
© Scandinavian Journal of Information Systems, 1995, 7(1):33–54

Abstract
Software testing is often a complex proc-
ess potentially involving a large number
of geographically distributed people
with different perspectives and compe-
tencies. Software testers, software devel-
opers and project managers engage in
discussions about the software errors
found, they negotiate the relative impor-
tance of the bugs, they allocate responsi-
bilities and resources, they coordinate
who is doing what, etc. They talk about
bugs. In order to coordinate and manage
talking about bugs, a number of means
for coordination are applied. The aim of
this paper is to analyze coordination
work in software testing in order to pro-
mote general requirements for computer
support. We have studied the testing of

more than 200,000 lines of code at Foss
Electric, a Danish manufacturing com-
pany, and focused on two aspects: First-
ly, the coordination activities related to
the process of distributed registration,
classification, diagnosis, correction, and
verification of software errors, as well as
the monitoring of the state-of-affairs of
testing activities. Secondly, the mecha-
nisms used to support the coordination.
The analysis resulted in the identifica-
tion of the need for computer support for
coordinating this part of the software
testing process, e.g., support of distribut-
ed classification, routing of information,
and facilities providing an overview of
state of affairs.

Let’s Talk About Bugs!

Peter H. Carstensen & Carsten Sørensen
Systems Analysis Department, Risø National Laboratory
DK-4000 Roskilde, Denmark, {phc, carsten}@risoe.dk

Tuomo Tuikka
Department of Information Processing Science, University of Oulu

SF-90570 Oulu, Finland, ttu@rieska.oulu.fi

P. H. Carstensen, C. Sørensen & T. Tuikka 34

1. Introduction
“The lay public, familiar with only a few
incidents of software failure, may regard
them as exceptions caused by inept pro-
grammers. Those of us who are software
professionals know better: the most com-
petent programmers in the world cannot
avoid such problems. […] Software is
released for use, not when it is known to
be correct, but when the rate of discover-
ing new errors slow down to one that
management considers acceptable. […]
It is not unusual for software modifica-
tions to be made in the field. Program-
mers are transported by helicopter to
Navy ships: debugging notes can be
found on the walls of trucks carrying
computers that were used in Vietnam. It
is only through such modifications that
software becomes reliable.”

(Parnas 1985)

Software testing is an extremely compli-
cated activity. In practice an exhaustive
test is impossible (Myers 1979, Parnas
1985). Despite of all the techniques and
methodologies for specific source code
testing, black box testing, usability test-
ing, etc., no methodologies exists for es-
tablishing a set of unambiguous criteria
for a sufficient test strategy in order to
ensure that the product is reliable, usa-
ble, and correct (Petchenik 1985).
Hence, much effort is required to estab-
lish a common understanding among
software developers, software testers,
and software managers of when a prod-
uct is acceptable. Organizations involved
in software testing typically apply the
strategy of having people with different
skills and perspectives test the software.
As argued by Dahlbom & Mathiassen
(1993): “Effective quality control re-
quires a certain division of labor and re-
sponsibilities. In practice, quality is not

the only concern, and there is a constant
struggle between quality and resource
interests. Independence is needed to con-
stantly defend a quality position and to
avoid the self-deception in having sys-
tems developers evaluate their own
products.” The division of labor in the
software testing process can either be
done so that different actors perform dif-
ferent subtasks (detection, diagnosis,
correction, etc.), or it can be organized so
that each person has the responsibility
for all testing activities within a limited
part of the program. In any case, the par-
ticipants will inevitably be mutually in-
terdependent. As argued by Parnas
(1985), the need for coordination in soft-
ware development can not be eliminated
by structuring the software properly. In
order to mesh their work results, interde-
pendent actors performing distributed
software testing tasks must coordinate
and negotiate their work (Schmidt 1994,
Kraut & Streeter 1995).

Recent works have addressed coop-
erative aspects of software development.
Johnson & Tjahjono (1993) promote the
CSRS system supporting collaborative
software review, and Mashayekhi et al.
(1993) describe the CSI system support-
ing distributed collaborative software in-
spection. Swenson et al. (1994) show by
example how a workflow system can
support the coordination of distributed
software testing. Kraut & Streeter (1995)
present an analysis of formal and infor-
mal aspects of coordination in the soft-
ware development process, focusing on
the coordination conducted by peer-to-
peer communication, by project sched-
ules, and by review and inspection meet-
ings. They argue for the importance of
informal direct communication in sys-
tems development, but at the same time

P. H. Carstensen, C. Sørensen & T. Tuikka 35

argue that the excessive transaction costs
and the ephemeral nature of the informa-
tion transferred in informal communica-
tion implies that more formal coordina-
tion means must be applied. We focus is
on how formal means can support coor-
dination of distributed software testing
activities.

We have studied coordination work
in the testing of more than 200,000 lines
of code at the Danish manufacturing
company Foss Electric. Our analysis fo-
cused on the aspects of coordination sup-
ported, stipulated and mediated by vari-
ous paper- and computer-based coordi-
nation tools, e.g., a paper-based bug han-
dling workflow system, a centralized
binder containing bug forms, a software
module integration procedure, and a
project resource schedule. More specifi-
cally, we have analyzed how these tools
supported the coordination of distributed
registration, classification, diagnosis,
correction and verification of software
errors. By stipulating who is doing what,
the tools provide persistent accounts to
support the more ephemeral coordina-
tion work. This paper does no present an
analysis of the of software testing in gen-
eral.

Based on the analysis, we have iden-
tified needs for computer support for this
part of the software testing process, e.g.,
support of distributed bug classification,
routing of information, monitoring of
state of affairs, etc. The purpose of ap-
plying such computer based coordina-
tion tools is by no means to remove the
need for peer-to-peer communication
and review meetings. It is rather to pro-
vide means of coordinating a multitude
of detailed decisions which can form the
basis for talking about bugs.

The next section describes the re-
search approach applied. Section 3 gives
an overview of the field of software test-
ing. Section 4 presents the Foss Electric
case. Section 5 discusses the need for
computer support of the articulation of
distributed registration, classification,
diagnosis, correction, verification of
software errors, and for monitoring the
state of affairs of the testing process.
Section 6 discusses our results.

2. Research Approach
This paper is based on data collected in
an empirical study of one development
effort at Foss Electric. The study focused
both on the coordination of software test-
ing and on the coordination of engineer-
ing design and process planning. This
paper only reports on the coordination of
software testing. The field study and the
preliminary data analysis lasted a total of
six months and was exclusively based on
qualitative data collection techniques
such as qualitative interviews (Patton
1980), observations, study of project
documentation, and participation in
project meetings. A total of 21 inter-
views were conducted, and we partici-
pated in 10 project meetings. Approxi-
mately 75 man-hours were spent observ-
ing the development process. The ap-
proach was inspired by perspectives
promoted in several research efforts (cf.
Bucciarelli 1984, Schmidt & Carstensen
1990). As argued by Siemieniuch
(1992), field studies are important in or-
der to obtain a coherent understanding of
how computer tools can support product
development in a manufacturing setting.
The data analysis was based on theories
and conceptualizations from the field of

P. H. Carstensen, C. Sørensen & T. Tuikka 36

Computer Supported Cooperative Work
(CSCW), as promoted in Schmidt
(1994).

