high,
given the statistical power of the literature. Within the subset of the literature
from which exact effect sizes could be extracted (k = 98 studies), the average total
sample size was N = 46.6 (SD = 37.8, median = 35.5). With this information, we
can conduct a sensitivity analysis to find the effect size for which typical deception
studies are powered at the level at which they have actually found effects (Cohen,
1988). That is, we can assume that the rate of significant results corresponds to
the studies’ power – the rate at which the null hypothesis is correctly rejected.
Assuming a sample size of N = 46, the typical deception study would have .163
power to detect a true effect of d = 0.29. That is, if cues typically had effects of
about 0.29, we would expect to obtain this rate of significant results. However,
given that cues’ meta-analytically estimated effects are considerably smaller (see
Appendix B), the rate of significant effects in the deception literature is remarkably
high 4.

Alternatively, one could examine the data at the level of the study. The 98
studies from which exact effects could be extracted reported an average of M =

4A similarly unusually high rate of significant results is present in the more recent CBCA
literature reviewed by Amado and her colleagues (2016), in which 36.2% of effects are significant.
Using the mean sample size of N = 76 and .362 power, we would expect a typical effect size of
d = 0.37. The average meta-analytic estimate for cues in Amado et al. (2016) was d = .25.
It appears the problem of overabundant significant results has not dissipated in the years since
DLMMCC was published.
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8.03 effects (both significant and nonsignificant; SD = 8.96, median = 4), and
within each study, on average 21.6% (SD = 33.3%) of effects were significant. We
can use this rate of significant effects for a power calculation, as above. Assuming
a sample size of N = 46, the typical deception study would have .216 power to
detect a true effect of d = 0.35. Again, given the apparent typical size of deception
cues’ effects, this rate of significant results is unusually high.

According to my reconstructed p-values, of the 98 studies from which exact
effects could be extracted, 43 of them (43.8%) reported at least one significant
effect for a cue (M = 1.32 significant effects, SD = 2.46). At face value, this rate
might inspire some confidence that the deception literature is marked by unusual
transparency in the reporting of negative results. However, a closer examination
of studies that apparently reported no significant cues tells a different story.

There were 55 (out of 98; 56.2%) studies that did not appear to contain signifi-
cant cue effects. I obtained the 48 that were published and compared their results
to my reconstructed p-values. Of these 48, 46 (95.8%) of them reported at least
one significant effect of some kind (not always related to deception cues)5, and 43
(89.6%) of them presented significant results specifically for at least one decep-
tion cue. This means at least 86 out of 98 (87.8%)6 studies from which precise
estimates could be extracted presented at least one deception cue as significant.

Why are the rates of reconstructed significant results and reported significant
results so widely discrepant? There are a variety of reasons. Sometimes, authors
reported finding significant results only in subsets of their data (e.g., Anolli &
Ciceri, 1997; Burns & Kintz, 1976; Ekman, Friesen & Simons, 1985). Some au-
thors reported significance for multivariate tests that analyzed cues together (e.g.,
Greene et al., 1985; Heilveil & Muehleman, 1981) or analyses that collapsed across
other conditions (e.g., DePaulo, Rosenthal, Green, & Rosenkrantz, 1982). These
are practices known to inflate the false positive rate (Simmons, Nelson, & Simon-
soh, 2011). Some reported statistics that simply appear incorrect (e.g., Heilveil,
1976, reported t [11] = 2.03 as significant though it does not actually reach the
critical value). I point this out not to accuse the cited authors or others specifi-
cally of malfeasance but rather to account for the discrepancy and to note what
appear to have been common analytic practices in the literature.

How can the rate of significant results be so high, given the statistical power
of the deception literature? The tendency to favor reporting and publication of
positive results is a general problem in science (see, e.g., Fanelli, 2012). Across
disciplines, more significant effects have been reported than there has apparently
been power to find (Button et al., 2013). There are many potential explanations
for this. The classic explanation is, of course, that some studies (or some esti-
mates within studies) are stuffed in the proverbial file drawer and hidden from
view (Rosenthal, 1979). However, other prevalent questionable practices, such as
data peeking or ad hoc dropping of participants, can also lead to inflated rates of
positive results (Bakker et al, 2012; Simmons, Nelson, & Simonsohn, 2011). In-

5The exceptions were Marston (1920) and Goldstein (1923), the earliest deception cue stud-
ies in the literature. Marston and Goldstein did not use p-values, so they could not present
significant results.

6A data file recording which studies I noted to report significant results is available here:
https://osf.io/mfq6u/

https://osf.io/mfq6u/
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deed, Nelson, Simmons, and Simonsohn (2018) argue that such practices are “the
only... practical way to consistently get underpowered studies to be statistically
significant” (p.515, emphasis in the original).

As I have described previously, the deception cue research paradigm provides
for substantial flexibility in data collection and coding, providing especially fertile
ground for false positives to grow if deception researchers have engaged in ques-
tionable practices as in the rest of psychology (Agnoli et al., 2017; John et al.,
2012). For instance, if researchers make post hoc decisions to code more deception
cues after checking their results, this capitalization on chance could lead to an
inflated rate of significant results. Such practices can have effects similar to con-
ventional publication bias (Bakker et al, 2012; Phillips, 2004). In many subject
areas, researchers are limited in the dependent variables they can analyze by what
they measured at the time they collected the data. Because deception researchers
are often able to code more variables, the deception research provides unusually
ample opportunities for this kind of practice. The high rate of significant results
is not direct evidence of such behavior. However, it would be difficult to produce
such high rates of significant results without questionable research practices or
stupendous luck (Nelson, Simmons, & Simonsohn, 2018).

Summary. The deception literature exhibits many of the same problems of
psychological science at large, and there is no evidence that these problems have
been effectively solved since DLMMCC was published many years ago. Rather
than being uniquely poor in statistics and methods, what makes the deception cue
literature particularly problematic is the paradigm in which the work is conducted
in combination with methodological flaws more broadly present in psychological
science. In other words, in the deception literature, we face the usual hazards and
more.

The consequences. Selective reporting can lead to considerable exaggera-
tion of effects, particularly when studies tend to be low-powered. If one obtains
a significant p-value and the true effect size is smaller than the study is properly
powered to detect, the estimate is necessarily inflated. This occurs, quite simply,
because the only way small samples can obtain significant p-values is by observing
relatively large effects (Gelman & Carlin, 2014; Lane & Dunlap, 1978; Schmidt,
1992; Yarkoni, 2009). Figure 3 illustrates the results of a Monte Carlo simulation
demonstrating how significant effect sizes at low power are highly inflated (see
Yarkoni, 2009). The smaller the sample, the greater the inflation. Under such
conditions, it is easy to mistake an effect that is actually negligible for a quite
substantial one. For example, if you look at the lowest curve on the plot (corre-
sponding to a true effect of 0.10), at N = 100, significant results will on average
overestimate the effect as approximately 0.40 – inflation by 300%.

One could justifiably object that this simulation does not represent the decep-
tion literature and is unreasonably pessimistic. Wouldn’t these inflated estimates
be reined in by inclusion of nonsignificant results in a meta-analysis? Yes, if every
nonsignificant effect were reported and included, a meta-analysis would indeed
provide an accurate estimate in the long run. It is not likely, however, that all
nonsignificant effects have been reported in the literature. Preferential report-
ing of significant effects may inflate long run estimates, when some but not all
nonsignificant effects are reported.
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Figure 3. Inflation of significant effects at low power
Note: Each point represents the average significant effect (p < .05) found in
100,000 simulated studies. Darker horizontal lines are placed at the level of each
true effect size. Resources to reproduce this simulation and figure can be found
at https://osf.io/gfhqe/.

