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Let Sleeping Patients Lie, avoiding unnecessary overnight

vitals monitoring using a clinically based deep-learning model
Viktor Tóth 1, Marsha Meytlis2, Douglas P. Barnaby 3,4, Kevin R. Bock2,3, Michael I. Oppenheim2,3, Yousef Al-Abed1,3,

Thomas McGinn3,4, Karina W. Davidson 3,4, Lance B. Becker1,3, Jamie S. Hirsch 2,3,4,5 and Theodoros P. Zanos 1,3,5✉

Impaired sleep for hospital patients is an all too common reality. Sleep disruptions due to unnecessary overnight vital sign

monitoring are associated with delirium, cognitive impairment, weakened immunity, hypertension, increased stress, and mortality.

It is also one of the most common complaints of hospital patients while imposing additional burdens on healthcare providers.

Previous efforts to forgo overnight vital sign measurements and improve patient sleep used providers’ subjective stability

assessment or utilized an expanded, thus harder to retrieve, set of vitals and laboratory results to predict overnight clinical risk.

Here, we present a model that incorporates past values of a small set of vital signs and predicts overnight stability for any given

patient-night. Using data obtained from a multi-hospital health system between 2012 and 2019, a recurrent deep neural network

was trained and evaluated using ~2.3 million admissions and 26 million vital sign assessments. The algorithm is agnostic to patient

location, condition, and demographics, and relies only on sequences of five vital sign measurements, a calculated Modified Early

Warning Score, and patient age. We achieved an area under the receiver operating characteristic curve of 0.966 (95% confidence

interval [CI] 0.956–0.967) on the retrospective testing set, and 0.971 (95% CI 0.965–0.974) on the prospective set to predict

overnight patient stability. The model enables safe avoidance of overnight monitoring for ~50% of patient-nights, while only

misclassifying 2 out of 10,000 patient-nights as stable. Our approach is straightforward to deploy, only requires regularly obtained

vital signs, and delivers easily actionable clinical predictions for a peaceful sleep in hospitals.
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INTRODUCTION

Poor sleep in hospitals is a common problem, with up to half of
admitted patients experiencing insomnia1,2. Sleep disruptions are
associated with undesirable effects ranging from delirium and
cognitive impairment to weakened immunity, hypertension,
elevated stress hormones and increased mortality3,4. Impaired
sleep is also one of the most common complaints in hospitalized
patients1,3,5,6, associated with significantly lower patient satisfac-
tion2. The underlying causes of impaired sleep are multifactorial
and include the effects of acute illness, pain, medications, and pre-
existing conditions (e.g., sleep apnea), as well as environmental
factors, such as noise, light, unfamiliar surroundings, and patient
care activities3,5. This latter group of factors is among the most
common causes of sleep disruption in hospitalized patients and
maybe the most amenable to targeted initiatives2,7. Overnight
vital sign (VS) monitoring, specifically, has been identified as an
important cause of fragmented sleep whose utility has come
under increased scrutiny8. Although no established evidence-
based guidelines exist9, routine VS assessments commonly occur
every four to five hours for medical and surgical patients
regardless of patient acuity. Recent studies demonstrated fewer
sleep interruptions and improved patient experience through
targeted reductions in overnight VS measurements and medica-
tion administrations; however, determining which patients can
forgo VS was left to subjective clinical assessment10.
While overnight VS measurements disrupt sleep, they are often

indicated and necessary for high-risk and potentially unstable
patients. Identifying these patients in a reliable and timely manner

is an area of active investigation, with efforts focused on models
that vary from single parameter tools to weighted early warning
scores and advanced predictive models using machine learning
techniques11–14. By contrast, relatively little work has been done to
identify the low-risk cohort15 unlikely to benefit from such care
that may, in fact, be harmed by these frequent assessments.
Identifying this subset of patients has the potential to enhance
recovery, improve patient sleep and satisfaction, and allow the
redistribution of scarce resources (i.e., nurses, physicians) to
higher-risk patients.
The goal of this project is to derive a tool that can reliably

