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Abstract

For many reasons, neural networks have become very pop-
ular AI machine learning models. Two of the most impor-
tant aspects of machine learning models are how well the
model generalizes to unseen data, and how well the model
scales with problem complexity. Using a controlled task
with known optimal training error, we investigate the con-
vergence of the backpropagation (BP) algorithm. We find
that the optimal solution is typically not found. Furthermore,
we observe that networks larger than might be expected can
result in lower training and generalization error. This result
is supported by another real world example. We further in-
vestigate the training behavior by analyzing the weights in
trained networks (excess degrees of freedom are seen to do
little harm and to aid convergence), and contrasting the inter-
polation characteristics of multi-layer perceptron neural net-
works (MLPs) and polynomial models (overfitting behavior
is very different – the MLP is often biased towards smoother
solutions). Finally, we analyze relevant theory outlining the
reasons for significant practical differences. These results
bring into question common beliefs about neural network
training regarding convergence and optimal network size,
suggest alternate guidelines for practical use (lower fear of
excess degrees of freedom), and help to direct future work
(e.g. methods for creation of more parsimonious solutions,
importance of the MLP/BP bias and possibly worse perfor-
mance of “improved” training algorithms).

Introduction

Neural networks are one of the most popular AI machine
learning models, and much has been written about them.
A common belief is that the number of parameters in the
network should be related to the number of data points and
the expressive power of the network. The results in this pa-
per suggest that the characteristics of the training algorithm
should also be considered.

Generalization and Overfitting

Neural networks and other AI machine learning models are
prone to “overfitting”. Figure 1 illustrates the concept us-
ing polynomial approximation. A training dataset was cre-
ated which contained 21 points according to the equation✺✼✻✾✽✖✿❁❀❃❂❅❄❇❆❉❈✙❊✮❋❍● where ● is a uniformly distributed ran-
dom variable between -0.25 and 0.25. The equation was
evaluated at ■✎❏▲❑☛❏◆▼✌❏P❖▲❖P❖◗❏◆▼✄■ . This dataset was then used to
fit polynomial models with orders between 2 and 20. For

❘
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order 2, the approximation is poor. For order 10, the ap-
proximation is reasonably good. However, as the order (and
number of parameters) increases, significant overfitting and
increasingly poor generalization is evident. At order 20,
the approximated function fits the training data very well,
however the interpolation between training points is very
poor. Overfitting can also be a very important problem in
MLPs, and much work has been devoted to preventing over-
fitting with techniques such as model selection, early stop-
ping, weight decay, and pruning.
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Figure 1. Polynomial interpolation of the function ❚❱❯❲❨❳❬❩✒❭❫❪✎❴▲❵✤❛❝❜❡❞
in the range 0 to 20 as the order of the model is

increased from 2 to 20.
❞

is a uniformly distributed random vari-
able between -0.25 and 0.25. Significant overfitting can be seen
for orders 16 and 20.

Theory

The selection of a model size which maximizes generaliza-
tion is an important topic. There are several theories for de-
termining the optimal network size e.g. the NIC (Network
Information Criterion) which is a generalization of the AIC
(Akaike Information Criterion) (Akaike 1973) widely used
in statistical inference, the generalized final prediction error
(GPE) as proposed by (Moody 1992), and the VC dimen-
sion (Vapnik 1995) – which is a measure of the expressive
power of a network. NIC relies on a single well-defined
minimum to the fitting function and can be unreliable when
there are several local minima (Ripley 1995). There is very
little published computational experience of the NIC, or the
GPE. Their evaluation is prohibitively expensive for large
networks. VC bounds have been calculated for various net-
work types. Early VC-dimension work handles only the
case of discrete outputs. For the case of real valued out-
puts, a more general notion of a “dimension” is required.



Such a “pseudo-dimension” can be defined by considering
a loss function which measures the deviation of predictions
from the target values. VC bounds are likely to be too con-
servative because they provide generalization guarantees si-
multaneously for any probability distribution and any train-
ing algorithm. The computation of VC bounds for practical
networks is difficult.

Student-Teacher Task

To investigate empirical performance we will use a student-
teacher task (Crane et al. 1995) so that we know the optimal
solution and can carefully control the problem. The task is
as follows:

1. An MLP with ❢❤❣ input nodes, ❢❥✐ hidden nodes, and ❢❤❦ out-
put nodes (the “teacher” network, denoted by ❢ ❣✬❧ ❢❥✐ ❧ ❢ ❦ )
is initialized with uniform random weights in the range ♠♦♥
to ♥ except for the bias weights which are within the range❭ ♠♦♣☛qsr▲t✖♣☛qsr ❛ .