Yin (1989) distinguishes between a
case study approach and an ethnographic
approach. The former being structured
and targeted, and the latter being more
unstructured and primarily based on ob-
servation. Our approach can be charac-
terized as having elements from both
types with a predominant case study bi-
as. Although we did not start out with a
strict set of hypotheses, we did bring an
articulated perspective. The purpose of
the study was to investigate how various
paper-, board- and computer-based
mechanisms supported the coordination
of distributed work (Sørensen et al.
1994, Carstensen et al. 1995).

 A qualitative approach offers the ob-
vious strength of providing rich and de-
tailed data, enabling a deep understand-
ing of the conditions under which work
is performed. It does, however, present a
major limitation in terms of promoting
statements of general validity. As Mason
(1989) argues, the purpose of research
must be to provide both the richness of
detail and relevance of research prob-
lems studied, as well as a certain tight-
ness of control or rigor. We do not be-
lieve that one empirical effort necessari-
ly needs to encompass both aspects. We
do, however, recognize that since the re-
sults reported in this paper are drawn
from a single field study, we can neither
make claims as to the generality of the
findings, nor to a rigorous research ap-
proach. The organizational culture at
Foss Electric favors both individual and
group achievements, work is primarily
organized in projects and it is not a par-
ticularly hierarchical organization. Vari-
ous coordination systems were both de-

signed and used by project members
without leading to conflicts or fear of be-
ing monitored. It is, therefore, reasona-
ble to assume that the types of phenome-
na studied at Foss Electric can only be
made subject to generalization if an or-
ganizational culture of a similar nature is
observed.

3. Software Testing and Its
Coordination

“That was back on Mark I. It was in
1945. We were building Mark II—and
Mark II stopped. We finally located the
failing relay and, inside the relay, beaten
to death by the relay contact, was a moth
about three inches long. So the operator
got a pair of tweezers and carefully
fished the bug out of the relay and put it
in the log book. He put scotch tape over
it and wrote, “First actual bug found.”
And the bug is still in the log book under
the scotch tape and it is in the museum of
the Naval Surface Weapons Center at
Dahlgren, Virginia.”

Grace Murray Hopper quoted in
Jennings (1990)

“The animistic metaphor of the bug that
maliciously sneaked in while the pro-
grammer was not looking is intellectu-
ally dishonest as it is a disguise that the
error is the programmer’s own creation.”

(Dijkstra 1989)

The understanding of bugs in programs
has changed since the 1940’s, although
the idea of having an error in a program
is as unpleasant as having a bug inside
the computer. The metaphor describing a
software error as a bug is confusing. An
error can cause reactions as if it was a
living insect that should be removed by
using poison while programming, but it

P. H. Carstensen, C. Sørensen & T. Tuikka 37

is, of course, created by the programmer
and should as such be regarded as a soft-
ware error. The word bug is stuck in our
language and it is probably as difficult to
get rid of as errors in software. We will
call them bugs since our focus is more in
talking about them, than on studying for-
mal techniques for finding them.

The art devoted to finding software
errors is called software testing. Myers
(1979), for example, defines software
testing simply as being the process of ex-
ecuting a program with the intent of find-
ing errors. The view to software testing
has been changing during the last dec-
ades. The early view of programming
and testing was that you “wrote” a pro-
gram and then you “checked it out.” Lat-
er testing has been defined as evaluation
of software or prevention of problems.
An illustration of the evolution in soft-
ware testing can be found in Gelperin
and Hetzel (1988). Hetzel (1988) for ex-
ample defines software testing as any ac-
tivity aimed at evaluating an attribute or
capability of a system, and determining
that it meets its required results. It is
widely accepted that software testing is
one of the corner stones of modern soft-
ware engineering and thus should be an
integrated part of any quality program,
and a central activity in all quality assur-
ance groups (Yourdon 1988).

The field of software testing spans
mathematical theory, the art and practice
of validation, and methodology of soft-
ware development (Hamlet 1988). Soft-
ware testing literature mostly addresses
the relationship between the testing and
the software engineering process (i.e.,
the use of testing methods and tools).
The cooperative aspects of the process is
only marginally addressed. It is impor-
tant to consider software testing as a part

of the software engineering process, i.e.,
relate the stages in the process to stages
of testing, e.g., unit, integration, system,
product, customer, and regression testing
(Dalal et al. 1993). A broad array of test-
ing methods and techniques are available
today, e.g., black and white box testing
techniques providing a systematic ap-
proach to the design of test cases (see for
example Beizer 1990 and Hetzel 1988).
A fast growing flux of automated soft-
ware testing tool products influences the
field today. Neither the stages, the tech-
niques, or the automated tools will, how-
ever, be discussed further in this paper.

The vast majority of software organ-
izations have substantial room to im-
prove the manner in which testing is con-
ducted and software testing is often the
poorest scheduled part of programming
(Brooks Jr. 1982, Pressman 1988). If the
importance is not recognized correctly,
the project planning will not include
enough time. This causes many prob-
lems to the testers, i.e., accumulated
pressure in the work. The complexity of
the testing work and a tight schedule in-
fluence on the decisions determining
whether or not a software product meets
its requirements. That is, there is no sys-
tematic way to search, no way to judge
points selected, and no way to decide
when to stop (Hamlet 1988).

Since exhaustive testing is impossi-
ble (Myers 1979, Parnas 1985), a com-
mon understanding of the status of a soft-
ware product can only be established by
means of negotiations. These situations
are not easy to cope with and will often
result in work settings including many
cooperating actors. The actors in an en-
semble developing and testing software
become interdependent: “Cooperative
work occurs when multiple actors are re-

P. H. Carstensen, C. Sørensen & T. Tuikka 38

quired to do the work and therefore are
mutually dependent in their work.”
(Schmidt 1991). In order to handle the
underlying interdependencies among the
cooperating and mutually interdepend-
ent actors, a set of “second order activi-
ties” is needed. The actors must, in often
complex ways, coordinate the plurality
of tasks and relationships between actors
and tasks. We use the term coordination
main as the direction of individuals ef-
forts towards achieving commonly and
explicitly recognized goals and “the inte-
gration or linking together of different
parts of an organization to accomplish a
collective set of tasks” (Kraut & Streeter
1995). Notice, that by this definition test-
ers, designers, etc. do not necessarily
share goals (Bannon 1993). In our termi-
nology, coordination can include activi-
ties aimed at negotiating, establishing,
maintaining, and refining the conceptual
structures and salient dimensions along
which the coordination must be conduct-
ed (Schmidt 1994).

4. The Foss Electric Case
“With the number of developers
involved, it is extremely important that
all problems are registered, otherwise
they just ‘disappear’ […] An important
derived product then, is a list of prob-
lems reported fixed but not yet tested.
Based on the lists and the problem
descriptions, the platform master can
check and then report the problem cor-
rected.”