To illustrate the extent to which publication bias could inflate long run es-
timates of effects, I conducted a simulation in which I varied the probability of
significant and nonsignificant effects being included in the estimate. This simu-
lation was not intended to model the deception literature specifically; rather, it
is intended simply as a demonstration of how different levels of bias can produce
different long run results. To reflect varying severity of bias against nonsignificant
results, I simulated conditions under which 10% to 60% (in intervals of 10%) of
nonsignificant effects are included. Perhaps some significant effects are excluded
from the literature. To account for this, I simulated conditions under which 80%,
90%, and 100% of significant effects are included7. I also varied the sample sizes
of each simulated study, from N = 20 to 100 in intervals of 5, and the true size of
the effect, from d = 0.10 to 0.60 at intervals of 0.10. Figure 4 displays the results
of this simulation.

7I also simulated conditions under which only 70% of significant effects are included, but
because this strikes me as an improbably low rate, I excluded it here to conserve space. Data
for these simulations are available here: osf.io/gfhqe.

https://osf.io/gfhqe/
osf.io/gfhqe
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Without knowing the rate at which estimates are buried in the file drawer, we
cannot easily approximate the degree to which effect estimates of deception cues
are inflated. However, we can see in Figure 4 that under some circumstances,
inflation is severe. As the proportion of included nonsignificant results increases,
inflation decreases. Estimates are substantially distorted when only a small pro-
portion of nonsignificant effects are included. However, low power has a greater
impact, compared to publication bias, on the precision of estimates (not that it
should provide any comfort).

The inflation illustrated in Figure 4 is not a problem unique to the deception
literature. Additionally, because it only portrays long run estimates (i.e., derived
from large numbers of studies), it does not illustrate the sampling variation that
occurs in individual studies, and it does not capture important features of the
deception literature. The preceding simulations represent estimates that might
obtain when studying a single phenomenon in a large number of studies. As I
have previously described, however, deception research is not the continual study
of a single phenomenon but rather dozens of cues. Moreover, the number of
reported estimates (k) for each cue varies widely (see Figure 5). Sustained and
repeated study of individual cues is the exception and not the rule.

Each point in Figure 5 represents a meta-analytic estimate for a cue (except
when a cue was only reported once, in which case, it is the raw estimate from that
study). Sample sizes and the number of estimates for each cue are plotted on the
vertical axis, and the effect size is plotted on the horizontal axis. Thus, we can see
how the size of each meta-analytic effect relates to how much it has been studied.

On average, the 158 cues in DLMMCC were reported in M = 5.94 studies (SD
= 7.42, median = 4). The most studied cue was reported k = 49 times, and 42
cues were reported only once. It is implausible that this variation in ks is purely
the result of publication bias. Rather, it is also likely the case that deception
researchers have simply studied some cues more than others.

Additionally, as can be seen in Figure 5, the more a cue has appeared in
the literature, the smaller the effect estimate tends to be (see Bond, Levine, and
Hartwig, 2014). Indeed, one could be forgiven for mistaking the plots in Figure 5
for funnel plots of estimates homogeneously and fairly symmetrically distributed
around zero. But those are not funnel plots. In a meta-analysis of a single ho-
mogeneous effect, the shape of a funnel plot is a direct consequence of estimates
with higher precision being closer to the true effect size and estimates with lower
precision being more widely spread around the true effect size (Duval & Tweedie,
2000). Here, there is no a priori reason to expect the distributions in Figure 5 to
have such a shape, given that they plot 158 different effects, rather than a single
presumably homogeneous effect. If anything, when plotting dozens of potentially
diverse effects, one could plausibly expect the estimates to be broadly distributed
across the entire plot8. Instead, Figure 5 depicts distributions that conform to the
shape and location that is expected when a meta-analyzed literature has studied

8To illustrate a starkly different pattern from the one in Figure 5, I plotted data from the
widely-cited meta-meta-analysis by Richard, Bond, and Stokes-Zoota (2003), which examined
474 meta-analyses in social psychology: https://osf.io/gfhqe/. It is easy to see that these diverse
effects, unlike those in the deception cue literature, do not conform to a funnel-like distribution
– nor should they.

https://osf.io/gfhqe/
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a truly null or negligible effect.
One can easily see in Figure 5 that large effects only appear for cues reported

a small number of times and with smaller total N s. The number of reports k
and total N are both negatively correlated with the absolute value of the cue’s
effect size, r = -.27 and r = -.26 respectively9. Using a simple linear regression
approach, the number of studies reporting each cue is negatively related to the
absolute value of the cue’s effect size, b = -0.007, t (86) = 3.36, p < .001. Stated
differently, for every additional study reporting a given cue, that cue’s effect size
is reduced by approximately ∆d = -0.007. This may not seem like a dramatic
decline, but recall that deception cue studies have on average a sample size of
only N = 41.18, and cues’ effect sizes already tend to be quite modest in size (see
Appendix B). Consistent with this trend, total N for each cue is negatively related
to the absolute value of the cue’s effect size, b = -0.00018, t (86) = 3.53, p < .001.
That is, for every N = 100 participants added to a cue’s literature, its effect size
tends to shrink by approximately ∆d = -0.018.

Researchers have previously offered statistical descriptions of the diminishment
of effect sizes over time (Bond, Levine, and Hartwig, 2014), but they have not of-
fered an explanation as to why it occurred. The present analyses, however, suggest
this decline effect may be a result of low power and selective reporting: Cues that
have rarely been reported will demonstrate wide variation in effect sizes, some of
which will appear to be quite large because low-powered studies occasionally pro-
duce highly overestimated significant effects, which are more likely to be published
than the nonsignificant effects that would attenuate the overestimates (IntHout et
al., 2015). In contrast, cues that have been studied more extensively should better
approximate the true effect. The shape of the empirical distribution will be influ-
enced by publication bias and heterogeneity. For these reasons, it may be possible
to obtain an empirical literature like the one we have even if all the effects were
much smaller than their present estimates suggest (or were nonexistent). Under
ordinary meta-analytic conditions, we might use publication bias correction tech-
niques (e.g., trim and fill) to obtain better estimates, but for reasons documented
in Appendix A, these approaches are limited in their usefulness here. Thus, to
examine the possibility that cues to deception may be exaggerated, I conducted
another simulation, to which we turn now.

The empirical literature could have been obtained even if every cue’s

effect size is actually zero. I simulated deception cue literatures that would
accumulate under 30 different conditions. Each simulated literature comprises
50,000 cues10. Each cue is studied a number of times randomly drawn from a dis-
tribution of values that resembles the distribution of ks in DLMMCC. Each study
had a sample size randomly drawn from a distribution of values that resembles
the distribution of N s in DLMMCC. The distributions of ks and N s were identical
for each of the simulated literatures.

The reported ks and N s of the deception literature are known. The distribution
of true effect sizes and the severity of the publication bias, however, are unknown.

9In an earlier review by Zuckerman, DePaulo, and Rosenthal (1981), there was also a negative
correlation between the absolute value of cues’ effect sizes and the number of reports, r = -.67.

10For details on the simulations, I have archived a more technical and verbose description,
which accompanies the simulation code here: https://osf.io/cf5vs/

https://osf.io/cf5vs/
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Figure 5. Estimated effect size by number of studies measuring each cue and total
sample size in DLMMCC
Note: Vertical lines are drawn at d = -0.10, 0, and 0.10. Resources to reproduce
this figure can be found at htps://osf.io/mfq6u.

htps://osf.io/mfq6u
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To examine different populations of effects from which the empirical literature
might be drawn, I created five populations of true effect sizes: (1) all effects equal
to d = 0; (2) all effects with an absolute value of d = 0.10, randomly positive or
negative; (3) all effects with an absolute value of d = 0.25, randomly positive or
negative; (4) effects sampled from a normal distribution with a mean of d = 0
and standard deviation of 0.25; and (5) effects sampled from a normal distribution
with a mean of d = 0 and standard deviation of 0.50. The null population, |.10|
population, and |.25| population were included as approximations of a range of
plausible effects, given the general pattern of results found by DLMMCC. The
population with a mean of d = 0 and SD = 0.25 reflects a face-value reading of
the literature. The mean effect size across the empirical literature is close to 0,
and its SD is close to 0.25. These parameters can be seen as an assumption that
the literature has estimated the effects reported in DLMMCC with a high degree
of accuracy. The population with a mean of d = 0 and SD = 0.50 is included
as an illustrative straw-man. It includes more heterogeneity than has actually
been observed in the empirical literature, and as such, it represents an unlikely
universe in which there are a very substantial number of strong cues to deception.
I included this population in the simulations to demonstrate what would happen
under such conditions, but I have no illusions about it being plausible.