identify the subset of patients at extremely low risk for overnight
deterioration. This project inverts the standard approach of
identifying a high-risk cohort for closer monitoring and additional
resources, and instead seeks to identify low-risk, stable patients
who can safely avoid overnight VS assessments. By combining a
deep recurrent neural network (RNN) for advanced predictive
modeling with the clinical data (Fig. 1) generated by a multi-
hospital health system, the derived tool enables the identification
of low-risk inpatients and may improve outcomes by reducing
overnight awakenings and enhancing sleep and recovery.

RESULTS

Data description

The final data set obtained from a multi-hospital health system
between 2012 and 2019 consisted of 2.13 million patient-visits
(24.29 million VS measurements) in the retrospective cohort and
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186,375 patient-visits (1.91 million VS measurements) in the

prospective test set (Fig. 2a and Tables 1 and 2). We trained a deep

RNN with long short-term memory (LSTM) cells to predict

individual patient stability for any hospital night (Fig. 2b), using

a sequence of prior VS records during the hospital stay of each

patient. The algorithm ingests a parsimonious list of longitudinal

features, including respiratory rate (RR), heart rate (HR), systolic

blood pressure (BP), body temperature (Tmpr), patient age, and a

calculated risk score (Modified Early Warning Score [MEWS]), and

produces a nightly assessment of overnight stability.
An instance of a patient visit and associated VS trajectories is

displayed in Fig. 1. As shown in the left portion of the figure, the
combination of the patient’s VS and MEWS risk score led to a
model prediction of “stable” during the first night. In this instance,

the algorithm suggests that overnight VS assessment should be
skipped and that the patient should be left sleeping. However, just

Fig. 1 Example of the input sequence and predicted overnight stability of a hospital visit. The model takes a sequence of features as input,
with each sample containing four vital signs plus a risk score (included in the figure) and other input variables, including an hour of the day,
time since the previous sample, change in risk score, and variance of risk subscores (not shown). The green band signifies the normal range of
risk score values and indicates low risk for clinical deterioration. Nights (purple band) are labelled according to the model prediction at 10 p.m.
each night (“Let Sleep” or “Wake Up”). In the example provided, on the first night, the model predicted overnight stability and recommended
that the patient sleep, whereas on the second night the model correctly predicted instability (i.e., elevated overnight risk score), thus
recommending that the patient be woken for vital sign monitoring. Note that while in reality the model does not include measurements
obtained during a predicted stable night, these are included in the figure for illustrative purposes. HR heart rate, RR respiratory rate, Tmpr
temperature, BP systolic blood pressure, Risk score indicates Modified Early Warning Score (MEWS).

Fig. 2 Data organization and model architecture. The complete de-identified retrospective and prospective data set contains 2,318,506
inpatient hospital admissions and 26,201,030 records of vital signs (VSs) between 2012 and 2019, yielding 4,933,636 VS input sequences used
by our model (shown). The retrospective data set included all data through April 2019, while the prospective collection ranged from May to
August 2019. Unrealistic, possibly mistyped VS values and records with any missing data after imputation were discarded. We split the
retrospective data into training (70%), validation (15%), and test (15%) sets by patient visit, so the sequences drawn from one visit were only
included in one of the groups. Some training data sequences with stable outcomes were discarded to balance the positive and negative cases
(a). We used a deep recurrent neural network with two dense layers and five successive long short-term memory (LSTM) cells. After receiving a
sequence of samples S0:T, the model predicts the probability of the patient becoming unstable during the night. We inserted a batch norm
and dropout layer before the last fully connected layer (b).
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prior to the second night in this example, the model accurately
predicted a potentially unstable night, and thus recommended
wakening the patient and checking VS, which uncovered an
elevated MEWS of 10.