(Software designer at Foss Electric)

Foss Electric is the largest manufacturer
of highly specialized equipment for ana-
lytically measuring quality parameters of
agricultural products in the World. The

company is localized in Denmark with
service and distribution offices in many
countries. They employ approximately
700 people. The customers are laborato-
ries, slaughterhouses, dairies, etc. Foss
Electric is a matrix organization, and de-
velopment of new instruments is organ-
ized in projects which typically include
specialists with design competence in
the fields of mechanical-, electronic- and
software design, as well as in optics and
chemistry.

4.1. The S4000 Project
The objective of the S4000 project was
to build an instrument for analytical test-
ing of raw milk. It included functionality
which previously had been placed in sev-
eral instruments, and furthermore intro-
duced measurement of new quality pa-
rameters of milk. The instrument con-
sists of approximately 8000 components
grouped into a number of functional
units, such as: Cabinet, pipette unit, con-
veyer, PC, other hardware, flow-system,
and measurement unit. The S4000 was
the first product featuring a built-in an
Intel-based 486 PC. Configuration and
operation of the instrument is done
through a Windows user interface, i.e.,
the user-instrument interaction is based
on a graphical user interface and use of
mouse and keyboard. Version 1 of the
software contained approximately
200,000 lines of source code. At most 50
people at a time were directly involved in
developing the instrument, and the
project lasted approximately 2 1/2 years.
The core personnel involved in the de-
sign included a number of designers
from each of the areas of mechanical de-
sign, electronic design, software design,
and chemistry. In addition there was a
handful of draught-persons and several

P. H. Carstensen, C. Sørensen & T. Tuikka 39

persons from each of the departments of
production, model shop, marketing,
quality assurance, quality control, serv-
ice, and top management. A group of be-
tween 5 and 12 software designers was
involved in designing and coding the
software required to operate and control
the S4000.

4.2. Coordinating the Bug Handling
Activities
During the S4000 project, the software
designers realized problems in coordi-
nating, controlling and monitoring the
software testing activities. This and ex-
ternal requirements for more precise
measurements of the status of the soft-
ware testing process led to a standard-
ized bug form and a centralized binder
being invented, used, and refined by the
involved software designers during the
S4000 project for registering and filing
identified bugs. Furthermore, a set of
concomitant procedures and conventions
for the use of the form and binder were
established. Some of these were formu-
lated by the designers themselves and
written down as organizational proce-
dures, others were established as con-
ventions agreed upon by the software de-
signers. The bug form and the general
procedure for using the form are illus-
trated in Figure 1. The purpose of the
form and the procedures were to ensure
that all identified bugs were registered
and “remembered” until they were cor-
rected. This was accomplished by ensur-
ing that each registered bug was repre-
sented by one form only, and by ensuring
that changes to the state of the process
dealing with a bug was reflected in the
form representing the bug. To ensure that
all bugs were handled, a central file (the
binder) contained a copy of the form un-

til a final state was reached, and the orig-
inal form was filed. Several groups of ac-
tors and roles were involved in this proc-
ess, i.e., users of the bug form, the bind-
er, and the procedures. These were:
• Testers from different departments

and with different perspectives on
software quality involved in testing
the S4000 software. Apart from the
software designers approximately 20
other actors were involved in testing
the software.

• The spec-team, a group of three soft-
ware designers responsible for diag-
nosing bugs and deciding how to
handle the correction of bugs. These
persons represented different areas
of expertise in relation to the soft-
ware architecture.

• Software designers each responsible
for one or more software modules.

• The central file manager who was
one of the software designers
responsible for maintaining a binder
containing forms for all registered
bugs.

• The platform master responsible for
managing and coordinating the
activities in one of the integration
periods (called a platform period).

• The plan-manager responsible for
updating the work plans. In the
S4000 project the plan-manager was
one of the spec-team members.

The routing of the bug forms among the
six roles were done according to the fol-
lowing eight steps (see Figure 2):
1. A tester sends a form to the spec-

team describing a registered and
classified bug

P. H. Carstensen, C. Sørensen & T. Tuikka 40

2. The spec-team adds diagnosis and
estimation information and sends it
to a software designer

3. The spec-team requests the designer
responsible for the plans to update
the planning spread-sheet

4. A copy is sent to the central file
manager. If a bug is rejected the
original is sent to the central file
manager

5. The software designers add correc-
tion information to the form and
send it to the central file manager

6. The central file manager sends a pile
of forms to be verified to the plat-
form master

7. Forms which can not be verified are
send to the spec-team

8. Verified forms are send to the central
file manager

All registered bugs were filed in a binder
providing all software designers and oth-
er testers with access to the state of af-
fairs in the testing process. During one
and a half year approximately 1400 bugs
were registered, treated and filed in the
S4000 project. The binder was physical-

FIGURE 1. The bug form used at Foss Electric and the general procedure followed when
using the forms for registering, diagnosing, and correcting bugs. CFM means ‘central file
manager’ and PM is ‘platform master’. The form is a sheet of A4 paper printed on both
sides. The numbers indicate who fills in which information in the form

Initials:
Date:

Instrument: Report no:

Description:

Classification:
1) Catastrophic 2) Essential 3) Cosmetic

Involved modules:
Responsible designer: Estimated time:

Date of change: Time spend: Tested date:
 Periodic error - presumed corrected

Accepted by: Date:
To be:
1) Rejected 2) Postponed 3) Accepted
Software classification (1-5): ___
Platform:

Description of corrections:

Modified applications:

Modified files:

The actors fill (or add information) in:

The testers: (1), (2), (3), and (4)
The Spec-team: (3), (4), (5), and (7)
The designers: (6) and (8)

(8)

(1)

(3)

(5)

(6)

(7)

(2)

(4)
• A tester register and classifies a bug
 (field 1,2,3, and 4)
• The tester sends the form to the spec-team
• The spec-team diagnose and classify the bug
 (field 3, 4 and 7)
• The spec-team identifies the
 responsible designer
 (field 5)
• The spec-team estimates the correction time
 (field 5)
• The spec-team incorporates the correction
 work in the work plans
• The spec-team requests the designer to
 correct the problem
• The designer corrects the bug and fills in
 additional correction information
 (field 6 and 8)
• The designer sends the form to the central file
• The CFM sends the form to the PM and
 insert copy in central file
• The PM verifies the correction
• The PM returns the form to the central file

The procedure for handling bugs:

P. H. Carstensen, C. Sørensen & T. Tuikka 41

ly placed in the room use by the project
team (all the designers, but not necessar-
ily the testers). The binder had the fol-
lowing seven entries reflecting the status
of a specific bug, and in each of these en-
tries the forms were filed in chronologi-
cal order:
1. Non-corrected catastrophic bugs

(copies)
2. Non-corrected essential bugs (cop-

ies)
3. Non-corrected cosmetic bugs (cop-

ies)
4. Postponed bugs (originals)
5. Rejected bugs (originals)
6. Corrected bugs not yet verified (cop-

ies)
7. Corrected bugs (originals).
The bugs reported in the S4000 project
were handled according to the twelve
procedural steps listed in Figure 1. In
most cases the prescribed procedures
were followed strictly. There were, of
course, situations in which the actors did
not follow the procedure. A thorough
step by step description of the procedure

and of the “typical” exceptions is given
in Carstensen (1994).