To model publication bias of different magnitudes, I varied the proportion of
nonsignificant effects included in each estimate at six levels: 1.0, .80, .66, .50, .33,
and .10. All significant effects were included.

In total, these 30 simulated literatures comprised the results of k = 25,602,957
simulated studies (k = 15,983,427 after exclusions by publication bias) involv-
ing N = 1,228,069,423 simulated participants (N = 776,906,246 after publication
bias), examining a total of 1,500,000 simulated cues to deception (1,418,689 after
publication bias).

Understanding the simulation. What can this simulation tell us? It can
provide us a peek at 30 “alternate realities” with known parameters, for compar-
ison to the extant literature. We can examine the outcomes and consider (1) the
extent to which each of the parameters is plausible and (2) the extent to which
each simulated literature resembles the empirical literature. If a simulated liter-
ature closely resembles the literature we actually have, we might infer that the
empirical evidence is compatible with the corresponding parameters (assuming
they are plausible). Another way to think of such “matching” is that the empir-
ical literature has not provided sufficient evidence to disconfirm the parameters
of the matched simulated literature. Because the ks and N s resemble the em-
pirical literature and we know the true population effect sizes in the simulations,
we can assess how accurate the estimates in the empirical literature would be if
the specified simulated effects were real. Thus, scrutinizing the way data would
have accumulated under specified conditions can tell us extent of the empirical
literature’s compatibility with various parameters.

Additionally, one can examine the similarity of the simulated literature to each
other. If literatures drawn from different populations of true effects (e.g., null vs.
|0.10|) are highly similar to each other, it indicates that the precision of the esti-
mates is insufficient to distinguish between those scenarios. If effect populations
produce noticeably distinct distributions, we can infer there is sufficient precision
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to distinguish between those scenarios. Precision is fixed by the ks and N s, so
we can thus draw conclusions about the precision of the empirical literature by
comparing the simulated literatures.

Results of the simulation. Figures 6 and 7 illustrate the results of this
simulation. Figure 6 displays effect sizes plotted against the number of studies
estimating each cue. Each column of plots belongs to one of the five populations
of effect sizes. Each row of plots belongs to one of the six rates of publication
bias. Figure 7 displays effect sizes plotted against the total sample size for each
cue (viz. the sum of the sample sizes of all studies reporting that cue). Because
k and N are naturally highly correlated, these two figures present essentially the
same information in different ways. These figures display data in the same way
as Figure 5, but because there are so many estimates displayed simultaneously,
rather than points, red areas represent the density of the several thousand meta-
analytic effect estimates of the simulated cues (darker areas are higher density).
For comparison, layered over each simulated literature are the empirical estimates
from DLMMCC represented as blue circles. For a closer look, the reader can find
higher resolution images of each simulated literature here: https://osf.io/gfhqe/

It is easy to see that the empirical distributions are highly dissimilar to the sim-
ulated literatures drawn from the normally distributed effect populations, which
are much more widely distributed, even at higher ks and N s. Even a relatively
small amount of variance in true effects would produce a literature radically dif-
ferent from the one we actually have. This is because there is wide variation in
the true effects, and there is not sufficient precision in the estimates. Low power
leads to wildly inaccurate estimates, so these distributions are exploding with far
more variation than we see in the empirical literature. Therefore, if we assume
the the true effects have a mean close to 0 and SD close to .25 (as the empirical
estimates do), it is extremely unlikely they could have been estimated accurately
with these ks and N s.

Notice that many of the simulations reproduce the decline effect observed in
DLMMCC. That is, simulated literatures whose true effects are small demonstrate
wide variation at low ks and N s. This flaring of the distribution of effects is par-
ticularly pronounced at moderate and high levels of publication bias. Again, this
is due to the tendency for publication bias to select significant effects, which are
invariably overestimated at low power. It requires many individual studies to cor-
rect for this tendency when an entire literature is underpowered, and even then,
there remains substantial error. Cues studied with high ks under conditions of
higher publication bias are relatively uncommon (or outright absent), presumably
because the bias excludes many of the nonsignificant findings that would have
increased the ks and N s and thus corrected many, though not all, of the overes-
timates. When publication bias is high, power is low, and true effects are small,
the long run is cut short.

The empirical literature is strikingly similar to the simulated literatures drawn
from the zero effect and |0.10| populations, with moderate and low publication
bias (i.e., the lower left part of Figures 6 and 7; and see Appendix C). Despite the
fact that d = |0.10| is the median effect size observed in DLMMCC, the simulated
literatures drawn from a population in which all effects are d = |0.10| seem to
be more widely distributed at higher ks than the empirical distribution. Indeed,

https://osf.io/gfhqe/
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Figure 6. Simulated deception cue literatures (number of studies)
Note: Each column of panels represents a population of effect sizes. Each row
represents a proportion of nonsignificant effects (p > .05) included in the estimates.
Red areas represent the density of cue estimates at a given location. Blue circles
represent the effect estimates from DLMMCC. Vertical lines are drawn at d =
-0.25, -0.10, 0, 0.10, and 0.25. Resources to reproduce this simulation and figure
can be found at https://osf.io/gfhqe/.

https://osf.io/gfhqe/
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Figure 7. Simulated deception cue literatures (total sample size)
Note: Each column of panels represents a population of effect sizes. Each row
represents a proportion of nonsignificant effects (p > .05) included in the estimates.
Red areas represent the density of cue estimates at a given location. Blue circles
represent the effect estimates from DLMMCC. Vertical lines are drawn at d =
-0.25, -0.10, 0, 0.10, and 0.25. Resources to reproduce this simulation and figure
can be found at https://osf.io/gfhqe/.

https://osf.io/gfhqe/
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the simulations that most closely resemble the empirical distribution are from the
population in which the true size of every effect is zero11.

I call the reader’s attention to the simulated literature in which all effects
are zero and there is no publication bias (i.e., the bottom left panel of Figures
6 and 7). This simulation illustrates what occurs when pure noise is studied
repeatedly with ks and N s similar to the deception literature. Somewhat contrary
to my argument that publication bias is a root cause of the proliferation of false
positives, this simulated literature resembles the empirical literature quite closely.
That is, even if one assumes the best possible conditions, it remains plausible to
obtain the empirical literature while also assuming that there are no real cues to
deception.

Thus, publication bias is not an essential component of the Land of Toys per
se. Rather, what is required is a large number of effects measured with a small
number of reported estimates. Or more to the point, what is required is a lack of
precision in the estimation of a large number of effects. When sample sizes are
small, pervasive imprecision can arise due to selective reporting, few attempts at
replication, or a combination of the two.

One can also see that, in addition to the null simulated literature, the empirical
literature resembles the simulated literatures in which all effects are |0.10|. The
reason the empirical literature is so similar to both the |0.10| simulations and
the null simulations is that the |0.10| simulations and the null simulations are
similar to each other. The ks and N s of the empirical literature (and thus, the
simulations) are such that they would not behave very differently if every effect
were null or if every effect were |0.10|. This is another symptom of low statistical
power in the empirical literature. If there were more power, the null and |0.10|
simulations would be more distinct from each other, the estimates would be more
accurate, and the distributions would overlap less. We would have a better sense
of whether the cue effects were real, because the pattern of the estimates would
be different if there were many real effects or none at all. Here, they are so similar
that drawing inferences about the existence of effects is extremely prone to error.

