
Let the Tree Bloom:
Scalable Opportunistic Routing with ORPL

Simon Duquennoy1

simonduq@sics.se
Olaf Landsiedel2

olafl@chalmers.se
Thiemo Voigt1,3

thiemo@sics.se
1SICS Swedish ICT AB, Sweden

2Chalmers University of Technology, Sweden
3Uppsala University, Sweden

ABSTRACT

Routing in battery-operated wireless networks is challeng-
ing, posing a tradeoff between energy and latency. Previ-
ous work has shown that opportunistic routing can achieve
low-latency data collection in duty-cycled networks. How-
ever, applications are now considered where nodes are not
only periodic data sources, but rather addressable end points
generating traffic with arbitrary patterns.

We present ORPL, an opportunistic routing protocol that
supports any-to-any, on-demand traffic. ORPL builds upon
RPL, the standard protocol for low-power IPv6 networks.
By combining RPL’s tree-like topology with opportunistic
routing, ORPL forwards data to any destination based on
the mere knowledge of the nodes’ sub-tree. We use bitmaps
and Bloom filters to represent and propagate this informa-
tion in a space-efficient way, making ORPL scale to large
networks of addressable nodes. Our results in a 135-node
testbed show that ORPL outperforms a number of state-
of-the-art solutions including RPL and CTP, conciliating a
sub-second latency and a sub-percent duty cycle. ORPL also
increases robustness and scalability, addressing the whole
network reliably through a 64-byte Bloom filter, where RPL
needs kilobytes of routing tables for the same task.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Wireless
Communication; C.2.2 [Network Protocols]: Routing
Protocols

General Terms

Algorithms, Design, Experimentation, Performance

Keywords

Wireless Sensor Network, Energy Efficiency, Opportunistic
Routing, RPL

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’13, November 11–15, 2013, Rome, Italy.

5
6

4

2
3

7

8

rank:0

rank:1

rank:2

rank:2.5

rank:1

rank:2

rank:2.3

rank:1.2

Root

(a) Routing Upwards

6

4 3

8

5

2

7

set:{2,3,4,5,6,7,8}

set:{5,7}

set:{7}

set:{}

set:{4,6,7,8}

set:{7,8}

set:{}

set:{8}

Root

(b) Routing Downwards

Figure 1: ORPL routes packets using multiple for-
warders opportunistically. Routing upwards is done
along a gradient. Routing downwards is done by go-
ing away from the root along nodes that have the
destination in their routing set (either a bitmap or
a Bloom filter).

1. INTRODUCTION
Over the past few years, a new era of sensor networks

has emerged, where nodes are full-fledged addressable end-
points of a standards-based network, rather than data source
of an ad-hoc periodic data collection. Applications are
numerous: smart cities, building automation, smart grid
or healthcare – to name a few. In building automation
for example, networks of hundreds or thousands of nodes
are envisioned [23] to help saving energy and enhance user
comfort through the coordination of power sockets, light
bulbs, and electrical appliances. To scale up and lower
the costs, most scenarios consider battery-operated deploy-
ments, where nodes communicate wirelessly over multiple
hops. In order to make heterogeneous devices interoperate
in this context, the IETF Roll working group standardized
RPL [39] in March 2012, a routing protocol that targets
low-power IPv6 networks.

Communication in such general-purpose low-power net-
works is challenging. First, it must satisfy the energy re-
quirements of the devices, to help operating on battery and
to keep maintenance costs low. Second, it must support
traffic with any pattern in time and space, to act as an
application-agnostic routing infrastructure. Third, it must
be reliable and reactive, enabling interactive applications.
The above goals are hard to conciliate: saving energy re-
quires radio duty cycling [8, 17], which increases latency, and
makes it harder to support non-scheduled transmissions.

Recent work has shown that opportunistic routing is an
efficient way to achieve low-latency yet energy-efficient data
collection in WSN [24, 26, 38]. For instance, ORW [26], uses
anycast targeting a set of potential forwarders, instead of re-
lying on stable links only and waiting for a specific neighbor
to wake up. By exploiting all available links, it improves
CTP [21], a reference data collection protocol, in both en-
ergy and latency [26].

This paper presents ORPL, an extension of RPL that per-
forms opportunistic routing. ORPL advances the state of
the art by demonstrating the applicability of opportunistic
routing to addressable low-power networks. As illustrated
in Figure 1, nodes in ORPL route towards the network root
using all available parents as potential next hops. This is
performed through low-power anycast transmissions along
a gradient. Routing away form the root is also done with
anycast, directed by a set of reachable destinations stored
locally at every node. This routing set is represented either
as a bitmap or as a Bloom filter (in respectively static or
dynamic scenarios), which both are significantly more com-
pact than a routing table, and enable cheap dissemination
through the network. When a Bloom filter is used, false pos-
itives may arise while checking a node against the set, oc-
casionally leading to wrong routing decisions. In that case,
our false positive recovery mechanism fires, and brings the
data to its destination through another path.