2. ✉✇✈②① training data points and ✉✇✈②③ test points are created by se-
lecting Gaussian random inputs with zero mean and unit vari-
ance and propagating them through the network to find the cor-
responding outputs. ✉✇✈②③ is 5,000.

3. The training data set is used to train new MLPs (“student” net-
works), with the following architecture: ❢ ❣④❧ ❢⑥⑤✐ ❧ ❢ ❦ , where❢ ⑤ ✐ is varied from ❢⑦✐ to ⑧ , where ⑧⑩⑨❶⑨❷❢❥✐ . The initial
weights of these new networks are set randomly using the pro-
cedure suggested in (Haykin 1994) (i.e. they are not equal to
the weights in the network used to create the dataset). Theo-
retically, if ❢❤⑤✐❹❸ ❢❥✐ , as it is throughout this paper, then the
optimal training set error is zero (for the case where no noise is
added to the data).

Simulation Results

This section investigates the training and generalization be-
havior of the networks for the student-teacher task with the
teacher network size fixed but the student network size in-
creasing. For all cases, the data was created with a teacher
network architecture ▼✄■❹❺✘❑▲■❻❺✘❑ (where 20, 10, and 1 were
chosen to represent a typical network where the number of
inputs is greater than the number of hidden nodes and the
specific values were chosen such that the total training time
of the simulations was reasonable), and the random weight
maximum value, ❼ , was 1. The student networks had the
following architecture: ▼✄■❽❺✎❾❽❿➀➁❺➂❑ , where ❾❽❿➀ was varied
from 10 to 50. Theoretically, the optimal training set error
for all networks tested is zero, as ❾❽❿➀⑦➃❡❾ ➀ . However, none
of the networks trained here obtained the optimal error (us-
ing backpropagation (BP) (Rumelhart, Hinton, & Williams
1986) for ➄❤➅✼❑✤■☛➆ updates)1.

Each configuration of the MLP was tested with ten sim-
ulations, each with a different starting condition (random
weights). No method of controlling generalization was
used (other than a maximum number of updates) in order

1Alternative optimization techniques (e.g. conjugate gradient)
can improve convergence in many cases. However, these tech-
niques often lose their advantage with larger problems and may
sometimes be detrimental because the training algorithm bias in
BP may be beneficial, see later in the paper.

to demonstrate this case (not because we advocate the prac-
tice). All networks were trained for an identical number
of stochastic updates ( ➄➁➅➇❑✤■☛➆ ). It is expected that over-
fitting could occur. The initial learning rate was 0.5 and
was reduced linearly to zero during training. We used the
standard MLP. Batch update was also investigated – conver-
gence was found to be very poor even when training times
were extended by an order of magnitude. The quadratic
cost function was used.

Considering that networks with more than 10 hidden units
contain more degrees of freedom than is necessary for zero
error, a reasonable expectation would be for the perfor-
mance to be worse, on average, as the number of hidden
units is increased. Figure 2 shows the training and test set
error as the number of hidden units in the student network
is varied from 10 to 50. The results are presented using both
box-whiskers plots2 and the usual mean plus and minus one
standard deviation plots. We performed the experiments us-
ing three different values for ➈➊➉❅➋ , the number of training
points (200, 2,000 and 20,000). On average, the best gen-
eralization error corresponds to networks with more than
10 hidden units (30, 40, and 40 respectively for ➈➌➉❅➋ = 200,
2,000, and 20,000)3 4. The number of parameters in the
networks is greater than 200, even for the case of 10 hid-
den units (the numbers of parameters as ❾ ❿ ➀ is varied from
10 to 50 are (221, 441, 661, 881, 1101). It is of interest to
observe the effect of noise on this problem. Figure 2 also
shows the results for the case of 200 training points when
Gaussian noise is added to the input data with a standard
deviation equal to 1% of the standard deviation of the input
data. A similar trend is observed.

2The distribution of results is often not Gaussian and alter-
native means of presenting results other than the mean and stan-
dard deviation can be more informative (Giles & Lawrence 1997).
Box-whiskers plots (Tukey 1977) show the interquartile range
(IQR) with a box and the median as a bar across the box. The
whiskers extend from the ends of the box to the minimum and
maximum values. The median and the IQR are simple statistics
which are not as sensitive to outliers as the mean and the standard
deviation. The median is the value in the middle when arranging
the distribution in order from the smallest to the largest value. If
the data is divided into two equal groups about the median, then
the IQR is the difference between the medians of these groups.
The IQR contains 50% of the points.