Try it yourself. My experience suggests that it is difficult to set param-
eters for simulations that produce distributions similar to the empirical litera-
ture, other than every effect being zero or extremely close to zero, with little
to no heterogeneity. For readers interested in testing this for themselves but
lacking the computational resources (or the patience) to run more exhaustive
Monte Carlo simulations, I have written a Shiny app that allows the user to
create less computationally intensive simulated deception cue literatures specify-
ing the following parameters: (1) number of studied cues (up to 200), (2) mean
true effect size, (3) standard deviation of true effect sizes, (4) proportion of non-
significant results reported, and (5) alpha level. The app can be found here:

11The eagle-eyed reader will notice there appear to be two empirical cues whose estimates
are outside the area covered by the N -based plot of the null simulations. These two cues are
impressions of verbal immediacy and cooperativeness. Although their effects appear at least
somewhat promising, both these cues are heavily influenced by outlier estimates from the same
study, namely Horvath, Jayne, & Buckley (1994), whose methods have been criticized for, among
other things, insufficiently establishing the ground truth of the rated messages (Vrij, Mann, &
Fisher, 2006).
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https://rabbitsnore.shinyapps.io/deception literature simulator/
I have argued that a critical component of the Land of Toys problem is low

power of the studies that make up the literature, but I have only presented simu-
lations under a single set of power conditions, namely conditions similar to those
observed in DLMMCC. Informative simulations of deception literatures testing
differing samples sizes would be extremely computationally demanding, so I have
eschewed such a thorough test. However, to provide less precise simulations, I
have written a Shiny app nearly identical to the one above but with the added
feature of user-specified sample sizes for all studies in the simulated literature.
Trying different sample sizes in the app, it is easy to see that large sample sizes
ameliorate the problem substantially, by providing more accurate individual esti-
mates of effect sizes. The app can be found here: https://rabbitsnore.shinyapps.
io/deception literature simulator various sample size/

Summary. These simulations (and the reader’s own experiences with the
apps, I trust) indicate that the literature offers extremely weak evidence that
truthful and deceptive messages reliably differ. According to visual inspection and
quantitative metrics (see Appendix C), the empirical literature is compatible with
there being no real cues to deception. The entire literature could have plausibly
been sampled from noise.

Conclusions

Theoretical and practical implications. Despite the common interpretation
that some behaviors reliably (albeit weakly) correlate with deception, low power,
few replications, and publication bias may have produced a literature like the one
we have, even if all the true effects we have studied are zero. This does not mean
that every cue to deception actually does have an effect of zero; rather, it means
that we do not know with confidence that any studied cue does in fact have an
effect different from zero. The features of deception cue research – specifically
that many cues are measured under conditions of low power, possibly reported
selectively, and studied few times – are cause for skepticism in the accuracy not
only of estimates in individual studies but also meta-analytic estimates, such as
those in DLMMCC.

Individual cue estimates cannot, at present, be trusted. The estimated meta-
analytic effect size for any given cue may be quite inaccurate. The simulations
indicate that if researchers studied pure noise with the ks and N s of the deception
literature, false positives would proliferate. This does not mean they have; it
means they could have. One can think of this situation as analogous to examining
a nonsignificant p-value in a study with a small sample. In conventional statistics,
we interpret low p-values as suggestive that the null hypothesis may not be true
– as if to say, “It would be very strange to get such results if the null hypothesis
were true, especially if we consistently get such results.” Consider, for example, the
implications of p = .32 with N = 40 (an observed effect of d = 0.32). In addition
to not being significantly different from 0, these results would also not produce
a significant equivalence test (see, e.g., Lakens, 2017). Thus, it would neither
support the alternative hypothesis nor the null hypothesis. Its informational value

https://rabbitsnore.shinyapps.io/deception_literature_simulator/
https://rabbitsnore.shinyapps.io/deception_literature_simulator_various_sample_size/
https://rabbitsnore.shinyapps.io/deception_literature_simulator_various_sample_size/
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is low. We are faced with similar results in the aggregated deception literature: We
have data that could have plausibly been produced under the null hypothesis, as
well as a range of alternative hypotheses. Under such circumstances, we typically
refrain from inferring that the null hypothesis is false – nor do we accept the null.

There may be many authentic cues to deception, but there is no way, at present,
to look at any given deception cue estimate and to be confident that it is not
the result of error. It is easy, if not inevitable, to obtain numerous spurious
results in the past and current deception cue research paradigm. The informational
value of each study in the deception literature has been so low and the possibility
for bias and error so high, it is virtually impossible to determine if any given
cue’s effect is genuine or simply a ghost in the noise. But often when one goes
searching for something, one finds it, whether or not it actually exists (Nickerson,
1998). Deception researchers have often (understandably) interpreted individual
effects found in DLMMCC and elsewhere as evidence for potentially useful tools
to detect deception (e.g., Akehurst, et al., 2017; Evans et al., 2013), but to do so
is misguided.

The low trustworthiness of current estimates has implications for future efforts
to empirically study cues to deception. Basing hypotheses (and power calcula-
tions) on naive readings of reported effect estimates may be fraught with error.
That is not to say the situation is hopeless. One might reasonable follow leads
that appear promising for theoretical or empirical reasons. As one example, there
is a cue right at the edge of the area covered by the null simulations, with a
relatively large total sample size. This cue is details (i.e., the level of detail or
amount of specific information included in a statement), with an estimated effect
of d = 0.30 (total N = 883 from k = 24 estimates). In the null simulation with
no publication bias, above N = 800, the largest effect is about 0.26. Under con-
ditions of publication bias, the largest effect in the null simulations above N =
800 is about 0.31. As such, the empirical details cue is on the high end of what
would be expected if every effect were null12. Although one ought to be cautious
about making claims about this cue right now, the level of detail in a message
may indeed be a promising cue to deception that is worthy of future study.

The Land of Toys problem is not merely academic; there are human and mon-
etary costs to errors of this kind, as when, for example, governmental agencies
spend public funds on security policies justified with naive and selective interpre-
tations of the science of deception (see, e.g., Government Accountability Office,
2017; Halsey, 2013) or police and military personnel are trained to make decisions
using potentially faulty cues to deception (see, e.g., Kassin & Fong, 1999; Meissner
& Kassin, 2002). In the preface to the second edition of his power manual, Co-
hen (1988) observed that many, if not most, social scientists continued to neglect
statistical reforms, and he grimly declared: “They do so at their peril” (p.xv). In
deception research, we also do so at the peril of others. Basing practical or policy
recommendations on particular cues from the literature – even ones estimated with
seemingly large effects – may be unjustified at present. Strong empirical evidence
is required to establish the verity of any cue to deception. It is possible that, in

12There are several outliers contributing to the size of the estimate for details in DLMMCC.
This ought to be borne in mind when considering the evidence for this cue.
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the many decades of deception research, there has never been such evidence.
Regardless of the trustworthiness of individual cue estimates, however, the

established conclusion that deception cues are generally weak is almost assuredly
correct. A literature’s power to detect effects is partly a function of the true size
of the effects being studied. Even with small samples, it is possible to reliably
detect large effects. Thus, if strong cues existed, we likely would have found them
by now – unless we have been systematically looking in the wrong places. Just as
DLMMCC concluded, the observable differences between truthful and deceptive
messages are minute. However, this conclusion may be understated. Deception
cues may be considerably weaker than their estimates suggest.