Performance of the proposed model

Using the proposed deep-learning predictive model, we achieved
an area under the receiver operating characteristic (ROC) curve
(AUC) of 0.966 (95% confidence interval [CI] 0.956–0.967) on
the retrospective testing set, and 0.971 (95% CI 0.965–0.974) on
the prospective set (Fig. 3). Following model training and ROC
curve construction, we established three different confidence
thresholds (Fig. 3, items α, β, and γ), out of which the least
conservative, threshold γ, can avoid overnight VS for 50% of
patient-nights, while only misclassifying as stable 2 out of 10,000
patient-nights. As shown in Fig. 3 (green portion of ROC curves),
we established the clinically applicable region for this particular
problem at a maximum of two false-positive predictions per
10,000 patient-nights (1.29% false-positive rate [patient-nights
misclassified as stable divided by the total unstable patient-
nights]), with the primary model threshold, γ, lying on this region’s
edge. Thresholds α and β correspond to increasingly conservative
models, with false-positive rates of 0.32% and 0.65%, respectively.
The Mathew correlation coefficients are 0.082, 0.100, and 0.118,
and the F1 scores are 0.473, 0.573, and 0.656 at the α, β, and γ
confidence thresholds, respectively.

Performance of a linear control model

To determine the benefit of using the proposed RNN architecture,
we also evaluated a simple logistic regression model, receiving the
same input variables as the proposed RNN, using the latest
instance of VS measured right before the predicted patient-night
rather than a sequence of VS. The logistic regression model
achieved an AUC of 0.960 (95% CI 0.959–0.961) on the

retrospective testing set and 0.964 (95% CI 0.962–0.965) on the
prospective set (Supplementary Fig. 1).

Falsely classified cases

Our proposed model misclassified 132 patient-nights as stable in
our retrospective test data set. To understand the limitations of
our model through the characteristics of these falsely classified
cases, we inspected the preceding 72-h trajectories of risk scores
and VS for the false-positive nights. The risk score, HR, RR, and
Tmpr, for these cases stayed largely stable throughout the 3-day
period, and abruptly increased during the falsely classified night
(Fig. 4), underscoring the absence of any visible trend that could
potentially inform a VS-based predictive model.
While the risk score and VS trends are not informative enough

to guide the model, we examined the severity of the falsely
classified cases, as well as the specific differences between cases
where we correctly predicted stability and those misclassified as
stable that ultimately were potentially unstable nights. In the vast
majority of the 132 falsely classified cases (77%), the risk scores
barely exceeded the chosen threshold of 7, with only 2 cases
reaching a maximum risk score of 10 out of 15 (Fig. 5a). This
distribution of risk scores implies that even in the rare cases of
stability misclassification, most misclassified as stable cases
correspond to marginally unstable patient-nights.
Moreover, HR, RR, and Tmpr were significantly higher in the

incorrectly identified cases (Fig. 5b–d). More specifically, the RR of
the patients during the misclassified nights (median 20.02
[interquartile range (IQR) 6]) were significantly higher than for
the stable sleeping patients (median 18 [IQR 1]) (Fig. 5b;
Kruskal–Wallis test, p < 0.01). Similarly, the HR (median 111 [IQR
35]) and Tmpr (median 37.2 [IQR 1.9]) during misclassified nights
significantly exceeded those of patients sleeping stable (HR
median 78 [IQR 18]; Tmpr median 36.8 [IQR= 0.4]) (Fig. 5c, d,
respectively; Kruskal–Wallis test, p < 0.001 for all comparisons). In
particular, the elevated overnight values of HR and RR in the
misclassified as stable cases suggest that most patients would not
be sleeping soundly, even with formal VS assessments skipped (86
cases with RR > 20 and 76 cases with HR > 120). Thus, a simple
discreet visual inspection during routine nurse rounding or
selective use of wearable devices could further identify most of
these few misclassified as stable cases.
While not individually predictive, HR and RR values could