Our experimental results in a 135-node testbed [11] show
that: (1) By making RPL opportunistic, ORPL conciliates
low latency and low energy while increasing robustness. In
our many-to-one experiments, it attains a packet delivery
ratio of 99.5% (against 97.4% for RPL), a latency of 0.47 s
(against 1.14 s for RPL), and a duty cycle of 0.48% (against
0.99% for RPL). In any-to-any communication, the latency
reduction is even more substantial, up to a factor of 14 on
individual pairs of nodes. ORPL keeps its reliability above
98% during a network outage that causes RPL to drop 40–
60% of the application data. (2) By basing its routing de-
cision on a fixed-size routing set, ORPL scales to large net-
works while maintaining good performance. In our one-to-
many experiments, ORPL addresses all nodes in the testbed
using a 64-byte Bloom filter, with a packet delivery ratio of
98.8%. RPL achieves a delivery ratio of 95.4%, and can only
address half of the testbed, due to memory restrictions.

The remainder of this paper is organized as follows: §2
provides required background and gives the intuition behind
ORPL. §3 details the design of ORPL. §4 presents our exper-
imental results. We discuss specific aspects of our approach
in §5, review related work in §6 and conclude in §7.

2. OVERVIEW
In this section, we first give necessary background on op-

portunistic routing, any-to-any routing and RPL. Then, we
provide a high-level description of our protocol ORPL.

2.1 Opportunistic Routing in Sensornets
Traditionally, routing in multi-hop networks is done

through a series of unicast transmissions along a path.
Instead, opportunistic routing uses multiple potential for-
warders through anycast transmissions. This exploits spa-
tial diversity and embraces the bursty nature of wireless
links [36]. In ExOR [4], for example, packets are anycasted
to a set of potential next hops. The forwarding decision is
made on the receivers’ side. All potential forwarders have

their own transmission time slot sorted by routing progress,
and forward only if they have not overheard transmissions
from others. This process selects the best available next hop
in a distributed way and avoids duplicate forwarding.

ORW [26] showed that opportunistic routing is also ben-
eficial in duty-cycled data collection networks. Instead of
waiting for a specific neighbor to wake up, nodes anycast the
packet until any valid forwarder receives and acknowledges
it. ORW exploits any potentially useful link, rather than
using stable links only (as traditional routing protocols do).
This increases robustness and shortens the wakeup phase of
low-power listening. ORW routes over multiple hops along
a gradient, towards a sink, similarly to CTP [21]. It concili-
ates robustness, low latency and energy efficiency in periodic
data collection.

ORPL enables opportunistic routing in a more general sce-
nario, where nodes are addressable and perform on-demand
any-to-any routing.

2.2 Any-to-Any Routing and RPL
Applications are now foreseen where nodes are not only

data sources, but also addressable end points, with actua-
tion capabilities, and possibly exposed as a resource on the
Internet. Building automation and smart cities are exam-
ples of such. From a networking point of view, this implies
that routing must not only be supported towards a single
destination, but from any node to another.

We focus on RPL [39], a routing protocol that provides
any-to-any routing in low-power IPv6 networks, standard-
ized by the IETF in March 2012. Its design is largely based
on CTP [21], the reference data collection protocol for sen-
sor networks. The RPL topology is a DODAG (Destination-
Oriented Directed Acyclic Graph) built in direction of the
root, typically an access point to the Internet. Any-to-any
traffic is routed first upwards, i.e., towards the root, until
a common ancestor of destination and source is found, and
then downwards, following the nodes’ routing table1.

Note that RPL uses a simple rooted topology instead of a
full mesh. Doing so, the entire effort – both in memory and
control traffic – is devoted to the maintenance of reliable
paths to a single destination. The purpose of this strategy
is to scale to large networks while containing the routing
overhead, at the price of increased hop count (routing via a
common ancestor). ORPL adopts the same rooted topology,
but alleviates latency problems through multipath routing
and exploits shortcuts between branches of the topology.