An interesting and important charac-
teristic of the software development and
testing work in the S4000 project was the
organization of software development
and the structuring of plans in working
cycles called “platform periods”. A plat-
form period was typically 3–6 weeks of
development followed by one week of
integration. Version 1 of the S4000 sys-
tem covered approximately 15 platform
periods. As a configuration control
measure, revisions of the software were
only allowed after the “platform” had
been released. For each platform period,
a platform master was appointed by the
group of software designers. The plat-
form master was responsible for collect-
ing all information on updates and
changes made to the software, for ensur-
ing that the software was tested and cor-
rected, and for ensuring that the project
schedule was updated with revised plans
and activities before the platform was re-
leased.

In the S4000 project one of the spec-
team members was responsible for the

FIGURE 2. The roles and the stipulated flow of bug forms between them in S4000 software
testing. Arrow numbers refer to the procedure presented in the text

Testers

Central
file manager

Software
designers

Platform
master

Spec-team

1 6

3

8

4

5

7

Plan-manager

2

P. H. Carstensen, C. Sørensen & T. Tuikka 42

overall plans. He was responsible for in-
corporating the new tasks (e.g., correc-
tion tasks), changes, etc. into the plans.
The plans were organized in a large
spread-sheet containing information on:
tasks to be accomplished and references
to detailed descriptions of tasks, estimat-
ed amount of labor-time per module for
each task, responsibility relationships
between software modules and software
designers, relationships between tasks
and platform periods, and total planned
work hours per platform period for each
software designer.

In order to coordinate the activities of
handling bugs in the project a multitude
of discussions, ad hoc meetings, and
planned meetings were conducted
throughout the project. In relation to the
registration of a bug, the testers engaged
in discussions of the problems they had
identified, or they discussed the classifi-
cation of a bug with one of the designers.
The process of diagnosing bugs was or-
ganized as a structured meeting once a
week where the spec-team (and some-
times other involved designers) dis-
cussed and negotiated the diagnosis and
classification of the reported bugs, and
how to incorporate the correction into
the plans. Based on our observations,
one out of four bug reports required dis-
cussion and negotiation between a tester
and a designer, or between the spec-team
and a designer. A spec-team member
typically spent one day a week diagnos-
ing bugs and negotiating bug classifica-
tion and resource allocation with testers
and software designers. When correcting
bugs the designers often engaged in ad
hoc discussions with other designers and
in negotiations with, for example, the
marketing people (who were responsible
for the overall requirements) of the ac-

tions that would be acceptable. Verifica-
tion was done during the integration pe-
riods. The designers spent much time
during the integration periods negotiat-
ing acceptable solutions to the problems
that had occurred. The integration proc-
ess also contained a structured meeting
in which all software designers partici-
pated. At this meeting all problems and
solutions were presented. Our observa-
tions indicate that during integration, all
of the software designers spent half their
time coordinating the software integra-
tion and negotiating how to deal with the
problems at hand.

As outlined above, coordination ac-
tivities were also supported by means of
forms, lists, procedures, etc.: (1) The bug
form and the related procedure stipulated
the flow of the bug registration and cor-
rection work; (2) the spread-sheet pro-
vided a conceptual structure for schedul-
ing tasks, actors, and deadlines by relat-
ing development activities to relevant
software modules and to responsible ac-
tors; and (3) the platform periods estab-
lished a common basis for the designers’
activities, thus facilitating overview of
the state of affairs, guaranteeing that the
software components could be integrat-
ed, and that the corrections conducted
were verified. Figure 3 provides an over-
view of the artifacts involved in the coor-
dination of software testing. The inven-
tion, implementation, refinement, and
use of new means supporting the coordi-
nation evolved fast and without serious
complications. A small group of people
organized the work and several of the
forms, lists, etc. were invented due to
needs realized by the group itself.

The characteristics described above
are in many respects similar to what can
be observed in office work, e.g., the ac-

P. H. Carstensen, C. Sørensen & T. Tuikka 43

tivities and roles (Hirschheim 1985), al-
though they mainly address the coordi-
nation aspects of the bug registration and
correction process. The complexity of
the actual cooperative work, e.g., the
problems of identifying the cause of a
bug, will not be addressed in this paper.

5. Identifying Needs for
Coordination Support
The software testing process in the
S4000 project at Foss Electric contained
a large number of activities. In this sec-
tion we present and discuss coordination
work related to the activities of: registra-
tion, classification, diagnosis, correc-
tion, verification, and monitoring the

state of affairs. For each of these activi-
ties we furthermore discuss the function-
ality supporting the coordination which
could be provided by computer technol-
ogy. In order to structure the discussion,
these activities are presented as distinct
stages of work, and for each stage the
analysis of the work and the discussion
of need for computer support are pre-
sented in two separate subsections. Sec-
tion 5.1 discusses support of the work
flow, and the following sections discuss
each of the stages of work.

5.1. Supporting the Work Flow of
Software Testing
Work: In the S4000 project, registration,
classification, and correction of bugs
were distributed activities. Diagnosis of

FIGURE 3. Artifacts and prescriptions supporting the coordination of the bug handling
process. The registered bugs create new tasks which are incorporated in the project plan.
The project plan defines when the next platform integration must be started. The bug
forms provide input for the platform integration by specifying verification tasks. The
binder and the procedure for handling bug forms ensure that all bugs are treated, and in
addition they provide an overview of state of affairs in the process

Project schedule

Modules/actors

Task 1
Task 2

PM task

Totals

Totals/
platform
period

Correction task

Bug form

Software
modulesPlatform

integration
procedure

Verification
task

PM identified
and a "start
integration"

Software
modules to be
integrated

File

The binder

State of
affairs
searches

Bug
handling
procedure

P. H. Carstensen, C. Sørensen & T. Tuikka 44

software errors was done by the spec-
team at a weekly meeting. This meeting
resulted in correction requests being dis-
tributed to the 5–10 software designers
responsible for correcting the bugs. The
platform master was, during the integra-
tion period, responsible for verifying the
corrections. As an example, a marketing
person tested the usability of the user in-
terface and realized that some of func-
tionality was not accessible from the
menu structure. The problem was then
classified and described in a bug form
and sent to the spec-team. They decided
that Hans, as responsible for the UI-mod-
ule, should make a correction. After
Hans had completed the correction he re-
ported to Jens, who was platform master
for the next integration period, that the
problem had been dealt with. During the
platform integration week Jens tested
and accepted the corrections. In summa-
ry, this process was organized as distrib-
uted testing, centralized diagnosis, dis-
tributed correction, and centralized veri-
fication.