potentially be used as additional overnight discriminants to
trigger a clinical assessment. Leveraging novel non-obstructive,
continuous monitoring devices, patients erroneously predicted to
be stable overnight could be woken for assessment based upon
automatically captured and detected HR and RR thresholds. Figure
6 shows the tradeoff of using real-time overnight HR thresholds to
assess sleeping patients previously classified as stable. Evaluating
patients with HR exceeding 110 or 120 recovers 113 (86%) and 76
(58%) potentially unstable sleepers, respectively, while completely
eliminating the cases of misclassified patient-nights with a risk
score ≥10.

DISCUSSION

In this study, we successfully developed a generalizable deep-
learning predictive model that takes a sequence of prior VS for a
given patient and predicts the likelihood of overnight stability, in
order to safely guide avoidance of overnight VS monitoring and
unnecessary sleep disruption. The output of this model can
salvage approximately half of patient-nights in a hospital or health
system, avoiding unnecessary assessments while leaving patients
undisturbed. These gains are achieved with extremely low risk, as
our model misclassifies as stable only 2 out of 10,000 patient-
nights. Moreover, the model is configured such that clinical teams

Table 1. Data summary statistics.

Retrospective Prospective

Visits, n 2,132,131 186,375

Vitals, n 24,288,165 1,912,865

Age, mean (SD) 64.4 (19.0) 64.0 (18.8)

Gender (% female) 57 56.1

Heart rate (b.p.m.), mean (SD) 81.3 (16.6) 81.2 (16.8)

Respiratory rate (b.p.m.), mean (SD) 17.8 (2.0) 17.8 (2.0)

Systolic blood pressure (mmHg),
mean (SD)

128.4 (22.6) 129.0 (23.0)

Temperature (°C), mean (SD) 36.8 (0.5) 36.8 (0.5)

Modified Early Warning Score,
median (IQR)

3 (2) 3 (2)

Table 2. Outcome-based model input statistics.

Stable Potentially unstable

Age, mean (SD) 66.8 (17.8) 80.6 (12.8)

Heart rate (b.p.m.), mean (SD) 81.0 (14.9) 110.7 (25.0)

Respiratory rate (b.p.m.), mean (SD) 17.7 (1.5) 20.3 (4.5)

Systolic blood pressure (mmHg),
mean (SD)

128.7 (21.2) 123.2 (32.0)

Temperature (°C), mean (SD) 36.8 (0.5) 37.3 (1.3)

Modified Early Warning Score,
median (IQR)

3 (2) 7 (0)
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can adjust the confidence threshold to implement a more
stringent or risk-averse solution.
We evaluated a simple logistic regression model, receiving the

same input variables as the proposed RNN, that uses the latest
instance of VS measured right before the predicted patient-night
rather than a sequence of VS. Although the linear model
performed significantly worse on the task (random permutation
test of AUC ROC scores, p < 0.05), saving 7% less patient-nights, we
believe that such a model under data or computing power
constraints can be employed with a high degree of success over
the current clinical practice.
Our findings highlight the safety and accuracy of a machine

learning-based solution to avoid unnecessary overnight VS
monitoring. The limited number of inputs needed also demon-
strates the feasibility of widely deploying such an approach,
saving millions of sleepless patient-nights. We anticipate this
directly improving patient outcomes and satisfaction; boosting
health provider efficacy by reducing fatigue; and enabling
significant cost savings for health systems. Due to the large-
scale data set, our model is robust to different healthcare sites,
patient demographics, and conditions.
VS assessments are the second most common cause of sleep

disruption in the hospitalized patient16, and safely reducing these
interventions overnight can improve patient sleep quality and
quantity while leading to better health outcomes. Multiple studies
have measured the quality and quantity of sleep in hospitalized

