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We perform an analysis within the Standard Model of B0;þ → K�0;þμþμ− decays in light of the recent
measurements from the LHCb experiment, showing that new data strengthen the need for sizable hadronic
contributions and correlations among them. We then extend our analysis to new physics via the Standard
Model effective theory, and carry out a state-of-the-art fit of available b → slþl− data, including possible
hadronic contributions. We find the case of a fully left-handed operator standing out as the simplest
scenario with a significance of almost 6σ.
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After the observation of the Higgs boson [1,2], indirect
searches for physics beyond the Standard Model (SM) are
playing an increasingly important role in the program of the
Large Hadron Collider (LHC), as the recorded luminosity
increases. In addition to precision electroweak and Higgs
physics, LHC is also providing a huge amount of high-
precision data in the flavor sector, in particular on rare and
CP-violating decays of heavy mesons. In this context, b →
slþl− transitions have recently been under the spotlight,
not only because of their potential sensitivity to new
physics (NP) [3–6], but also because of the current
experimental hints of deviations from the SM, see, e.g.,
[7–18]. As any other indirect search for NP, the quest for
NP in b → slþl− decays requires not only high exper-
imental precision, but also a robust estimate of theoretical
uncertainties in the SM prediction. From this point of view,
the set of experimental results which hint at NP in b →
slþl− transitions can be divided in two broad classes. The
first contains ratios of decay branching ratios (BRs) for
different leptons in the final state; the second contains
absolute BRs and angular distributions. The former is

particularly clean from the theoretical point of view
[19–21], but experimentally challenging,1 while the latter
is also subject to sizable theoretical uncertainties [26,27].
Indeed, while the calculation of decay amplitudes for
exclusive b → slþl− transitions is well defined in the
infinite b and c mass limit [28–30], and while in the same
limit the uncertainty from decay form factors can be
eliminated by taking suitable ratios of observables
[31,32], in the real world amplitude calculations must cope
with power corrections, which can be sizable or even
dominant in several kinematic regions [33–37]. For exam-
ple, the operator product expansion is known to fail
altogether for resonant B → Kð�ÞJ=ψ → Kð�Þμþμ− transi-
tions [38], and its accuracy is questionable close to the cc̄
threshold. For this reason, estimating corrections to QCD
factorization in the low dilepton invariant mass (low-q2)
region of B → Kð�Þlþl− decay amplitudes is a crucial step
toward a reliable assessment of possible deviations from
SM predictions in these decay channels. Unfortunately,
first-principle calculations of these power corrections are
not currently available, and a theoretical breakthrough
would be needed to perform such calculations, see, e.g.,
the discussion in [27,39,40]. Waiting for this breakthrough,
the only reliable option is to use data-driven methods to
account for the theoretical uncertainties and to quantify
possible deviations from the SM. Obviously, data-driven
methods are (much) less NP sensitive than (bold) theoreti-
cal assumptions, but as more and more data become

*marco.ciuchini@roma3.infn.it
†marco.fedele@kit.edu
‡enrico.franco@roma1.infn.it
§ayan.paul@desy.de∥luca.silvestrini@roma1.infn.it
¶mvalli@uci.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Ratios of angular observables as the ones proposed in [22–24]
and measured by Belle in [25] may also be considered in this
category.
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available the road to a robust test of the SM becomes viable.
In this context, the very recent angular analysis of the Bþ →
K�þμþμ− decay [41], together with the recent update on the
B0 → K�0μþμ− one [42], represents a milestone in the
effort to disentangle possible NP contributions from long-
distance QCD effects. In this paper, we exploit these recent
data to perform a detailed study of QCD pollution in
angular observables, and to assess the compatibility of
B0;þ → K�0;þμþμ− with the SM. We then combine angular
observables with lepton flavor universality (LFU) violating
ones to provide the best estimate of possible NP contri-
butions to b → slþl− transitions. The lesson we learn
from the present analysis is twofold: (i) Within the SM,
experimental data on angular analyses can be reproduced
with sizable hadronic contributions, including a possible
contribution that mimics NP effects; (ii) In the Standard
Model effective theory (SMEFT) [43,44], the significance
of NP from the global b → slþl− analysis increases with
the inclusion of new data, reaching a maximum of almost
6σ for the simple scenario of a nonvanishing CLQ

2223, always
taking into account hadronic effects (see Eq. (8) below for
the definition). All details of our treatment of hadronic
uncertainties and of our Bayesian analysis technique can be
found in Refs. [13,33,36]; here we limit ourselves to a
concise review of the necessary ingredients. The main
contributions to the B → Kð�Þlþl− decay amplitudes come
from the following operators:

Q7γ ¼
ffiffiffiffiffiffiffiffiffiffi

αe
64π3

r

mbs̄LσμνFμνbR; ð1Þ

Q9V;l ¼ αe
4π

ðs̄LγμbLÞðl̄γμlÞ; ð2Þ

Q10A;l ¼ αe
4π

ðs̄LγμbLÞðl̄γμγ5lÞ; ð3Þ

Qc
2 ¼ðs̄LγμcLÞðc̄LγμbLÞ: ð4Þ

Following [26,45], SM decay amplitudes can be conven-
iently decomposed in the helicity basis:
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�

CSM
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2mb
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CSM
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with λ ¼ 0;� and CSM
7;9;10 the SMWilson coefficients of the

operators in Eqs. (1)–(3), normalized as in Ref. [13].
The factorizable part of the amplitudes corresponds to
seven independent form factors, Ṽ0;�, T̃0;�, and S̃, smooth
functions of q2 [46,47]. At first order in αe, nonlocal effects
arise from the insertion of the operator in Eq. (4) yielding
nonfactorizable power corrections in Hλ

V via the hadronic

correlator hλðq2Þ [27,33,48], receiving the main contribu-
tion from the time-ordered product of:

ϵ�μðλÞ
m2

B

Z

d4xeiqxhK̄�jT fc̄ðxÞγμcðxÞQc
2ð0ÞgjB̄i: ð6Þ

Within different setups and assumptions, most recent
attempts to estimate the charm-loop contribution of
Eq. (6) [39,49,50] find agreement with the outcome of
the light-cone sum-rule computation in [51]. However, a
reliable estimate of nonfactorizable effects encoded in
h0;�ðq2Þ remains theoretically challenging in the full
kinematic region of interest. In this work, we adopt a
data-driven method based on the following general para-
metrization of the hadronic contributions:
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It is evident from Eq. (7) that the coefficients hð0Þ− and hð1Þ−
can mimic LFU effects of NP, contributing to C7 and C9

respectively. Consequently, the extraction of NP contribu-
tions to C7;9 from angular observables crucially depends on
the theoretical assumption on the size of hð0;1Þ− . However,
precise experimental data can in principle lead to the
determination of all h’s, improving our knowledge of
hadronic contributions and strengthening or weakening
our confidence on the estimates of Refs. [39,49–51]. In this
context, it is very interesting to quantify the impact of the
new data on the determination of the h’s. Using the HEPfit

code [52,53], we compare the results of a SM fit to the data
in Refs. [25,41,42,54–68] with the one omitting the most
recent data in Refs. [41,42].
Our main results in the SM are presented in Figs. 1–2,

where the impact of the new data on the determination of
the hadronic contributions (including hð1Þ− ≡ ΔC9) can be
clearly seen. In particular, in Fig. 1 we show how the latest
experimental information on P0

5, see Ref. [69], can be
accommodated in the SM once sizable hadronic effects as
the ones obtained for B0;þ → K�0;þlþl− in Fig. 2 are taken
into account. In the left panel of Fig. 2 we present an update
of our analysis of Ref. [13], studying all available b →
slþl− data at low q2 previous to the LHCb measurements
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in [41,42]. In the right panel we then show the impact of
the latter set: (i) the evidence of a nonvanishing combina-
tion of jhð1Þ− j and jhð2Þ− j is strengthened, with a slight (<2σ)
preference for a nonvanishing jhð2Þ− j; (ii) a new evidence of a

nonvanishing combination of jhð1Þ− j and jhð0Þ0 j emerges, with

a slight (<2σ) preference for a nonvanishing jhð0Þ0 j. Thus,

new data globally strengthen the evidence of nonvanishing
h’s, introducing a slight preference for purely hadronic
contributions.
Generalizing our analysis to the SMEFT, we consider the

following additional operators:

OLQð1Þ
2223 ¼ ðL̄2γμL2ÞðQ̄2γ

μQ3Þ;
OLQð3Þ

2223 ¼ ðL̄2γμτ
AL2ÞðQ̄2γ

μτAQ3Þ;
OQe

2322 ¼ ðQ̄2γμQ3Þðē2γμe2Þ;
OLd

2223 ¼ ðL̄2γμL2Þðd̄2γμd3Þ;
Oed

2223 ¼ ðē2γμe2Þðd̄2γμd3Þ; ð8Þ

where τA¼1;2;3 are Pauli matrices (a sum over A in the
equations above is understood), weak doublets are in
upper case and SUð2ÞL singlets are in lower case, and
flavor indices are defined in the basis of diagonal down-
type quark Yukawa couplings. Since in our analysis

operators OLQð1;3Þ
2223 always enter as a sum, we collectively

denote their Wilson coefficient as CLQ
2223. We normalize

SMEFT Wilson coefficients to a NP scale Λ ¼ 30 TeV.
With this normalization, after electroweak symmetry break-
ing C9 receives contributions from N ΛðCLQ

2223 þ CQe
2322Þ,

C10 from N Λð−CLQ
2223 þ CQe

2322Þ and the chirality-flipped
operators C0

9 from N ΛðCed
2223 þ CLd

2223Þ, C0
10 from

N ΛðCed
2223 − CLd

2223Þ, with jN Λj ≃ 0.7. To quantitatively
compare different NP scenarios, where different sets of
SMEFTWilson coefficients are allowed to float, to the SM,
we compute the information criterion (IC) [70]:

FIG. 1. Result from a fit in the SM to the up-to-date exper-
imental b → slþl− data at low q2 for the binned angular
observable P0

5 [69]. We show the obtained 95% highest prob-
ability density interval (HPDI) adopting the parametrization in
Eq. (6), together with the most recent measurements from the
LHCb angular analyses in [41,42]. Quark-spectator effects
distinguishing the outcome for B0;þ decays are at the percent
level.