3Caruana presented a tutorial at NIPS 93 (Caruana 1993) with
generalization results on a variety of problems as the size of the
networks was varied from “too small” to “too large”. “Too small”
and “too large” are related to the number of parameters in the
model (without consideration of the distribution of the data, the
error surface, etc.). Caruana reported that large networks rarely
do worse than small networks on the problems he investigated.
The results in this paper partially correlate with that observation.
Caruana suggested that “backprop ignores excess parameters”.

4This trend varies according to the teacher network size (num-
ber of inputs, hidden nodes and outputs), the nature of the target
function, etc. For example, the optimal size networks perform
best for certain tasks, and in other cases the advantage of larger
networks can be even greater.



0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

10 20 30 40 50

T
ra

in
 N

M
S

E➍
Number of Hidden Nodes

0.1

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50

T
es

t 
N

M
S

E➍
Number of Hidden Nodes

200 training points

0

0.0005

0.001

0.0015

0.002

0.0025

10 20 30 40 50

T
ra

in
 N

M
S

E➍
Number of Hidden Nodes

0

0.001

0.002

0.003

0.004

0.005

0.006

10 20 30 40 50

T
es

t 
N

M
S

E➍
Number of Hidden Nodes

2,000 training points

0

0.0005

0.001

0.0015

10 20 30 40 50

T
ra

in
 N

M
S

E➍
Number of Hidden Nodes

0.15

0.2

0.25

0.3

0.35

10 20 30 40 50

T
es

t 
N

M
S

E➍
Number of Hidden Nodes

200 training points + noise

Figure 2. The error for networks with a topology 20: ❢ ⑤ ✐ :1 using 200 (with and without noise) and 2,000 training points. For 20,000 points
(not shown) the results were similar to the 2,000 points case. The graphs on the left are the training errors and the graphs on the right are
the test errors. The abscissa corresponds to the number of hidden nodes. Box-whiskers plots are shown on the left in each case along with
the mean plus or minus one standard deviation which is shown on the right in each case.

These results should not be taken to indicate that oversized
networks should always be used. However, they do indicate
that oversized networks may generalize well. Additionally,
the results indicate that if training is more successful in the
larger networks, then it is possible for the larger networks
to also generalize better than the smaller networks. A few
observations:

1. It remains desirable to find solutions with the smallest
number of parameters.

2. A similar result would not be expected if a globally opti-
mal solution was found in the small networks, i.e. if the
10 hidden unit networks were trained to zero error then it
would be expected that any networks with extra degrees
of freedom would result in worse performance.

3. The distribution of the results is important. For example,
observe in figure 2 that the advantage of the larger net-
works for 2,000 training points is decreased when con-
sidering the minimum error rather than the mean error.

4. The number of trials is important. If sufficiently many
trials are performed then it should be possible to find a
near optimal solution in the optimal size networks (in
the limit of an infinite number of random starting points,
finding a global optimum is guaranteed with appropriate
initialization). Any advantage from using larger size net-
works would be expected to disappear.

5. Note that there has deliberately been no control of the
generalization capability of the networks (e.g. using a
validation set or weight decay), other than a maximum
number of updates. There are many solutions which fit
the training data well that will not generalize well. Yet,
contrary to what might be expected, the results indicate

that it is possible for oversized networks to provide better
generalization. Successive pruning and retraining of a
larger network may arrive at a network with similar size
to the smaller networks here but with improved training
and generalization error.

Note that BP did not find the optimal solution in any of the
cases presented here. Also of interest is how the solution
found scales with problem complexity. The parameter ❼
can be controlled to investigate this. As ❼ is increased,
the function mapping generally becomes more “complex”
and less “smooth”. Experiments with increasing ❼ show
that the solution found becomes progressively worse with
respect to the optimal error of zero as ❼ is increased. Anal-
ysis of the operation of BP (not given here) supports these
results.