patients around the world, showing significant reductions in sleep
quality for patients in North America1,2,7, Europe17, and Australia18,
among others. This sleep quality reduction has been linked to a
range of adverse health outcomes, including delirium; cardiac and
metabolic derangements; cognitive impairment, especially in
older adults4,19; development of various pain conditions; elevation
of inflammatory markers; a decline in self-reported physical
health-status20; weakened immunity; hypertension; elevated stress
hormones; and increased mortality3. Importantly, many of these
adverse effects are known to lengthen hospitalizations, increasing
health utilization and cost without corresponding benefit. Finally,
sleep disruption can have an effect on the actual values of the
overnight VS—causing erroneous risk alerts and unnecessary
interventions—as both blood pressure21 and HR22 are directly
elevated by sleep disturbances.
The benefits of reducing overnight VS monitoring extend

beyond patient sleep. Nurses spend between 20 and -35% of their
time documenting VS23, and roughly 3 min per patient collecting
them24, accounting for ~10% of their shift with an eight patient
census (average of 1.5 VS per patient per night). As healthcare
systems seek to maximize efficiency and reduce waste, lean
staffing models often hamper compliance with monitoring
protocols as clinician capacity is exceeded, leading to delayed or
incomplete care25, particularly during periods of high acuity or
census. Indeed, low nurse-to-patient ratios during overnight
shifts have been closely linked with low protocol compliance26.
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Fig. 3 Model performance illustrated by receiver operating characteristic (ROC) curves and clinically renormalized variants. ROC curves
for predicting overnight stability on the retrospective test (a) and prospective (b) datasets. The clinically renormalized variants for
retrospective (b, c) and prospective (e, f) datasets show the balance between correctly letting stable patients sleep (Y-axis) and erroneously
recommending sleep (predicted stable) to patients who ultimately had an elevated overnight risk score (X-axis), normalized to 10,000 patient-
nights. The zoomed-in panels (c, f) highlight the clinically applicable range, which minimizes the number of false-positive predictions. The red
points on all the curves (α, β, and γ) represent three different clinically applicable model thresholds, which were chosen according to the
number of false positives they yielded for the retrospective test set. For example, threshold γ, the least conservative, maintains the number of
unstable sleeping nights at the edge of acceptability, at 2 out of 10,000 patient-nights, while allowing approximately half of all patients to
sleep safely (5000 out of 10,000 patient-nights). The blue cross on the bottom left of all panels indicates current practice, where all patients are
woken for vital sign monitoring regardless of the risk level.
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Nurses have already adopted strategies to cope with staff and
time constraints by triaging patients to different VS measurement
frequencies27 based upon “gut feeling, sixth sense, or clinical
intuition”25,26,28. As our algorithm would enable safely and
confidently forgoing half of overnight VS measurements, it would
result in up to 20–25% workload reduction of an overnight shift,
facilitating focus on more acutely ill patients. Such an approach
might also align staffing capacity and demand, positively
impacting provider stress and reducing burnout, while improving
operational efficiency.
Previous approaches to improve patient sleep and satisfaction

have been successfully implemented in clinical studies. In the
SIESTA research study10, laboratory order times were changed to
reduce sleep disruptions and clinicians were discouraged from
disrupting patient sleep and nudged to consider whether VS
assessment was necessary throughout the night for each patient.
While the SIESTA-enhanced hospital unit registered significantly
fewer entries to patient rooms and corresponding patient sleep
disruptions, the protocol leaves the considerable burden of
overnight patient stability prediction solely on the clinician and
does not assist their decision. A recent randomized controlled trial
leveraging an evening risk assessment using the electronic
Cardiac Arrest Risk Triage (eCART) score29 to facilitate sleep