Support: A work flow of distributed
error registration, classification, diagno-
sis, correction, and verification, among
other things, needs support for routing
information between actors. When an ac-
tor has completed his or her activities in
relation to a specific bug form, the work
flow system must automatically validate
that the required information is regis-
tered, then pass the information on to the
next actor (or group of actors), and final-
ly notify the receiver(s) that new action
must be taken. However, in most situa-
tions is it impossible to completely spec-
ify all situations which may occur (see
e.g., Suchman 1987, Schmidt 1994). The
coordination of software testing at Foss
Electric was certainly no exception to

this. Thus, the actor completing an activ-
ity must be able to overrule the routing
and redirect the information to some-
body else. The protocol stipulating the
routing must furthermore be based on
roles to which actors can be related. The
study at Foss Electric clearly illustrates
that the actors had several roles, and,
more importantly, that these roles were
relatively stable entities in the work set-
ting. Some roles were played by different
actors at different points in time, e.g., the
role of platform master. Changing the ac-
tor related to a role should not imply
changes to the protocol stipulating the
routing. Monitoring the progress of the
work is essential when coordinating
work. This requires a consistent and up-
dated data-base containing information
on all reported bugs and their current sta-
tus. Negotiation of classifications, diag-
noses, allocation of resources, deadlines,
etc. were a predominant feature of the
software testing work. Approximately
one out of five of the correction tasks de-
fined by the spec-team resulted in nego-
tiation between the spec-team and the re-
sponsible designer. Support for actors
engaging in negotiating the bug handling
process could draw upon research ad-
dressing the support for negotiation
(Flores et al. 1988), or available work
flow technologies (e.g., De Cindio et al.
1988). It is beyond the scope of this pa-
per to review this further.

5.2. Registration and Classification
Work: The S4000 software was tested on
software simulators and on instrument
prototypes, and the project had distribut-
ed detection, registration, and classifica-
tion of software bugs. Occasionally test-
ers and software designers engaged
themselves in preliminary discussions on

P. H. Carstensen, C. Sørensen & T. Tuikka 45

the interpretation of problems or possi-
ble bugs. Some errors were impossible to
reproduce and hence difficult to describe
during registration. Our observations in-
dicate that in at least 20% of the bug re-
ports, testers were not able to describe
the problem in detail. If it was difficult
for the tester to fill in the required infor-
mation in the bug form, the spec-team
member filled in the form after having
discussed the problem with the tester. As
one of the spec-team members said:

“The form is not very user-friendly. We
often have to force them [the testers] to
fill in a form. Sometime they just send in
a note describing what they have seen,
and we must produce a form.”

The classification of errors as either cat-
astrophic, essential or cosmetic was done
according to the tester’s perspective. As
one of the spec-team members phrased
it:

“People, depending on who they are,
often interprets a catastrophe in a differ-
ent way than I do. An inconsistency in
the user interface might, for example, be
a disaster to a marketing guy, whereas it
is a cosmetic problem to me”.

Some of the testers tried to maintain
awareness of errors identified by other
testers in order to obtain useful informa-
tion for a first diagnosis of the problem.
This was, however, a difficult task. If, for
example, a tester from the marketing de-
partment wanted to check recent prob-
lems with the menu structure, this could
imply browsing through more than 500
forms in the binder.

Support: The bug handling system
studied could be improved by refining
the bug classification system. Too often
the existing classification structure led to
discussions resulting in the spec-team re-
classifying bugs. A more elaborated

classification of the type and importance
of bugs could support the testers in pro-
viding useful information to the spec-
team and to designers. We suggests two
classification structures: A classification
of the phenomena observed (program
stopped, window in wrong place, unsta-
ble output on tests, etc.) and a two-di-
mensional classification structure re-
flecting software quality parameters
(maintainability, marketing, stability,
safety, usability etc.) and the testers as-
sessment of the level of importance. Re-
search within software engineering may
provide input for more elaborate classifi-
cation structures, for example, standard
software quality taxonomies (Boehm
1981, Fairley 1985. If the classification
structures have a “miscellaneous” cate-
gory on each level, the software tester is
provided with an opportunity to classify
in the most unambiguous way. These
“other” fields might contain text annota-
tions, allowing testers to further specify
and characterize the problem. Support
for filling in bug forms could be support-
ed through a facility for retrieving regis-
trations of similar bugs based on more
elaborate classification structures and
using a central database containing in-
formation on all bugs. Classification
structures reduces complexity of coordi-
nation work by providing a conceptual
structure that makes it possible for test-
ers and designers to perform distributed
storing and retrieval of bug forms with a
minimum of peer-to-peer coordination.
Also, support for discussions via elec-
tronic mail or bulletin boards among
testers could improve the quality of the
information registered.

P. H. Carstensen, C. Sørensen & T. Tuikka 46

5.3. Diagnosis
Work: Diagnoses were mainly done by
the spec-team members at a weekly
meeting—more frequently in periods.
They browsed the submitted bug forms.
The number of forms varied a lot from
week to week—in the last half a year of
the project it was around 25–30 forms
per week. The status and classification of
each bug were discussed. If the classifi-
cation differed very much from the one
made by the tester, the team sometimes
summoned the tester and discussed the
classification with him. If two registered
bugs were diagnosed as being identical,
only one of the forms was processed fur-
ther. The spec-team then discussed the
diagnosis and responsibility by review-
ing specifications, documentation,
source code, etc. In the complicated cas-
es (about 10%) the team summoned the
designers responsible for the relevant
modules in order to negotiate the diagno-
sis, the responsibility, and an estimated
correction time. Responsibilities and
time-estimates for corrections were in-
corporated as tasks in the planning
spread-sheet. The allocation of correc-
tion tasks to platform periods was decid-
ed based on assessments of the workload
of the responsible designer(s) and of the
importance of the problem. The spec-
team either handed over or sent bug
forms to the designers. This could result
in discussions among designers and
spec-team members about the diagnoses
and time-estimates.

Support: Supporting diagnosis of
bugs primarily implies supporting com-
munication among the spec-team mem-
bers. The field study clearly illustrates,
that without face-to-face communica-
tion, the spec-team members would have
had severe problems. E-mail based com-

munication between spec-team mem-
bers, testers and designers might, how-
ever, support diagnoses and prevent
some of the ad hoc discussions. The co-
ordination of the diagnosis work could
also have been supported by providing
access to information on already report-
ed bugs. As discussed in the previous
section, improved classification struc-
tures could provide better support for di-
agnosing bugs by more clearly stipulat-
ing testers' assessment of type and im-
portance of the bug. The task of meshing
new correction tasks and existing plans
is quite complicated. This could be sup-
ported by providing access to informa-
tion on: relationships between roles and
actors, architecture of the software com-
plex, relationships between software
modules and responsible designers, de-
signers’ workloads, existing work plans,
and relationships between tasks and
deadlines, etc. The needs for obtaining
an overview of the existing bugs and
plans will be discussed further in Section
5.6.

5.4. Correction
Work: Bugs were corrected in a distribut-
ed manner. Although the structure of the
bug form did not support the allocation
of responsibility for correcting one par-
ticular bug to several designers, this of-
ten happened. Often a designer discov-
ered that the problem he or she was cor-
recting affected modules owned by other
designers, thus creating leading to a need
for coordination of who was going to do
what, when and how. Since all the 5 to 10
designers making corrections were
placed in the same room, this coordina-
tion was mainly conducted by an abun-
dance of meetings and discussions. This,
however, imposed a problem when the

P. H. Carstensen, C. Sørensen & T. Tuikka 47

complexity of the software increased.
One of the designers characterized the
problem as follows:

“The problem we have right now is that
the software architecture is difficult to
decompose so much that one designer
can handle a component. We are all
working on several components, and
work on a single component involves
two to four men, and perhaps even some
of the electronical designers too. Then
we need coordination [..] We have
recently started a process where we try to
produce more formal documents and
agreements about the things we work
with, we haven’t been good at doing this
before, but now we have to do it.”