Degrees of Freedom Rules based on the degrees of free-
dom in the model have been proposed for selecting the
topology of an MLP, e.g. “The number of parameters in
the network should be (significantly) less than the number
of examples” or “Each parameter in an MLP can com-
fortably store 1.5 bits of information. A network with more
than this will tend to memorize the data.”. These rules aim
to prevent overfitting, but they are unreliable as the optimal
number of parameters is likely to depend on other factors,
e.g. the quality of the solution found, the distribution of the
data points, the amount of noise, any bias in the training al-
gorithm, and the nature of the function being approximated.
Specific rules, such as those mentioned above, are not com-
monly believed to be accurate. However, the stipulation
that the number of parameters must be less than the num-



ber of examples is typically believed to be true for common
datasets. The results here indicate that this is not always the
case.
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Figure 3. Face recognition example: the best generalizing net-
work has 364 times more parameters than training points (18210
parameters).

Face Recognition Example This section presents results
on real data. Figure 3 shows the results of training an
MLP to classify 10 people from images of their faces5. The
training set contains 5 images per person, for a total of 50
training patterns6. The test set contained a different set of
5 images per person. A small window was stepped over
the images and the image samples at each point were quan-
tized using a two dimensional self-organizing map. The
outputs of the self-organizing map for each image sample
were used as the inputs to the MLP. In each case, the net-
works were trained for 25,000 updates. The networks used
contain many more parameters than the number of train-
ing points (for hidden layer sizes of (6, 8, 10, 12, 14) the
number of weights is (7810, 10410, 13010, 15610, 18210))
yet the best training error and the best generalization error
corresponds to the largest model. Note that a) generaliza-
tion has not been controlled using, for example, a validation
set or weight decay, and b) overfitting would be expected
with sufficiently large networks and sufficiently “success-
ful” training.

When simulated on serial machines, larger networks re-
quire longer training times for the same number of updates.
Hence, it is of interest to compare what happens when the
smaller networks are trained for longer than the larger net-
works. For this and other problems we have investigated,
training for equal time rather than equal numbers of updates
does not significantly affect the results or conclusions.

5This is not proposed as a practical face recognition technique.
6The database used is the ORL database which contains a set of

faces taken between April 1992 and April 1994 at the Olivetti Re-
search Laboratory in Cambridge and is available from ➏❉➐✤➐✤➑❃➒✪➓✧➓✤➔→✧→✧→❃➣❨↔▲↕◆➙ ➔✧➛▲➜❉➝ ➣❨↔ ➛ ➣❅➞✤➟ ➓▲➠ ↕✧↔▲➡✤➢✄↕ ➐ ↕P➤☛↕❉➥✤➡❇➣ ➏❉➐ ➙ ➝ . There are 10 dif-
ferent images of 40 distinct subjects in the database. There are
variations in facial expression and facial details. All the images
are taken against a dark homogeneous background with the sub-
jects in an up-right, frontal position, with tolerance for some tilting
and rotation of up to about 20 degrees. There is some variation in
scale of up to about 10%. The images are greyscale (256 levels)
with a resolution of 92x112.

Polynomial and MLP Interpolation

Figure 4 shows the results of using an MLP to approxi-
mate the same training set as used earlier in the polynomial
approximation example7. As for the polynomial case, the
smallest network with one hidden unit (4 weights including
bias weights), did not approximate the data well. With two
hidden units (7 weights), the approximation is reasonably
good. In contrast to the polynomial case however, networks
with 10 hidden units (31 weights) and 50 hidden units (151
weights) also resulted in reasonably good approximations.
Hence, for this particular (very simple) example, MLP net-
works trained with backpropagation do not lead to a large
degree of overfitting, even with more than 7 times as many
parameters as data points. It is certainly true that overfit-
ting can be a serious problem with MLPs. However, this
example highlights the possibility that MLPs trained with
backpropagation may be biased towards smoother approx-
imations. We list a number of possibilities which can lead
to such a bias:

1. Training an MLP is NP-complete in general and it is well
known that practical training algorithms used for MLPs
often results in sub-optimal solutions (e.g. due to local
minima)8. Often, a result of attaining a sub-optimal solu-
tion is that not all of the network resources are efficiently
used. Experiments with a controlled task have indicated
that the sub-optimal solutions often have smaller weights
on average (Lawrence, Giles, & Tsoi 1996). An intuitive
explanation for this is that weights typically start out rea-
sonably small (for good reason), and may get trapped in
local minima before reaching large values.

2. MLPs are universal approximators (Hornik, Stinch-
combe, & White 1989). However, the universal
approximation result requires an infinite number of
hidden nodes. For a given number of hidden nodes a
network may be incapable of representing the required
function and instead implement a simpler function
which approximates the required function.