proved the feasibility of this approach15. The eCART calculation,
however, is complex, incorporating 33 variables including VS and
lab results, thus making missing or sparse patient data a problem
for the calculation. Similar to MEWS, eCART ignores patient trends,
which have been shown to increase the accuracy of clinical
deterioration detection30, and considers only the latest cross-
sectional instance of their values. Our approach to prediction,
being fully automated and requiring only a small set of
longitudinal VS, can be combined with the laboratory order
schedule adjustments and nursing education introduced in SIESTA
to achieve higher rates of quiet patient-nights.
While the number of misclassified as stable patient-nights of

our algorithm is kept at a rate of 0.02% or 2/10,000, it could
potentially deter some risk-averse providers from using it. While
we were unable to identify a prior VS trend in those misclassified
as stable patient-nights (see Fig. 4), their overnight physiological
states are significantly different than those of the correctly
classified stable cases (see Fig. 5): as RR and HR, in particular,
are considerably higher for the former, we postulate that a simple
visual inspection of the sleeping patients during typical nurse
rounds should suffice in detecting these misclassified patients, a
procedure that is already part of standard nursing guidelines.
Based on these significant overnight VS differences, we further

Fig. 4 Trajectories of vital signs and risk scores preceding false-positive predictions. The vital sign and risk score trajectories of patients in
the 72 h prior to erroneous predictions of overnight stability (false-positive). The vital signs and risk scores are largely stable with no
suggestion of risk, but abruptly worsen during the overnight period. Red line represents mean trajectory; pink band covers two standard
deviations; purple band demarcates the unstable night. Risk score indicates Modified Early Warning Score (MEWS), HR heart rate (b.p.m.), RR
respiratory rate (b.p.m.), Tmpr temperature (°C).
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propose that real-time HR monitoring could potentially augment
our method to identify the misclassified as stable cases (see Fig. 6),
similar to their use in improving sleep quality by identifying
obstructive apneic episodes31,32. Determining which patients
should receive overnight continuous monitoring devices remains
an open research question.
Predictive machine learning approaches have enjoyed limited

clinical adaptation33, due to the additional effort they require from
doctors and nurses, usually in the form of supplementary data
collection or increased workload from health providers. Never-
theless, our solution relies on already existing data pipelines, and
intends to reduce the workload of nurses by eliminating
unnecessary VS measurements overnight. It does not require
any additional data to be collected by providers, leveraging VS
captured in the standard workflow.
Our study has several limitations. Although we leveraged a pre-

existing health-system risk score and escalation pathway to define
instability or deterioration, we did not examine outcomes such as
mortality or ICU transfer. This model has not yet been
implemented in clinical use, and its acceptance and impact on
processes of care are not yet tested. The next version of the model
will examine additional endpoints and a pilot implementation is
planned to assess feasibility and acceptance on inpatient nursing
units. In a production environment, overnight stability predictions

will be made at the start of the nursing night shift and predictions
will be incorporated into the workflow by integration into nursing
tools already in use. Although we emulated a prospective rollout
by splitting the data set chronologically, we plan on collecting
further surrogate or intermediate outcomes on mortality rates,
sleep quality, and patient satisfaction in the course of the
deployment of the operationalized version of our production
algorithm.
Leveraging routine VSs collected in a large health system, we

effectively developed and validated a parsimonious and general-
izable deep-learning predictive model to identify patients who are
sufficiently stable to avoid overnight sleep interruptions. This
model can potentially facilitate the sleep of up to 50% of
hospitalized patients, with extremely low risk (2 in 10,000 patient-
nights) of classification errors. Once implemented, this model will
improve patient healing and experience while lessening the
clinical staff burden.

METHODS

Data description and preprocessing

We used data from the enterprise inpatient electronic health record (EHR;
Sunrise Clinical Manager, Allscripts, Chicago, IL) of a large health system in
New York, which covers 14 of the health system’s 23 hospitals. All analyses

a

dc

b

Fig. 5 Differences in nighttime vital sign measurements between patients correctly and erroneously classified as stable in the
retrospective test set. For the 132, erroneously classified as stable patient, 77% had a risk score of 7, which just met the threshold of
potentially unstable, and in only 2 instances did the level reach up to 10 (a). Vital signs measured during stable (true positive) and potentially
unstable (false positive) were compared, and all were found to be significantly different between the two groups, with respiratory rate (RR; b),
temperature (Tmpr, c), and heart rate (HR, d) all higher in the misclassified as stable patients (p < 0.001 for all comparisons).