The first thing a designer usually did
upon receiving a request for correcting a
bug was to consider both the diagnosis,
the estimated correction time and the
deadline—the platform period. If the di-
agnosis or estimate did not seem accept-
able, the designer contacted one of the
spec-team members in order to negotiate
the situation. With respect to the esti-
mates, the spec-team had a policy stating
that the designer was always right. When
requirements could not be met within the
scheduled time limit, this led to negotia-
tions with the marketing people respon-
sible for the requirements specification.

Support: The most obvious support
for coordinating software correction ac-
tivities is by providing good and accessi-
ble means for communication. This was
to a certain extent already facilitated by
placing all designers in the same room
but electronic communication systems
might be of help as well. Furthermore,
support for the process of requesting and
rejecting correction tasks must be pro-
vided, i.e., if coordination is supported
by a work flow system, the designers

must be able to reject a request—return it
to the originator with a comment—or
pass the request on to another designer
pointed out to be the one that should
have been assigned to the task. Improved
formalization and structuring of the
specification of modules, module inter-
faces, message handling, etc. could also
support the coordination (Parnas 1985).
In the S4000 project interactions among
modules were only very loosely
sketched, thus resulting in designers en-
gaging in a ad hoc coordination. Im-
proved use of some of the existing spec-
ification techniques or CASE tools could
decrease the need for ad hoc coordina-
tion by providing an improved structur-
ing of the field of work, i.e., the software
system being designed (Mathiassen &
Sørensen 1994). The designers pointed
at the problem of being aware of the
changes other designers made, or to be
able to ensure that all the others were
aware of a correction, idea, or problem.
Improved support for the documentation
of corrections could, for example, be
provided by classification structures and
browsing facilities for the database con-
taining information on the bugs and cor-
rections.

5.5. Verification
Work: In the platform integration proc-
ess, initiated and managed by the plat-
form master, all modules were linked
and compiled, and the software was test-
ed prior to its release, all corrections re-
ported were verified, tasks identified
during integration and testing were
meshed into the plans, and designers
were informed about the state of affairs.
During the platform period all designers
worked on testing the integrated soft-
ware and were constantly meeting and

P. H. Carstensen, C. Sørensen & T. Tuikka 48

discussing the results and problems of
the integration. The platform master co-
ordinated the activities and delegated
subtasks to the designers. As a designer
put it:

“Usually we produce a list of all the
problems we have identified on a large
white board. We then discuss whether
this is a problem—an error—or not.
Actually it’s the platform master who
does that. If it’s a real heavy problem you
are immediately summoned and asked to
correct it.”

A set of brief organizational procedures
stated how to organize the integration
process, and contained a number of
check lists and standards covering the
details to be checked before the platform
master could release the software for fur-
ther modification. Only one pre-sched-
uled and structured meeting was held at
the end of the integration period. All de-
signers had to participate in this meeting
where they in turn described the changes
they had implemented since the last inte-
gration period.

Support: Close interaction among
software designers during verification is
essential. At Foss Electric this was
solved by placing the designers in the
same room. In cases involving of a large
number of project members or geograph-
ically distributed development this solu-
tion is not feasible. Here a work flow
structure supporting the division of la-
bor, a structure for establishing a com-
mon language (e.g., classification struc-
tures, module specifications, etc.) and
electronic meeting and communication
systems could provide support. In the co-
ordination of concrete verification tasks,
support for distributing responsibilities
should be provided. In the S4000 project
this was handled by the platform master

who personally delegated each correc-
tion task. It would be obvious to support
this by having a computer supported pro-
cedure for delegating the verification
tasks, and support in reporting back.
This, of course, would also include sup-
port for registering new bugs, similar to
what was discussed in section 6.2. In or-
der to improve the awareness of changes
made by others and to establish a com-
mon understanding of the software com-
plex, some support for “viewing” the
structure of the software complex must
be provided. From our observations it
was obvious that the designers had prob-
lems in relating themselves to the struc-
ture of others designers’ modules al-
though these had an essential impact on
how they should (re-)design their own
modules. This could be supported by the
production technology dimension of
CASE tools (Henderson & Cooprider
1990).

5.6. Monitoring
Work: A central activity in coordinating
the process of registering and correcting
bugs in the S4000 project was to estab-
lish an overview of the state of affairs,
i.e., the progress of the process, the
number of bugs that still needed to be
corrected, the accumulated estimation of
correction time, changes that might af-
fect other modules, etc. The designers
needed to be aware of corrections and
changes affecting their modules. The
spec-team members needed to know the
state of affairs before each spec-team
meeting. The testers frequently tried to
obtain an overview in order to avoid
wasting their time on reporting already
registered bugs. The platform master
needed an overview of corrections to be
verified in the next integration period in

P. H. Carstensen, C. Sørensen & T. Tuikka 49

order to plan the integration work. Man-
agement tried to get an overview of the
progress of the whole development
project. There were basically three
sources for this type of information: in-
formal communication, the bug form
binder, and the list of bugs which had not
been corrected. There was a lot of infor-
mal communication and discussion
among the designers about what kind of
corrections and changes they had made.
Some of the testers discussed changes in
the software with the designers several
times a week, whereas others never con-
tacted the designers directly. Even
though the designers sat in the same
room and were engaged in discussions
every day, it was difficult for them to be
aware of the state of affairs:

“Usually, the channel driver guy and I
had a clear deal. Verbal discussions and a
sketch drawing were sufficient. But in a
project as large as the S4000 we don’t
have a complete overview of the soft-
ware complex. And then you are in big
trouble when the other guys change their
code” (Software designer in the S4000
project).

Testers as well as designers found it very
difficult to obtain the necessary over-
view by consulting the bug form binder,
mainly because the forms were only or-
ganized according to the seven catego-
ries presented in Section 5.2. This made
it almost impossible to determine wheth-
er the same bug had been reported in sev-
eral bug forms. It was the intention that a
specification of the corrections should be
included in each form (cf. the bottom of
the form in Figure 1). In order to be
aware of relevant changes, the designers
were expected to browse through all the
forms in order to see if anything there
was of interest. The binder contained ap-

proximately 1400 forms at the end of the
project!

The third source for getting an over-
view was a weekly produced list of reg-
istered bugs that had not yet been dealt
with. One of the designers phrased the
problems with this as:

“Originally the intention was to produce
statistics of the number of known-but-
not-yet-fixed problems and use this as a
management tool. The management
hoped to find a decreasing curve on the
week-to-week measurement. They
didn’t. But we realized that as a manage-
ment tool this can only be used if you
have a stable product. We didn’t have
that.”