Additionally, one would be on shaky ground to claim support for any given
theory on the basis of the present data on deception cues. Because we cannot
trust individual cue estimates, doubt is thrown onto ostensible patterns of de-
ception cues that might appear to favor some particular theoretical perspective.
Patterns estimated with low power do not necessarily replicate patterns in the
larger population (Tversky & Kahneman, 1971). Particularly when effects are
small in size and power is low, it is easy not only to incorrectly estimate the size
of an effect but also to incorrectly estimate whether the effect is positive or nega-
tive (Gelman & Carlin, 2014). As such, in the deception literature, there might be
many cues that are false positives or overestimates, and there may also be cues for
which we currently have the wrong sign. Such potential errors throw theoretical
interpretations into serious question.

Is there a villain in this story?

We knew many researchers—including ourselves—who readily admitted
to dropping dependent variables, conditions, or participants to achieve
significance. Everyone knew it was wrong, but they thought it was
wrong the way it is wrong to jaywalk. ...[S]imulations revealed that it
was wrong the way it is wrong to rob a bank. - Simmons, Nelson, and
Simonsohn (2018, p.255)

“Come with us and we’ll always be happy,” shouted the one hundred
and more boys in the wagon, all together.
“And if I go with you, what will my good Fairy say?” asked the Mari-
onette, who was beginning to waver and weaken in his good resolutions.
“Don’t worry so much. Only think that we are going to a land where
we shall be allowed to make all the racket we like from morning till
night.”
Pinocchio did not answer, but sighed deeply once—twice—a third time.
Finally, he said: “Make room for me. I want to go, too!” - on the way
to the Land of Toys (Collodi, 1883)

Having raked the deception literature over the coals for its methodological
shortcomings, it is important to consider the underpinning motives and causes of
questionable practices, as they have implications for the development of practical
remedies to detect and prevent such practices in the future. Once again, the story
of Pinocchio is illustrates the heart of the problem.
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Pinocchio did not travel to the Land of Toys with malicious intent; it seemed
like a good idea at the time. Moreover, although he knew it was wrong, he did
not seem to recognize the high cost of lingering in the Land of Toys. He had been
warned; indeed, one of the first warnings he receives from the Talking Cricket is
that if he kept behaving as he was, he would become a donkey. He ignored that
exhortation (or perhaps did not think about it very hard). He was pulled in two
directions – by his motivation to be good and his motivation to enjoy himself. It is
easy to understand why he succumbed to temptation: The benefits were apparent,
and the adverse consequences were not.

So it has been, I believe, in deception research (and in psychological science in
general). We have seen that the deception literature exhibits substantial method-
ological problems: samples sizes are too small to detect plausible effects, results
are reported selectively, and the number of significant results appears to have been
substantially inflated. This is consistent with the general finding that questionable
practices are quite common in science (Agnoli et al., 2017; Fraser et al., 2018; John
et al., 2012; Kerr, 1998; Martinson et al., 2005). Why are questionable practices
so prevalent? Researchers likely have at least two simultaneous motives for their
work: (1) to produce sound science and (2) to personally benefit (e.g., advance
their career). These goals often conflict; what advances one often inhibits the
other. When people have simultaneous conflicting goals, they tend to either pri-
oritize one over the other or attempt to compromise in such a way that both goals
are (perceived to be) at least adequately satisfied (see Kruglanski et al., 2012;
Kunda, 1990). Questionable practices are common, I believe, because they are
often, but not always, an attempt at compromise between researchers’ conflicting
goals. Sometimes, researchers simply do not realize they are doing anything ques-
tionable, because they are unfamiliar with or misunderstand relevant statistical
techniques. Other times, researchers know questionable practices are problematic
but engage in them for personal benefit, but they are generally unaware of the
extent to which the practices are problematic because, again, they inadequately
understand statistics.

The personal benefits of questionable practices are obvious. Researchers have
incentives to appear productive through publications (Hirsch, 2005; Tijdink et al.,
2016a). Publishing positive results is easier than publishing null results (Fanelli,
2012; Giner-Sorolla, 2012). Questionable practices make it easier to obtain positive
results (Bakker et al., 2012; Simmons, Nelson, & Simonsohn, 2011). Therefore,
researchers have incentives to engage in questionable practices. These incentives
induce researchers to cut corners in their work (Tijdink et al., 2014) and make
researchers more likely to report positive results (Fanelli, 2010), with inflated
effect sizes (Fanelli et al., 2017). Vazire (2015) describes an evocative anecdotal
experience of being tempted by questionable practices in situ, and it is striking
how obvious the benefits would be and how one could justify the decision to oneself
and others (and the justifications seem so compelling in the moment!). For me
and likely many others, this is a familiar experience.

Social norms may also influence the commission of questionable practices (Rajah-
Kanagasabai & Roberts, 2015). That is, if researchers operate in an environment
in which poor practices are perceived as normal and common, they may be more
willing to engage in them. Additionally, there is general social consensus among
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researchers concerning the relative wrongness of different questionable practices,
such that if one admits to one bad practice, one is much more likely to admit to
less severe ones as well (Agnoli et al., 2017; John et al., 2012). There is, however,
substantial variation in how far individual researchers are willing to go. Provid-
ing incentives for truthful disclosure increases rates of admissions of engaging in
questionable practices (John et al., 2012), suggesting that researchers know there
is a reason to conceal them. Moreover, researchers generally perceive questionable
practices to be indefensible, except when they themselves have committed them,
in which case they are much more likely to say they are “possibly defensible” (Ag-
noli et al., 2017; John et al., 2012). The incentives for questionable practices are
many, but researchers are not relentlessly opportunistic. Occasionally, researchers
may overtly and knowingly engage in wrongdoing. However, the data suggest
that generally researchers try to act within the constraints of defensibility, some-
times striking compromises between the goals of scientific soundness and personal
benefit, attempting to satisfy both objectives.

Even when one is trying to act in a scientifically rigorous manner, it is possible
to err due to lack of knowledge. One’s perception of what practices are defensible
is likely influenced by one’s understanding of the consequences of questionable
practices. But surveys consistently find that researchers generally have inade-
quate or incorrect understandings of statistical concepts relevant to their work
(e.g., Bakker et al., 2016; Gigerenzer, 2004; Greenland et al., 2016; Tversky &
Kahneman, 1971). How does one square this with the fact that, for decades, there
have been clear, consistent, and repeated warnings about low power (e.g., Cohen,
1962, 1969, 1988; Lane & Dunlap, 1978) and selective reporting (e.g., Greenwald,
1975; Rosenthal, 1975; Sterling, 1959)? Wouldn’t well-intentioned scientists leap
at the opportunity to improve their methods? Despite the availability of knowl-
edge on how to improve practice, it remains remarkably easy for researchers to
fail to appreciate the consequences of their decisions as they are making them,
particularly when poor practices are not met with resistance (e.g., critique during
peer review).

In their classic paper on the “law of small numbers,” Tversky and Kahneman
(1971) describe overestimation of the reliability of statistical trends (and thus
overestimation of power) as a pervasive foible of human reasoning. They note
that people commit a “multitude of sins against the logic of statistical inference
in good faith” (p.110, emphasis added). If researchers insufficiently understand the
statistics they are using, and instead uncritically follow conventions established
by others who have a similarly poor understanding (Gigerenzer, 2004; Sedlmeier
& Gigerenzer, 1989), they may fail to appreciate the gravity of the poor practices.
That is, the deleterious consequences of questionable practices may be downplayed
in part because they appear to work just fine, and they do not have the requisite
knowledge to realize they are not actually working properly (see Nelson, Simmons,
& Simonsohn, 2018). For example, researchers may conduct unplanned hypothesis
tests that inflate the false positive rate as they attempt to understand their data
and do not fully realize just how wrong their decisions are (Gelman & Loken, 2013).
Thus, researchers may be more willing to engage in questionable practices, as they
are less aware of the threat to their motivation to produce sound science (Agnoli
et al., 2017; John et al., 2012). That is, they might not realize the wrongness of
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questionable practices at all, or if researchers do know they are bad, they might
not seem bad enough not to do them.