2.3 ORPL in a Nutshell
ORPL brings opportunistic routing to RPL, aiming for

low-latency, reliable communication in duty-cycled net-
works. ORPL focuses on providing a low-power mesh that
supports any-to-any traffic with arbitrary patterns.
Routing upwards in ORPL is done similarly to ORW, op-

portunistically and along a gradient. At the MAC layer,
ORPL uses anycast over a low-power-listening MAC, as il-
lustrated in Figure 2. The selection of the next hop is done
during the transmission: The first neighbor that, (1) wakes
up, (2) successfully receives the packet and (3) is closer to
the root, acknowledges the packet and forwards it.

1RPL also has a so-called non-storing mode that performs
source routing. We focus on the storing mode, for its higher
efficiency in any-to-any routing (in source routing, the only
usable common ancestor is the root).

D

D

A

A D

D

A

A

D D

D D

1

2

3

D D D

D D

D D

D

D: Data frame A: Acknowledgement

(a) Low-Power Listening Unicast

D D D D D

D

A

A

1

2

3

(b) Low-Power Listening Anycast

Figure 2: Traditionally, routing uses unicast over
stable links, aiming for stability. Low-power lis-
tening introduces a significant delay at every hop.
ORPL uses anycast and transmits to the first awo-
ken forwarder that receives the packet, regardless of
link quality estimates.

Routing downwards, however, cannot rely on the gradient
only, as merely routing away from the root is not enough
to ensure that the destination will be reached. Since we
use anycast, nodes do not need to choose a next hop (the
next hop elects itself while receiving), and therefore do not
need a traditional routing table. We introduce the notion of
routing set, the set of nodes that are below in the DODAG
(from a graph point of view, the sub-DODAG rooted at
the node). This information tells whether a node is on a
path to the destination or not, as illustrated by Figure 3.
A neighbor forwards a packet downwards if it (1) wakes up,
(2) successfully receives the packet, (3) is farther from the
root and (4) has the destination in its routing set.

ORPL supports any-to-any traffic by first routing upwards
to any common ancestor, and then downwards to the desti-
nation. The unique combination of a rooted topology with
opportunistic routing is what enables basing the forwarding
decision on a routing set – a key to ORPL’s scalability.

ORPL has two variants. (1) The simpler assumes a net-
work with a fixed set of elements known at deployment time.
It uses a bitmap to represent the routing set. (2) The second
variant allows new nodes to join the network at runtime. It
uses Bloom filters [5] to represent the routing set in a com-
pact way. This enables efficient and scalable propagation
of routing information. The routing set typically fits a sin-
gle link-layer frame and is piggybacked by ORPL’s periodic
control messages. When Bloom filters are used, ORPL is
augmented with a false positive recovery mechanism that,
despite increased latency, keeps the reliability high.

3. DESIGN OF ORPL
This section presents the core mechanisms of ORPL. It

encompasses topology construction and inconsistency detec-
tion, routing decisions, and routing set representation.

3.1 Topology and Routing Metric
ORPL uses a DODAG as topology, based on the EDC

(Expected Duty Cycles) metric [26]. EDC represents the
number of MAC wakeup periods required to reach the root.
It is the multipath equivalent of ETX [10] (Expected Trans-
mission Count, the most commonly used metric in RPL and
CTP). EDC is calculated as the sum of two components:

D

Z

B C

A rank: 1

rank:8

rank:2

multiple

hops

E rank:3

(a) Example Topology

Node A B → B
C → C
D → D
E → D
Z → D

Node D E → E
Z → E

(b) RPL Routing Tables

Node A B, C, D, E, Z
Node D E, Z

(c) ORPL Routing Sets

Figure 3: To reach Z, A has to route downwards
with D as a next hop. In RPL, A uses a routing
table and unicasts to D. In ORPL, D elects itself
as next hop upon receiving A’s anycast, based on
the inclusion of Z in its own routing set and on the
increasing rank.

first, the expected time to deliver a packet to any forwarder,
and second, the expected remaining time to reach the root.
The latter is calculated as a weighted average of the neigh-
bor’s EDC, with link estimates as weight. The cost of for-
warding is accounted for through a parameter w, typically
between 0 and 1, which sets the balance between oppor-
tunism and number of hops. For more details on EDC cal-
culation, forwarder set selection, convergence and effects of
node density, we refer the reader to the ORW paper [26].

ORPL uses periodic broadcasts with a Trickle Timer [27]
to propagate routing information, like RPL or CTP. Note
that in the RPL terminology, the distance from a node to
the root according to the routing metric is called rank.

3.2 Routing Decision
In ORPL, nodes anycast packets instead of choosing a

next hop and unicasting to it. Nodes receiving a packet
decide whether to forward it or not, and send a link-layer
acknowledgment only if they choose to act as next hop.