V. Tóth et al.

6

npj Digital Medicine (2020)   149 Seoul National University Bundang Hospital



were performed using the Python programming language, version 3.7. This
study, including a waiver of consent, was reviewed by the Northwell Health
Institutional Review Board and was determined as exempt from
International Review Board approval due to the use of de-identified data
and the retrospective analysis nature of the data. The study also adhered
to the transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) statement34.
The complete de-identified retrospective and prospective data set

contains 2,318,506 inpatient hospital admissions and 26,201,030 records of
VS between 2012 and 2019 (Table 1). The retrospective data set included
all data through April 2019, while the prospective collection ranged from
May to August 2019. Patients in our data set were aged between 14 and 89
years (patients older than 89 years were recorded as 89 to protect
confidentiality) and were excluded if they were on an obstetrics service. As

patients in the ICU are too unstable to consider forgoing overnight VS, only
non-ICU VS were used for prediction.
We developed a model that takes a sequence of prior VS for a given

patient and predicts the chance of their stability for any given night, in
order to determine the necessity of assessing overnight VS. Each record
includes HR (b.p.m.), RR (b.p.m.), SBP (mmHg), and Tmpr (°C) measure-
ments, in addition to the corresponding MEWS for early deterioration13.
This specific risk score, calculated with a simple formula from measured VS
(Supplementary Table 1), is a variant of other known and used risk scores,
such as EWS and NEWS35,36. Two of the MEWS subcomponents (a
neurologic assessment [AVPU] and body mass index) had a significant
amount of missing data (>80%) and were not included as unique inputs to
the model.
An elevated MEWS score indicates risk for clinical instability, including

death or need for ICU admission13. In 2012, our health system created a
custom modification, which was incorporated into the EHR with automatic
calculation and display via Arden Syntax Medical Logic Modules37. Based
on local health-system guidelines, any score ≥7 (score range 0–15) requires
intervention per defined protocol (Supplementary Table 2). We defined
overnight between the hours of 10 p.m. and 6 a.m., and based upon
health-system guidelines, we used an overnight MEWS ≥ 7 to indicate a
patient at risk for deterioration.
Unrealistic, possibly mistyped VS values (HR <10 and >300, RR <5 and

>47, BP <50 and >300, and Tmpr <20 and >50) were removed. Missing
values were imputed using the last observation carried forward method,
provided that an earlier measurement was available within a 12-h time
window. Records with any missing data after imputation were removed.
Additional derived features included the elapsed time and change in risk
score since the last recording, hour of the day, and the variance of risk
subscores. VS and age variables were scaled to a range between 0 and 1,
while time-related features were one-hot encoded.
Each patient visit was comprised of sequences of VS measurements with

a minimum length of 8 and a maximum of 42 values (Fig. 1). Any gap in
measurements of ≥24 h resulted in the truncation of the sequence and
creation of a new sequence from VS measurements after the gap. Each
night’s label was represented by a binary variable derived from the highest
risk score of the 8-h period following the corresponding patient history; if
any score ≥7, the label was positive (1), and negative (0) otherwise.
We split the retrospective data into training (70%), validation (15%), and

test (15%) sets by patient visit, so the sequences drawn from one visit were
only included in one of the groups (Fig. 2a). While the prediction period
was restricted to the night hours in the validation and test sets, we relaxed
this restriction in the training set for data augmentation purposes. The
prospective data set evaluation emulated an authentic prospective
deployment, whereby the model parameters were fixed and predictions
were made in a strict chronological order. We further discarded VS for the
nights that the algorithm determined as stable, effectively concealing
them from the model and avoiding their usage in predictions for
subsequent nights.