Along these lines, it is possible that questionable practices themselves influ-
ence the feedback scientists receive from their own work (Nelson, Simmons, and
Simonsohn, 2018), such that it seems one can regularly succeed, for example,
with extremely small samples. Evidence reviewed above demonstrated a higher-
than-expected rate of significant results in the deception literature, and published
articles with no significant cue effects often reporting significant effects when ana-
lyzing subsets of their data or collapsing across conditions. To individual deception
researchers, it may well appear that their work has been successful. Pinocchio’s in-
vitation to the Land of Toys was a ringing endorsement of its many pleasures, with
the costs downplayed and dismissed. Similarly, the process by which problematic
research decisions are made may in itself conceal the hazards therewith.

As I see it, there is no villain in the story of deception research: Our problems
are self-generated, but our poor decisions have also been understandable. That
does not change the fact our research practices have not lived up to proper stan-
dards. Pinocchio was still transformed into a donkey, even though he realized he
should have heeded the warnings he had earlier received. Perhaps it is not entirely
our fault, but it is certainly our responsibility to fix it. No matter how we wish
to litigate the blameworthiness of past decisions, we will have to deal with the
consequences.

We must change the way we do things. From a certain point of view, I
have presented nothing new here. The causes of the Land of Toys problem – that
is, low power, selective reporting, and a lack of replications – have been known to
be deleterious for a long time (Cohen, 1962, 1988, 1994; Easterbrook et al., 1991;
Fisher, 1926; Lane & Dunlap, 1978; Meehl, 1990; Open Science Collaboration,
2015; Rosenthal, 1979; S. Schmidt, 2009). It is not that we have not known these
methodological issues were problematic; it is that we have not paid adequate
attention to them (Nelson, Simmons, & Simonsohn, 2018).

Solutions to the Land of Toys problem are, like the Talking Cricket and
Turquoise Fairy’s advice, thankfully readily available. The methodological reforms
necessary to avert (or at least substantially reduce) the Land of Toys problem are
not radical or novel: (1) Researchers must more fully disclose their methods, analy-
ses, and data, and (2) researchers must improve the statistical power of their work.
These reforms are demanding but not complex. Fortunately, we also have even
more convenient tools at our disposal to mitigate these problems, compared to
decades ago. That said, implementing the solutions will likely require substantial
changes to the way deception research has been typically conducted.

The first recommendation calls for less selective reporting. Reducing publica-
tion bias is challenging, in part because at least some of this bias is out of the hands
of individual researchers. Fortunately, authors that can ameliorate the problems of
publication bias and selective reporting in a variety of ways. Preprint repositories
(e.g., OSF Preprints, PsyArXiv) and blogging make it possible to more rapidly
and widely disseminate research findings, especially those that might otherwise
be suppressed. Open data practices can also greatly mitigate selective reporting
problems (Miguel et al., 2014). If, for example, space restrictions prevent authors
from exhaustively reporting extensive results, making data openly available allows
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other researchers to explore for themselves.
Preregistration of coding and analyses would also mitigate this issue by reduc-

ing researchers’ ability to select cues that might favor their hypotheses and their
ability to change their hypotheses to suit the data (Kerr, 1998; Nosek et al., 2018).
If they are not already, deception researchers ought to become familiar with the
myriad ways they can inadvertently arrive at mistaken conclusions. Here, the-
ory can be helpful as well. Specifically, it can provide guidance about what cues
might be worth studying and can help shape meaningful interpretations of results.
For example, if joined with preregistration, well-specified theory can help curtail
problematic ad hoc explanations for results. In short, increasing transparency in
research will substantially improve the deception literature.

The second recommendation calls for increases in statistical power (and thus,
precision). We can see from the simulations that a literature of false positives
can grow even without publication bias, but such bias exacerbates the problem
by reducing the likelihood that spurious results will be corrected in the long run.
However, for there to be a chance of correcting a false positive in the long run,
there must be a long run in the first place. That is, deception researchers must re-
peatedly study and report cues, rather than relying on small numbers of estimates,
especially from small samples.

Raising statistical power is largely a matter of increasing sample sizes. De-
ception research has been outrageously underpowered. This problem cannot be
over-emphasized. Let us assume – admittedly unsafely – a typical effect of 0.10
(the median in DLMMCC). For .80 power to detect an effect that size, we would
need N = 3,142. Recall that the average sample size in DLMMCC was approxi-
mately N = 41. This is alarmingly small, given the probable size of the effects.
There is no escaping mathematical reality. If we want to detect and estimate
small effects, we are going to need to face this challenge. We will need much
larger samples to verify the existence or nonexistence of cues to deception.

Under some circumstances, within-subjects designs, in which multiple messages
are obtained from each participant, can help raise power by increasing the number
of sampled observations (see Judd, Westfall, & Kenny, 2017). Unfortunately, even
with somewhat more powerful within-subjects designs, it may be unlikely that
any single research group could consistently acquire the resources necessary for
adequate power to study very small effects like the ones that may be present
in deception. The same problem obtains for focused efforts to directly replicate
results. For this reason, “many labs” collaborations, in which numerous research
teams pool their resources, may be a practical solution to these challenges (e.g.,
Klein et al., 2014). Thankfully, such large scale collaborations are not unheard
of in deception research (e.g., Global Deception Research Team, 2006). Their
implementation, however, must become more commonplace if we are to leave the
Land of Toys.

Most of these recommendations are old. Psychological scientists have generally
been resistant to statistical and methodological reforms (Rossi, 1990; Sharpe,
2013), and I have discussed above the ways in which poorer practices offer personal
benefits. The consistent patterns of small samples and selective reporting and the
unusually high rate of significant effects demonstrate that deception researchers
have not, in spite of recommendations, voluntarily implemented reforms. Thus, to
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change the face of research practice, rather than trusting researchers to voluntarily
adopt reforms, it is likely that the general standard of evidence must be raised
and the incentives for good research practices must be changed with policy (see
Nosek, Spies, & Motyl, 2012; Sedlmeier & Gigerenzer, 1989).

Given the ease with which one can obtain spurious results, editors and review-
ers may, for example, need to require more rigorous application of the practices de-
scribed above (e.g., preregistration, accumulation of substantial evidence) in order
to publish strong claims about cues to deception (see Giner-Sorolla, 2012; Vazire,
2018a). Many of us may find such demands unpalatable (Vazire, 2018b), but
substantive changes in methodology are unlikely to occur if individual researchers
do not face consequences for suboptimal methods (Smaldino & McElreath, 2016).
To the extent that evidence is required to justify such demands on researchers,
simulations and reviews of the literature like the one presented here might provide
such policy justifications.

The rabbits have arrived

To the extent that these recommendations entail practices that differ from the
typical manner in which deception research has been conducted, they may be
challenging to adopt. Their potential difficulty, of course, makes them no less
necessary. When he was dying from injuries, Pinocchio refused to drink the foul-
tasting medicine offered by the Fairy with Turquoise Hair. He declared that he
would rather die than endure the wretched taste of the medicine that would save
his life. Then a procession of four black rabbits bearing a coffin on their shoulders
arrived and informed him, “We have come for you.” It was only then, faced with
a clear signal of his impending doom, that he took the medicine, which promptly
healed him just as the Fairy had told him it would.

As I have explained above, I suspect that deception researchers, like Pinocchio,
have not taken the bitter medicine of methodological reform in large part because
the negative consequences of present practices have not been apparent. My hope is
that what I have presented here will serve as a clear indication that the current way
of doing things cannot be sustained. We must hold ourselves to higher standards
and demand stronger evidence for claims of cues to deception. Effective reforms
will be onerous. The medicine is bitter. But the alternative is worse.