FIG. 2. Inference of hadronic contributions from a fit in the SM to the available experimental b → slþl− dataset at low q2, adopting
the parametrization in Eq. (6), omitting (left panel in green) or using (right panel in red) new data from Refs. [41,42]. Contours
correspond to smallest regions of 68%, 95%, 99.7% probability. For marginalized one-dimensional posterior distributions the 68%
highest probability density interval (HPDI) is explicitly reported, highlighted by vertical bands.
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IC≡ −2logLþ 4σ2logL; ð9Þ

where the first and second terms respectively represent
mean and variance of the log likelihood posterior distri-
bution. Model selection between two scenarios proceeds
according to the smallest IC value reported and the extent to
which a model should be preferred over another one
follows the canonical scale of evidence of Ref. [71], related
in this context to (positive) IC differences. For convenience
we always report ΔIC≡ ICSM − ICNP.
In the simplest NP scenario considered (scenario A), we

just allow for NP contributions to appear in CLQ
2223, corre-

sponding to ΔC9;μ ¼ −ΔC10;μ. We then generalize to the

case of nonvanishing CLQ
2223 and CQe

2322 (scenario B), which
allows for independent NP contributions to C9;μ and C10;μ.
Finally, we also switch on Ced

2223 and CLd
2223, thus allowing

for NP to modify independently also the chirality-flipped
operators C0

9;μ and C0
10;μ (scenario C). The results of our fit

in the three scenarios described above are summarized in

Table I and Fig. 3. Our main conclusion is that the preferred
scenario is the simplest one, namely a NP contribution
to CLQ

2223, or equivalently ΔC9;μ ¼ −ΔC10;μ, leading to

ΔIC ¼ 29. The fitted value of CLQ
2223 ¼ 0.77� 0.13 corre-

sponds toΔC9;μ ¼ −ΔC10;μ ¼ −0.54� 0.09 for a NP scale
Λ of 30 TeV, deviating from the SM with a significance of
∼6σ. Scenarios B and C, in spite of the increase in model
complexity, do not produce a sizable improvement in
the fit.
The conclusion would be very different if a less

conservative approach to hadronic uncertainties was taken,
using QCD sum-rule estimates of the hadronic contribu-
tions and extrapolating them to the whole kinematic
range up to the largest q2 bin in Fig. 2. Then, the simplest
scenario would not lead to an optimal description of
experimental data, and additional operators would be
needed. From the grey lines in Table I, the four-operator
scenario including chirality-flipped operators achieves the
best result, reproducing a NP pattern similar to the one

TABLE I. Mean and standard deviation (std) of the posterior distribution of the SMEFTWilson coefficients from a
fit to the full set of most recent b → slþl− data at low q2 in the NP scenarios A,B,C along with
ΔIC≡ ICSM − ICNP. Results in white lines are obtained allowing for hadronic contributions as in the para-
metrization in Eq. (6), while results in gray lines are obtained using the q2 extrapolation of the QCD sum-rule
estimates of [51].

NP scenario Mean(std) ΔIC

A: CLQ
2223 0.77(13) 29

0.92(12) 58

B: fCLQ
2223; C

Qe
2322g f0.80ð18Þ; 0.05ð30Þg 26

f1.03ð12Þ; 0.71ð13Þg 81

C: fCLQ
2223;C

Qe
2322, f1.11ð23Þ;0.49ð36Þ; −0.42ð23Þ;−0.28ð43Þg 26

CLd
2223; C

ed
2223g f1.10ð12Þ;0.83ð15Þ; −0.33ð19Þ;0.04ð37Þg 89

FIG. 3. Left panel: posterior probability density function (p.d.f.) for the NP coefficient CLQ
2223 in scenario A. Right panel: joint posterior

p.d.f for CLQ
2223 and CQe

2322 in scenario B. We show 68%, 95% and 99.7% probability regions in orange, red and green respectively. All
results are obtained using the parametrization of hadronic contributions in Eq. (6).
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with simultaneously nonvanishing ðC9;μ; C0
10;μÞ highlighted,

e.g., in [13,16]. We stress again that a conservative treatment
of hadronic uncertainties is therefore crucial to obtain an
unbiased picture of the kind of NP that may lie behind these
intriguing experimental results.
Future updates of the present fit with forthcoming

experimental data from LHC experiments [72], particularly
with the LHCb phase II upgrade [73], and from Belle II
[74], will further clarify the current picture. This will
hopefully lead both to a clearer evidence for NP, possibly
supported by other complementary set of measurements

[75–78], and to an improved understanding of the QCD
dynamics of charm contributions.
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