Model architecture and training

Our deep-learning model takes the bundle of features sequentially and
performs the prediction at the end of the sequence. The model consists of
two fully connected layers and five recurrent LSTM memory cells, each
with a size of 32, in addition to a fully connected output layer (Fig. 2b).
Simple RNNs and bidirectional architectures38 were investigated as well,
but we achieved better performance and orders of magnitudes faster
training time using the cuDNN implementation of LSTM39. We found that
incorporating dropout40 and batch normalization41 layers stabilized model
performance, resulting in more robust generalization to the test sets. We
predicted the actual risk score in a probabilistic programming setting,
which gave us a certainty estimate aside from the point estimate; however,
we did not find any benefit in our use case of patient stability prediction.
Class imbalance was handled by first randomly removing samples from

the negative ones, majority class, until it constituted only 92% of the
training set instead of the original 96%. Moreover, the error in predicting
positive outcomes was weighted eight times higher in the loss of function
compared to the negative ones. Models were implemented in Tensorflow
v2.142, and trained on batches of sequences, pre-padded to a length of 42
and with a batch size of 512.
We also evaluated a linear logistic regression model that receives the

same input variables as the proposed RNN, using the latest instance of VS
measured right before the predicted patient-night rather than a
sequence of VS.

Fig. 6 Detection of the instability of misclassified patients by
overnight heart rate thresholds. Using only continuous heart rate
monitors, and setting simple thresholds for alerting could facilitate
patient recovery of erroneously classified patients who are
potentially unstable. At various waking thresholds, most potentially
unstable patients will be woken while some stable patients will also
be woken (e.g., at the level of 100 b.p.m., 93.2% of potentially
unstable patients and 7.2% of stable patients are additionally woken
for assessment) (a). In the test set, 132 patients were misclassified as
stable despite having a potentially unstable night. Using a threshold
of 110 or 120 b.p.m., 113 (86%) and 76 (58%) potentially unstable
sleepers, respectively, are identified, and the highest risk (risk score
≥10) are eliminated (b). b.p.m. Beats per minute.
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Evaluation

Evaluation was performed in both retrospective test (894,138 nights)
and prospective (175,618 nights) settings (see Fig. 2a). Prospective
data included a separate 4-month period following the retrospective
recordings.
To assess the efficacy of the model, we constructed ROC curves and

calculated the area under the ROC curves for both retrospective and
prospective datasets using multiple thresholds. True positives (TPs)
correspond to accurate prediction of overnight stability (left sleeping
and remained stable) and false positives (FPs) to predicted overnight
stability (left sleeping) but potentially unstable (MEWS ≥ 7).
As the model provides a probability measure of patient stability, a

threshold was required to deduce the final, binary decision (wake or sleep).
In order to define the threshold in a clinically relevant manner, we
anchored it to the number of FP predictions (let sleep, but potentially
unstable) per 10,000 patient-nights. Due to the nature of our model
predictions, and in consultation with clinical collaborators, we favored a
low FP rate, hence a conservative model. We delineated the clinically
applicable region to contain confidence thresholds resulting in missed
detections (patients sleeping that are at risk of deterioration) at a
maximum of 2 out of 10,000 patient-nights. The threshold used in the
prospective testing was derived from the performance of the model on the
retrospective test set, with the threshold fixed on the edge of the clinically
applicable region.
In addition to the standard ROC curve, a more clinically relevant variant

was designed, juxtaposing the number of TP and FP normalized by 10,000
patient-nights, that is, TPclin= TP/(P+ N) and FPclin= FP/(P+ N), where
TPclin and FPclin are the clinically relevant TPs and FPs, respectively; TPs
and FPs are the previously mentioned TPs and FPs, and P represents the
positive and N the negative cases.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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