3. Weight decay (Krogh & Hertz 1992) or weight elimina-
tion (Weigend, Rumelhart, & Huberman 1991) are often
used in MLP training and aim to minimize a cost function
which penalizes large weights. These techniques tend to
result in networks with smaller weights.

4. A commonly recommended technique with MLP classi-
fication is to set the training targets away from the bounds
of the activation function (e.g. (-0.8, 0.8) instead of (-1,
1) for the ➦➨➧ ❀✎➩ activation function) (Haykin 1994).

MLP networks are, of course, not always this resistant to

7Training details were as follows. A single hidden layer MLP,
backpropagation, 100,000 stochastic training updates, and a learn-
ing rate schedule with an initial learning rate of 0.5 were used.

8The results in this paper show that BP training often results in
sub-optimal solutions. Commonly, these solutions are referred to
as local minima, about which much has been written and proven
(e.g. (Yu 1992)). However, it is not only local minima that create
trouble for BP – other error surface features such as “ravines” and
“plateaus” or “flat spots” can also be troublesome. The error sur-
face for two different problems may have no local minima yet one
may be far more amenable to gradient descent optimization.



overfitting. For example, when repeating the above experi-
ment but only evaluating the equation at ■✎❏▲❑☛❏◆▼✌❏P❖▲❖P❖◗❏◆➄ (cre-
ating 6 data points), overfitting is seen with only three hid-
den nodes.

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y❙
x

Approximation
Training Data

Target Function without Noise

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y❙
x

Approximation
Training Data

Target Function without Noise

1 Hidden Node 2 Hidden Nodes

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y❙
x

Approximation
Training Data

Target Function without Noise

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20

y❙
x

Approximation
Training Data

Target Function without Noise

10 Hidden Nodes 50 Hidden Nodes

Figure 4. MLP interpolation of the function ❚➫❯ ❲❨❳s❩✒❭❫❪✌❴▲❵✧❛✥❜➭❞
in

the range 0 to 20 as the number of hidden nodes is increased from
1 to 50.

❞
is a uniformly distributed random variable between♠♦♣☛q ➯✤➲ and 0.25. A large degree of overfitting can not be observed.

Network Size and Degrees of Freedom

A simple explanation for why larger networks can some-
times provide improved training and generalization error is
that the extra degrees of freedom can aid convergence, i.e.
the addition of extra parameters can decrease the chance
of becoming stuck in local minima or on “plateaus”, etc.
(Kröse & van der Smagt 1993). This section presents a vi-
sualization technique for showing the weights in the student
networks as the network size is varied. A smaller task was
used to aid visualization: the teacher network topology was
5:5:1 and the student networks contained 5, 15, and 25 hid-
den nodes. 1,000 training points were used and ❼ was 2.

Figures 5 show the weights in the student networks for the
case when Gaussian noise with standard deviation 5% of
the input standard deviation was added to the inputs (we
also performed experiments with 0% and 10% which pro-
duced similar results). The diagrams are plotted as follows:
The columns (1 to 6) correspond to the weights from the
hidden nodes to the bias and the 5 input nodes. The rows
are organized into groups of two with a space between each
group. The number of groups is equal to the number of hid-
den nodes in the student network. For the two rows in each
group, the top row corresponds to the teacher network and
the bottom row corresponds to the student network. The
idea is to compare the weights in the teacher and student
networks. A couple of difficulties arise in this comparison
which are resolved as follows. Firstly, there is no reason
for hidden node 1 in the teacher network to correspond to
hidden node 1 in the student network, etc. This problem is
resolved by finding the best matching set of weights in the
student network for each hidden unit in the teacher network,
and matching the hidden nodes accordingly. These matches

are ordered according to the quality of the match, i.e. the
top two rows shows the teacher network hidden node which
was best approximated by a student hidden node. Like-
wise, the worst match is at the bottom. A second problem
is that trying to match the weights from the hidden nodes
to the input nodes does not take into account the output
layer weights, e.g. exactly the same hidden node func-
tion could be computed with different weights if the hid-
den nodes weights are scaled and the output layer weights
are scaled accordingly. For the case of only one output
which is considered here, the solution is simple: the hidden
layer weights are scaled according to the respective output
layer weight. Each individual weight (scaled by the appro-
priate output weight) is plotted as follows: the square is
shaded in proportion to the magnitude of the weight, where
white equals 0 and black equals the maximum value for all
weights in the networks. Negative weights are indicated
by a white square inside the outer black square which sur-
rounds each weight.