Open Practices

Code to reproduce all simulations and figures, code for the Shiny apps, and data
produced by the simulations and extracted from DLMMCC are available on the
Open Science Framework (https://osf.io/cf5vs/). As of writing, I have not received
permission to publicly post the original data for DLMMCC, so I have not. Should
I receive permission in the future, the data and code to reproduce relevant analyses
will be available on OSF (https://osf.io/mfq6u/).

https://osf.io/cf5vs/
https://osf.io/mfq6u/
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Appendix A

It might be desirable to estimate the magnitude of publication bias in the decep-
tion literature, as such an estimate would permit an empirical evaluation of the
extent to which the effects reported in the literature may have been influenced
by bias. Can we estimate publication bias using the data from DLMMCC? Nu-
merous conceptual and statistical difficulties stand in the way of this task in the
deception cue literature. The peculiar methodology of deception cue research lead
me to conclude that attempting to estimate and correct for publication bias in
this literature is at best extremely challenging and at worst futile.

Meta-meta-analytic approach

To assess publication bias, one might construe the deception cue literature as a
body of data examining a single phenomenon – as a meta-meta-analytic prob-
lem. That is, one could meta-analyze the meta-analytic estimates (k = 158) and
apply techniques to address publication bias on the data reported in DLMMCC.
However, this approach is misguided.

First, there is a conceptual issue. It unclear what publication bias (or lack
thereof) at this level of analysis means. It is clear what it does not mean, however.
Publication bias at the meta-meta-analytic level does not directly reflect bias in
the reporting of individual studies or effect size estimates for cues. Rather, at this
level of analysis, publication bias may reflect systematic exclusion of entire cues
from the literature. It is possible (if not likely) that some cues have simply never
been reported. However, it is not clear that standard publication bias assessment
and correction techniques would be appropriate to address this possibility.

Second, there is a methodological issue. In DLMMCC, the signs of the effect
sizes are sometimes arbitrary. They were coded such that positive effects indi-
cated an increase in the given cue in deceptive messages, compared to truthful
messages. For some cues that are measured in the frequency or duration of a
given behavior, such as smiling or hand movements, the sign of the effect takes on
an intuitive meaning. For other cues that deal with quantified impressions, such as
impressions of nervousness, immediacy, or cooperativeness, the sign is an artifact
of the labeling of the variable. If the labels were inverted (e.g., “calmness,” “hes-
itation,” and “uncooperativeness”), the sign of the effect would flip, with no loss
of meaning. This poses an obvious problem for publication bias techniques that
are influenced by the signs of effect estimates (e.g., trim and fill, PET-PEESE,
selection models; see, e.g., Carter et al., 2018), and it renders meta-meta-analytic
statistics untrustworthy.

To address this issue, one might consider taking the absolute value of each
estimate and conducting analyses on the resulting data, all of which would have
positive signs. This would solve one problem and introduce others. Specifically,
this approach implicitly assumes that the empirical research has obtained the
correct sign for each cue (correctness, that is, with respect to however the cue has
been labeled). For estimates close to 0 (of which there are many), which could
easily have the wrong sign, this assumption is questionable (see Gelman & Carlin,
2014). If sign errors have occurred, absolute values will overestimate effects.
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Taking the absolute value of every effect would also have the result of essen-
tially folding the funnel plot in half (i.e., everything on the left side would be
reflected onto the right side). The artificial asymmetry of the distribution would
render many estimates of publication bias meaningless (again, not that they are
necessarily informative at this level of analysis anyway).

Meta-meta-analyses of the DLMMCC cue classifications. A possibly
more appropriate approach is to use the categories into which DLMMCC sorted
deception cues (i.e., forthcoming, compelling, positive, tense, and ordinary imper-
fections). Within each category, the signs of the effects were not arbitrary, as they
corresponded to the increase or decrease, in deceptive behavior relative to truth-
ful behavior, of the construct identified by the category. Therefore, taking this
approach would avoid the sign problem, but it will also not solve the conceptual
problem that publication bias at the meta-meta-analytic level does not effectively
capture bias at the level of the individual study. However, by avoiding the arbi-
trary sign problem, this approach can provide a potentially useful summary of the
size of effects of deception cues better than one big meta-meta-analysis. Results
of such a summary are reported in Appendix B.

Summary. In short, a meta-meta-analytic approach to estimating publication
bias in the deception literature is fraught with difficulties.

Additional note. The astute reader may wonder if the matter of arbitrary
signs threatens the validity of inferences drawn from the simulated deception cue
literatures. Thankfully, it does not. The simulated literatures generated to assess
the Land of Toys problem are all necessarily symmetrical; they have equal amounts
of positive and negative effects, and the signs of the simulated effects are arbitrary,
as many are in DLMMCC. For this reason, if one considers it desirable to take
the absolute values of the effects in DLMMCC for analysis, one can also take the
absolute values of the simulated effects for comparison. The metrics of similarity
presented in Appendix C are invariant to the signs of the effects.

My own preference is to examine the raw effect estimates, with original signs
intact, because I find it more intuitive to examine the symmetrical plots, which
represent the way the accumulating cue estimates deviate on either side of 0.
However, for readers who prefer otherwise, alternate versions of Figure 6 and 7
which plot absolute values are available here: https://osf.io/gfhqe/

Publication bias in individual cue estimates

Alternatively, one might consider publication bias at the level of each cue. That
is, one could apply statistical techniques to address bias individually, for every one
of the 158 cues in DLMMCC. This circumvents the conceptual problems described
above, and it is conceptually in line with the type of publication bias relevant to
the issues addressed in this paper. However, it runs up against another problem.
Specifically, most deception cues have been reported only a small number of times,
greatly reducing the effectiveness of publication bias metrics (see, e.g., Ioannidis &
Trikalinos, 2007; Lau et al., 2006; Sterne, Gavaghan, & Egger, 2000). Of the 158
reported cues, 42 were reported only once, rendering publication bias estimates
impossible for those. That leaves 116 potentially viable cues. The majority of these
potentially viable cues (65) were only reported between 2 to 5 times – offering little

https://osf.io/gfhqe/
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power to detect bias. Only 26 cues were reported 10 or more times, and only 9 cues
were reported 20 or more times. The situation is worsened when one considers
that DLMMCC were unable to extract exact effect sizes in many instances. Only
18 of the cues could be precisely extracted 10 or more times, and 71 could only
be precisely extracted between 2 and 5 times. As such, the statistical power of
publication bias tests for each cue would be woefully low.

Perhaps estimating publication bias where possible (i.e., for higher-k cues)
seems as if it would be informative. However, this approach would in fact be
highly problematic. As noted above, the distribution of effect size estimates seems
to center on or close to 0. For cues reported at least k = 10 times, the average
effect size is similarly close to 0, but there is much less variation (SD = 0.132
vs. SD = 0.265 for the full distribution; and see Figure 5 for a visualization).
The ambition of these bias assessment procedures would be to obtain an estimate
of bias that could be generalized to those cues for which it is not appropriate to
apply such techniques. But the ability to employ techniques to assess publication
bias (deriving from the number of reported studies) is confounded with the size
and heterogeneity of estimates, such that we have the least ability to accurately
assess publication bias for the cues for which we would be most concerned about
publication bias (i.e., those with estimated effect sizes that substantially deviate
from 0).

As an additional note, consider that the the results of the large-scale deception
literature simulation (presented in Figures 6 and 7 and in Appendix C) indicate
that even under conditions of low or no publication bias, it is still highly plausible
to have obtained the empirical literature when all cues have effects of zero. As
such, with regard to the question of the evidential value of the extant literature,
attempting to approximate publication bias is something of a moot point.
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Appendix B

DLMMCC classified deception cues into five categories. These categories were
established to assess whether liars, compared to truth-tellers, (1) were less forth-
coming, (2) told less compelling tales, (3) were less positive, (4) were more tense,
and (5) told stories with fewer ordinary imperfections. Table 2 displays some de-
scriptive information about the literature in these five categories. Within each of
the five categories, the signs of the cue effects were not arbitrary (see Appendix
A); rather, the signs of the effects indicated an increase (among liars relative to
truth-tellers) of the construct in question (e.g., positivity, tension). Thus, one
could attempt to summarize the deception cue literature writ large as five meta-
meta-analyses, one for each type of cue in DLMMCC, each analysis providing an
estimate of the strength and direction of the typical deception cue in each category.