Support: Obtaining awareness of the
state of affairs by monitoring progress of
the software testing process plays an im-
portant role as a fundament for coordi-
nating activities, and this should be sup-
ported by several means. More elaborate
classification structures for bugs (cf.
Section 5.2), for the software modules
and their interaction (cf. Section 5.5) and
for the relationships between actors,
roles and resources could facilitate as-
sessments of the relative importance of
these issues. Providing designers and
testers with browsing and query facilities
to a database containing all registered
bugs would enable these actors to access
aggregated information on reported bugs
which have not yet been corrected, the
number of a specific type of bugs, the
number of not yet corrected bugs in a
specific module, the number of bugs a
specific designer is responsible for get-
ting corrected, etc. Also access to view
the project schedule would be useful for
monitoring state of affairs. This func-
tionality could be provided by means of
some of the existing project planning

P. H. Carstensen, C. Sørensen & T. Tuikka 50

tools (e.g., Microsoft Project), and
should support requests like: Who is re-
sponsible for the UIS-module? Which
modules are John responsible for? How
busy is Tom the next integration period?
How much time has been spent on cor-
rection so far? What percentage of the
corrections does this correspond to? etc.

6. Discussion
We have, in this article, analyzed the co-
ordination of distributed software testing
of one project in one organization. We
have focused on coordination work relat-
ed to distributed actors performing regis-
tration, classification, diagnosis, correc-
tion and verification of software bugs ap-
plying a bug form work flow system, a
resource-planning spread-sheet, and a
configuration control procedure. Based
on this analysis we have discussed needs
for computer supporting this coordina-
tion work. The project we have looked at
is most likely not unique. Many software
projects faced with the immense com-
plexity of distributed software testing
use various kinds of forms, classification
structures and organizational procedures
in order to cope with the complexity of
coordinating of software testing activi-
ties.

Kraut and Streeter (1995) argue that
computer support of the informal and di-
rect communication in systems develop-
ment is required, and they suggest tools
supporting conferences and distributed
meetings. The analysis in this paper can
be viewed as work elaborating on Kraut
& Streeters conclusion that informal
communication is very important in sys-
tems development, but faced with the
need for coordinating an abundance of

distributed decisions, there is a need for
formal coordination means due to the ex-
cessive transaction costs and the ephem-
eral nature of informal communication.

Conceptual structures played a cru-
cial role for the actors when coordinating
the software testing activities. The soft-
ware was divided up into a set op mod-
ules, which also were represented in the
project schedule. The architecture of the
system represented an aggregation of the
software modules. Work plans represent-
ed structures of actors and roles in-
volved, resources available, tasks to be
performed. Software bugs were classi-
fied according to their importance and
the bug form played an important role in
creating and representing bugs as sepa-
rate entities, i.e., the bug form was the in-
strument used for transforming observed
phenomena to a set of identified software
bugs. These structures provided the ac-
tors with an overview of both the field of
work which was registration and correc-
tion of bugs in the S4000 software, as
well as of the cooperative work arrange-
ment, e.g., the actors, their roles, and the
resources available. The structures can
be viewed as dimensions along which
coordination is conducted (Schmidt &
Simone 1995), i.e., the coordination ac-
tivities are performed by referring to ab-
stractions and conceptualizations of the
nature of the work, not by directly inter-
acting with the objects of the work (e.g.,
the code). We have identified a set of ac-
tions performed by the actors in relation
to these conceptual structures. They
were classifying bugs, tasks, modules,
etc., routing information and requests,
monitoring state of affairs, allocating re-
sources, meshing work products, and ne-
gotiating diagnoses, allocation of re-
sources, etc. When discussing computer

P. H. Carstensen, C. Sørensen & T. Tuikka 51

support of coordination aspects of soft-
ware testing, it is obvious to require ac-
cess to structures in the computer based
system similar to the conceptual struc-
tures mentioned above, and to facilities
supporting the basic actions listed.

In their functional model of design
aid technology, Henderson & Cooprider
(1990) argue that design aid environ-
ments mainly consist of three compo-
nents: (1) production technology con-
taining facility for representation, analy-
sis and transformation of objects, rela-
tionships and processes; (2) coordination
technology with control functionality
supporting planning and enforcing rules,
policies that will govern or restrict the
design process and with cooperative
functionality enabling users to exchange
information relevant for the work proc-
ess; and (3) organizational technology
with support functionality to help users
and with infrastructure functionality pro-
viding standards enabling portability of
skills knowledge, procedures or methods
across projects.

This article has presented an analysis
of needs for computer support pertaining
to the coordination technology compo-
nent, and its relationships to the produc-
tion technology component. CASE tools
supporting the conceptualization of the
software architecture, as well as test
planning tools have been available for
more than 10 years. These tools primari-
ly provide functionality within the pro-
duction technology component, i.e., sup-
port the individual test tasks, or provide
an overview of the state of affairs by ap-
plying a specific set of testing metrics.
Although certain coordination aspects
are supported by these tools, several im-
provements are required. Furthermore,
the coordination support must be inte-

grated with existing tools and tech-
niques, for example cooperative soft-
ware inspection tools (Freedman &
Weinberg 1990, Mashayekhi et al.
1993). Although we have begun an iden-
tification of such support needs, much
work still remains to be done before the
ideas can be realized.

Future work should go in at least
three directions. One is to evaluate relat-
ed products and concepts, i.e., relate the
support of the cooperative aspects to the
individual aspects of software testing
and reflect on how cooperative work can
be computer supported. Henderson and
Cooprider’s model will be relevant as a
starting point for this work. The second
direction is to tie our body of work to the
ongoing efforts in conceptualizing rele-
vant aspect of cooperative work, for ex-
ample the concept of Coordination
Mechanisms (Schmidt & Simone 1995)
and the third direction will be to build
experimental prototypes as a step for-
ward in concretizing the ideas.

Acknowledgments
This research could not have been con-
ducted without the invaluable help of nu-
merous people at Foss Electric. Thanks
to Leif Løvborg and three anonymous re-
viewers for many useful comments and
suggestions, and to Susan Leigh Star for
helping us understanding central aspects
of classification schemes. We also thank
Finn Kensing, Betty Hewitt, and IRIS’94
reviewers for constructive comments
and ideas to previous versions of this pa-
per. This research is partially funded by
the Esprit BRA 6225 COMIC project,
the Finnish Center for Technology De-
velopment (TEKES), and the Danish

P. H. Carstensen, C. Sørensen & T. Tuikka 52

Technical Research Council project CO-
DEM sponsored by Fisker og Nielsens
Fond, and Ib Henriksens Fond. All errors
in this paper naturally remain the respon-
sibility of the authors.

References
Bannon, L., (1993). CSCW: An Initial Explo-

ration. Scandinavian Journal of Informa-
tion Systems, (5): 3-24.

Beizer, B., (1990). Software Testing Tech-
niques. Second Edition. Van Nostrand
Reinhold.

Boehm, B. W., (1981). Software Engineering
Economics. Prentice-Hall.

Brooks Jr., F. P., (1982). The Mythical Man-
Month — Essays on Software Engineer-
ing. Addison-Wesley.

Bucciarelli, L. L., (1984). Reflective practice
in engineering design. Design Studies,
5(3): 185-190.