Observations: a) the teacher network weights are matched
more closely by the larger networks (consider the fourth
and fifth best matching groups of two rows), b) the extra
weights in the larger networks contribute to the final ap-
proximation in only a minor way, c) the hidden units in the
larger networks do not appear to be used redundantly in
this case – this may be related to the artificial nature of the
task, and d) the results indicate that pruning (and option-
ally retraining) the larger networks may perform well. A
conclusion is that backpropagation can result in the under-
utilization of network resources in certain cases (i.e. some
parameters may be ineffective or only partially effective due
to sub-optimal convergence).

5 hidden units 15 hidden units 25 hidden units

Figure 5. The weights after training in networks with 5, 15, and
25 hidden units for the case of Gaussian noise with standard devi-
ation 5% of the standard deviation of the inputs. In each case, the
results are shown for two networks with different random starting
weights. The plotting method is described in the text.



Learning Theory

The results are not in contradiction with statistical learn-
ing theory. (Vapnik 1995) states that machines with a small
VC dimension are required to avoid overfitting. However,
he also states that “it is difficult to approximate the train-
ing data”, i.e. for a given problem in MLP approximation,
the goal is to find the appropriate network size in order to
minimize the tradeoff between overfitting and poor approx-
imation. Vapnik suggests that the use of a priori knowledge
may be required for small training error and small general-
ization error. For the case of linear output neurons, Barron
1991 has derived the following bound on the total risk for

an MLP estimator: ➳➸➵✮➺❇➻➼❶➽✛➾ ❋ ➳➸➵ ➼✸➽▲➼✸➚➪④➶❁➹➴➘➬➷✠➮ ➈ ➉❅➋ ➾ , where➱✸✃
is the first absolute moment of the Fourier magnitude

distribution of the target function ❐ and is a measure of the
“complexity” of ❐ . Again, a tradeoff can be observed be-
tween the accuracy of the best approximation (which re-
quires larger ❾ ➀ ), and the avoidance of overfitting (which
requires a smaller ❾ ➀ ❆ ➈➌➉❅➋ ratio). The left-hand term (the
approximation error) corresponds to the error between the
target function and the closest function which the MLP can
implement. For the noise-free artificial task, the approxima-
tion error is zero for ❾ ❿ ➀⑦➃❒❑✤■ . Based on this equation, it is
likely that ❾ ❿ ➀ ✻ ❑▲■ would be selected as the optimal net-
work size (note that the results reported here use sigmoidal
rather than linear output neurons). Why do the theory and
practical results differ? Because the domain of applicabil-
ity of the theory does not cover the practical case and the
assumptions incorporated in the theory are not always rea-
sonable. Specifically, this theory does not take into account
limited training time, different rates of convergence for dif-
ferent ❐ , or sub-optimal solutions.

Recent work by (Bartlett 1996) correlates with the results
reported here. Bartlett comments: “the VC-bounds seem
loose; neural networks often perform successfully with
training sets that are considerably smaller than the number
of network parameters”. Bartlett shows (for classification)
that the number of training samples only needs to grow ac-
cording to ❮ ✆✖❰ (ignoring log factors) to avoid overfitting,
where ❮ is a bound on the total weight magnitude for a neu-
ron and Ï is the number of layers in the network. This result
and either an explicit (weight decay etc.) or implicit bias
towards smaller weights leads to the phenomenon observed
here, i.e. larger networks may generalize well and better
generalization is possible from larger networks if they can
be trained more successfully than the smaller networks (e.g.
reduced difficulty with local minima). For the task consid-
ered in this paper, the distribution of weights after training
moves towards smaller weights as the size of the student
network increases.

Conclusions

It can be seen that backpropagation fails to find an optimal
solution in many cases. Furthermore, networks with more
weights than might be expected can result in lower training
and generalization error in certain cases. Overfitting behav-
ior is significantly different in MLP and polynomial mod-

els – MLPs trained with BP are biased towards smoother
solutions. Given infinite time and an appropriate alternate
training algorithm, an optimal solution could be found for
an MLP. However, the examples in this paper illustrate that
the mode of failure exhibited by backpropagation can in fact
be beneficial and result in better generalization over “im-
proved” algorithms, in so much as the implicit smoothness
bias created by the network structure and training algorithm
matches the desired target function. This bias may account
for part of the success MLPs have encountered over com-
peting methods in real-world problems.
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