Table 1: Descriptive information for deception cue categories from DLMMCC
Cue type Total cues Mean N (SD) Total N Mean k (SD) Total k
Forthcoming 14 454.29 (547.89) 6,360 11.93 (14.45) 167
Compelling 65 264.51 (297.88) 17,193 6.32 (7.29) 411
Positive 18 330.00 (323.67) 5,940 6.39 (6.48) 115
Tense 12 444.00 (275.29) 5,328 9.83 (6.10) 118
Ordinary imperfections 19 140.68 (67.56) 2,673 3.79 (1.96) 72

Note: Total cues = number of cues in the category. Mean N = average sample
size per cue (i.e., sum of all studies). Total N = total sample size of all cues.
Mean k = average number of studies per cue. Total k = total number of studies
for all cues.

Table 2: (Meta-)meta-meta-analytic summaries of deception cue categories from
DLMMCC

Cue type Estimate 95% CI z p-value
Forthcoming -0.078 [-0.172, 0.015] 1.648 0.099
Compelling -0.002 [-0.052, 0.047] 0.092 0.926
Positive -0.070 [-0.164, 0.023] 1.469 0.142
Tense 0.099 [0.004, 0.194] 2.046 0.041
Ordinary imperfections -0.145 [-0.270, -0.019] 2.260 0.024
Overall (absolute values) |0.064| [0.116, 0.012] 2.423 0.015

Note: Resources and code to reproduce these analyses are available at https:
//osf.io/mfq6u/.

Table 2 presents the results of just such a meta-meta-analytic synthesis for
each of the five categories of cues. Additionally, I conducted a meta-meta-meta-
analysis of the absolute value of the estimates from the five meta-meta-analyses,
which can provide an estimate of the overall strength of deception cues reported
in DLMMCC. Each estimate was produced using a random effects model. As can
be seen in the table, the effect of the typical deception cue in each category (and
overall) is hardly impressive – all of them negligible by conventional benchmarks.
These results suggest that the effects of deception cues are generally puny.

https://osf.io/mfq6u/
https://osf.io/mfq6u/
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Note that these estimates are taken at face value from DLMMCC and include
no attempt to correct for bias. Given the problems noted in Appendix A, conven-
tional estimates or corrections of publication bias at this level of analysis is likely
to be uninformative. However, it is worth noting that the absolute values of the
meta-meta-analytic estimates are nearly perfectly correlated with their standard
errors, r = .98, such that the more precise estimates of the five are closer to zero
and the less precise estimates are further away. This does not directly assess the
presence of publication bias or whether the effects are spurious, but it does not
inspire confidence in the authenticity of these cues.
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Appendix C

Table 3: Quantitative metrics of similarity between empirical and simulated liter-
atures
k-based approach

Proportion of n.s.
reports included Effect population

0 |0.10| |0.25| Normal (0, .25) Normal (0, .50)
0.10 0.475 0.493 0.410 -0.432 -0.593
0.33 0.669 0.593 0.575 -0.101 -0.404
0.50 0.662 0.629 0.586 0.086 -0.248
0.66 0.652 0.654 0.609 0.286 -0.032
0.80 0.694 0.657 0.637 0.555 0.328
1.00 0.697 0.662 0.632 0.650 0.615

N -based approach

Proportion of n.s.
reports included Effect population

0 |0.10| |0.25| Normal (0, .25) Normal (0, .50)
0.10 0.589 0.561 0.563 -0.572 -0.738
0.33 0.767 0.721 0.760 -0.233 -0.505
0.50 0.837 0.788 0.752 0.312 -0.290
0.66 0.833 0.798 0.754 0.680 0.198
0.80 0.830 0.799 0.770 0.737 0.505
1.00 0.831 0.797 0.762 0.760 0.756

Note: Each coefficient represents strength of matching between the given simulated
literature and the empirical literature. Upper part of table presents metrics for the
k -based approach. Lower part presents metrics for N -based approach. See text
for an explanation of how the metrics were calculated. Three strongest coefficients
in each approach, representing the best matches with the empirical literature, are
displayed in bold. Resources and code to reproduce these results can be found at
https://osf.io/gfhqe/

Although visual inspection is informative, the reader may find it desirable to
quantitatively compare the shapes and densities of the simulated distributions and
the empirical distribution. To offer a numerical metric of similarity, I took two
approaches: one based on the number of studies per cue (k -based) and one based
on the total sample size per cue (N -based). For the k -based metric, I split both the
effect size data from DLMMCC into sets of cues with a shared number of reports
(a total of 25 unique ks). For each level of k, I calculated a measure of deviations

from zero, equal to
√

SS

N , where SS is the sum of squared deviations of each effect

size from 0 and N is the number of effect sizes. This is in essence a standard
deviation from 0 rather than the mean13, which provides a measure of the spread

13That being said, the grand mean of all simulated distributions is 0, and the grand mean of
the empirical distribution is very close to 0 anyway, so using standard deviations from the grand
mean would produce almost identical results.

https://osf.io/gfhqe/
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of the effect sizes around zero. Calculating a deviation score for each unique k
creates a vector of values which characterize the shape of the distribution.

From each of the 30 simulated literatures, I created matching sets of simulated
data with the same ks as the empirical data. I then calculated a conventional
Pearson correlation coefficient for each of the 30 sets of deviation scores for the
simulated literatures with the empirical literature. I then weighted the each co-
efficient by the number of valid deviation scores obtained from the simulated
literature, such that the coefficients were penalized if the simulated literature had
a lower maximum k than the empirical literature. Thus, each of the 30 simula-
tions received a single coefficient that attempts to quantify the degree of matching
between the empirical literature and that simulation. The coefficients are inter-
preted such that stronger positive coefficients indicate greater matching between
the shape of the empirical and simulated literatures. For the N -based metric,
I used the same procedure, but instead of calculating deviation scores for each
unique k, I split the data into intervals of total sample size (breaks every 100
participants in the sample, for a total of 14 intervals). I then calculated scores for
the effect sizes for cues in each interval and correlated the empirical and simulated
scores. Code to reproduce these calculations is available at https://osf.io/gfhqe/.

Table 3 presents the results of these calculations. As in Figures 6 and 7, each
row represents a publication bias condition (i.e., the proportion of nonsignificant
effects included in the literature), and each column represents a population of effect
sizes. As can be seen, the k -based and N -based correlation metrics produced
similar (though not identical) results: The best matching simulated literatures
by both metrics are those in which all effects are d = 0, though the k - and
N -based approaches disagree somewhat regarding the best matching publication
bias conditions. The correlation metrics also indicate high matching between the
|0.10| simulations and the empirical literature. As is noted in the main text, this
is unsurprising, given that the null simulations and |0.10| simulations produce
such similar results. That is, the empirical literature could not closely match
one without matching the other. This is the result of relatively low statistical
precision.

One should approach these metrics with caution. Although I believe they rep-
resent a reasonable approach to quantifying the similarity in the distributions,
they have not been thoroughly validated. One can see that even the simulated
literatures that produced results highly visually discrepant with the empirical liter-
ature (e.g., the normally distributed effects) received relatively strong coefficients
under some conditions. Thus, this approach may be less sensitive to differences
in variability than would be desirable. There may be superior ways of assessing
the correspondence between the empirical and simulated literatures. I encourage
interested others to explore alternatives using the available data.

https://osf.io/gfhqe/