Carstensen, P., (1994). The Bug Report Form.
In K. Schmidt ed. Social Mechanisms of
Interaction. pages 185-216, Esprit BRA
6225 COMIC

Carstensen, P., C. Sørensen & H. Borstrøm,
(1995). Two is Fine, Four is a Mess —
Reducing Complexity of Articulation
Work in Manufacturing. In COOP’95.
Proceedings of the International Work-
shop on the Design of Cooperative Sys-
tems, January 25-27, Antibes-Juan-les-
Pins, France, INRIA, Sophia Antipolis,
pages 314-333.

Dahlbom, B. & L. Mathiassen, (1993). Com-
puters in Context — The Philosophy and
Practice of Systems Design. Blackwell
Publishers.

Dalal, S. R., J. R. Hogan & J. R. Kettering,
(1993). Reliable Software and Communi-
cation: Software Quality, Reliability, and
Safety. In 15th International Conference
on Software Engineering, Baltimore, Mar-
yland, USA, IEEE Computer Society

Press, Los Alamitos, California, USA,
pages 425-435.

De Cindio, F., C. Simone, R. Vassallo & A.
Zanaboni, (1988). CHAOS: a knowledge-
based system for conversing within
offices. In W. Lamersdorf ed. Office
Knowledge: Representation, Management
and Utilization. Elsevier Science Publish-
ers B.V., North -Holland.

Dijkstra, E. W., (1989). On the cruelty of
really teaching computer science. Com-
munications of the ACM, 32(12): 1398-
1404.

Fairley, R., (1985). Software Engineering
Concepts. McGraw-Hill.

Flores, F., M. Graves, B. Hartfield & T.
Winograd, (1988). Computer Systems and
the Design of Organizational Interaction.
TOIS, 6(2): 153-172.

Freedman, D. & G. Weinberg, (1990). Hand-
book of Walkthroughs, Inspections, and
Technical Reviews. Dorset House.

Gelperin, D. & B. Hetzel, (1988). The
Growth of Software Testing. Communica-
tions of the ACM, 31(6): 687-695.

Hamlet, R., (1988). Special section on soft-
ware testing. Communications of the
ACM, 31(6): 662-667.

Henderson, J. C. & J. G. Cooprider, (1990).
Dimensions of I/S Planning and Design
Aids: A Functional Model of CASE Tech-
nology. Information Systems Research,
1(3): 227-254.

Hetzel, B., (1988). The Complete Guide to
Software Testing. QED Information Sci-
ences Inc.

Hirschheim, R. A., (1985). Office Automa-
tion: A Social and Organizational Per-
spective. Information Systems Series, eds.
R. Boland & R. Hirschheim. John Wiley
and Sons.

Jennings, K., (1990). The Devouring Fungus.
W.W. Norton & Company.

Johnson, P. M. & D. Tjahjono, (1993).
Improving Software Quality through
Computer Supported Collaborative
Review. In G. De Michelis, C. Simone &
K. Schmidt eds. ECSCW ’93. Proceedings

P. H. Carstensen, C. Sørensen & T. Tuikka 53

of the Third European Conference on
Computer-Supported Cooperative Work,
13-17 September 1993, Milan, Italy. pages
61-76, Kluwer Academic Publishers.

Kraut, R. E. & L. A. Streeter, (1995). Coordi-
nation in Software Development. Commu-
nications of the ACM, 38(3): 69–81.

Mashayekhi, V., J. M. Drake, W.-T. Tsai & J.
Riedl, (1993). Distributed Collaborative
Software Inspection. IEEE Software,
(September): 66–75.

Mason, R. O., (1989). MIS Experiments: A
Pragmatic Perspective. In I. Benbasat ed.
The Information Systems Research Chal-
lenge: Experimental Research Meth-
ods,vol. 2. pages 3-20, Harvard Business
School Research Colloquium, Harvard
Business School

Mathiassen, L. & C. Sørensen, (1994). Man-
aging CASE Introduction — Beyond
Software Process Maturity. In J. W. Ross
ed. Proceedings of the 1994 ACM
SIGCPR Conference, Old Town Alexan-
dria, Virginia, USA, ACM, pages 242–
251.

Myers, G. J., (1979). The Art of Software Test-
ing. John Wiley and Sons.

Parnas, D. L., (1985). Software Aspects of
Strategic Defence Systems. Communica-
tions of the ACM, 28(12): 1326–1335.

Patton, M. Q., (1980). Qualitative Evaluation
Methods. Sage Publications.

Petchenik, N. H., (1985). Practical Priorities
in System Testing. IEEE Software, 2(5):
18-23.

Pressman, R. S., (1988). Making Software
Engineering Happen - A Guide for Insti-
tuting the Technology. Prentice-Hall.

Schmidt, K., (1991). Riding a Tiger, or Com-
puter Supported Cooperative Work. In L.
Bannon, M. Robinson & K. Schmidt eds.
ECSCW ’91. Proceedings of the Second
European Conference on Computer-Sup-
ported Cooperative Work. pages 1-16,
Kluwer Academic Publishers

Schmidt, K., (1994). Modes and Mechanisms
of Interaction in Cooperative Work. Risø
National Laboratory, [Risø-R-666].

Schmidt, K. & P. Carstensen, (1990). Arbejd-
sanalyse. Teori og praksis [Work Analysis.
Theory and Practice]. Risø National Lab-
oratory, [Risø-M-2889].

Schmidt, K. & C. Simone, (1995). Mecha-
nisms of Interaction: An Approach to
CSCW Systems Design. In COOP’95.
Proceedings of the International Work-
shop on the Design of Cooperative Sys-
tems, January 25-27, Antibes-Juan-les-
Pins, France, INRIA, Sophia Antipolis,
pages 56-75.

Siemieniuch, C., (1992). Design to product
— A prototype of a system to enable
design for manufacturability. In M.
Helander & M. Nagamachi eds. Design
for Manufacturability — A Systems
Approach to Concurrent Engineering and
Ergonomics. pages 35-54, Taylor & Fran-
cis.

Sørensen, C., P. Carstensen & H. Borstrøm,
(1994). We Can’t Go On Meeting Like
This! Artifacts Making it Easier to Work
Together in Manufacturing. In S. Howard
& Y. K. Leung eds. Harmony Through
Working Together, OZCHI 1994, Mel-
bourne, Australia, CHISIG, pages 181–
186.

Suchman, L. A., (1987). Plans and situated
actions. The problem of human-machine
communication. Cambridge University
Press.

Swenson, K. D., R. J. Maxwell, T. Mat-
sumoto, B. Saghari & K. Irwin, (1994). A
business process environment supporting
collaborative planning. Collaborative
Computing, (1): 15-34.

Yin, R. K., (1989). Research Design Issues in
Using the Case Study Method to Study
Management Information Systems. In J. I.
Cash & P. R. Lawrence eds. The Informa-
tion Systems Research Challenge: Quali-
tative Research Methods,vol. 1. pages 1-6,
Harvard Business School Research Collo-
quium, Harvard Business School

Yourdon, E., (1988). Software Quality Assur-
ance in the 1990s. In Sixth Annual Pacific

P. H. Carstensen, C. Sørensen & T. Tuikka 54

Northwest Software Quality Conference,
Portland, Oregon,