Any-to-any routing is performed by sending the packet up-
wards until it reaches a common ancestor, then downwards
to the destination. Note that multipath routing exploits
more nodes as common ancestors, as illustrated in Figure 4.

The routing decision at node N for a packet anycasted by
A with destination D is as follows:
Upwards N forwards the packet upwards iff it is marked
by A as going upwards (this information is included in RPL’s
IPv6 Hop-by-Hop extension header) and RankN + w <

RankS . This guarantees strictly decreasing rank, ensuring
the upwards direction. The parameter w avoids forwarding
in case of insufficient routing progress (without compromis-
ing connectivity [26]).
Downwards N forwards the packet downwards iff

RankN > RankA + w and D ∈ RoutingSetN . Assuming a
converged topology, this guarantees that the destination will
eventually be reached. This is explained as follows: because
D ∈ RoutingSetN , N is in a possible path from A to D. This
implies RankD > RankN , and as RankN > RankA +w, we
know that N is closer to D than A is.

Note that the decision to route downwards is intentionally
independent from whether the packet is currently marked as
going up or down. This enables direct transmission between
distinct branches of the topology in the case of any-to-any

Root

S

D

(a) RPL

S

D

Root

(b) ORPL

Figure 4: RPL nodes use only one current parent.
When routing from S to D, the only usable common
ancestor is the root. In contrast, ORPL uses every
link in the DODAG. Many paths are available from S
to D, through 4 different common ancestors (marked
as triangles).

routing (avoids routing up to a common ancestor and down
again). This feature comes inherently with the opportunis-
tic nature of ORPL: ancestors of the destination from other
branches simply decide to forward the packet if they over-
hear it. The same would be difficult to put in practice with
RPL, as it requires to share routing tables among siblings.

The duty-cycled anycast used by ORPL sometimes results
in multiple nodes forwarding the same packet, and generat-
ing duplicates. We filter out duplicates at the routing layer
to reduce unnecessary forwarding. The MAC wakeup inter-
val and parameter w have a sensible impact on duplicate
traffic, measured and discussed in §4.2.

3.3 Construction of the Routing Set
Instead of using routing tables, ORPL nodes use a routing

set storing the nodes that are below them in the DODAG.
This routing set only contains destinations, as opposed to
a routing table made of 〈next hop, destination〉 pairs. It
can be represented in a more compact way than a tradi-
tional routing table. In scenarios where the whole network
is known at deployment, the routing set is represented as a
bitmap (i.e., one bit per node in the network). In scenarios
where new nodes may join the network after deployment, we
use a Bloom filter instead.

In RPL, nodes propagate their routing entries through
unicast (so-called DAO messages) to their parents. In
ORPL, the routing set is broadcasted instead (appended
to the Trickle beacons), and the decision to consider a node
as a child is made by the parent based on the ranks. This
way, routing set propagation is also opportunistic and max-
imizes the number of links available for downwards routing.
Nodes trigger a transmission of their routing set every time
they update it. We avoid broadcast storms through simple
delayed transmissions with duplicate suppression.

Upon receiving a routing set from a neighbor C, a node
N checks whether (1) the neighbor is a child (RankN >

RankC +w) and (2) the link quality from N to C is greater
than a threshold. If so, N inserts C in its set, and merges
C’s set with its own. Sets are simply merged through a bit-
wise OR, in both cases of a bitmap or a Bloom filter. We
use a link-quality threshold of 50% reception rate, simply
filtering out bad links.

3.3.1 Link Quality Estimation

Nodes are inserted in routing sets based on link quality
estimates between the parent and the child. This ensures
that children are reachable from their parents. ORPL uses
beacon counting to estimate links. This way, link estimates
are maintained even in the absence of application traffic.

In our current design, we use acknowledged broadcasts
for beacon counting. With low-power-listening, broadcasts
are sent repeatedly for exactly one wakeup period. Nodes
receiving a broadcast send a link-layer acknowledgment ex-
tended with the receiver’s address. Link estimates are based
on the number of acknowledgments received by the neigh-
bors. We add a small jitter in the wakeup schedule to avoid
repeated collisions due to synchronization.

3.3.2 Aging

In low-power networks, links are dynamic, forcing the
routing topology to adjust. Because the routing set is built
by aggregation, it would be erroneous to remove an element
when a single children has lost its link to it. For instance,
assume node N has D in its routing set, because D is reach-
able from either child B or C. When B loses its link to D, N
should not remove D from its set, because a route to D still
exists through C.

To tackle this problem, every node maintains exactly two
routing sets, one active and one warmup. Routing decisions
are made on the active set only, whereas insert and merge
operations are applied to both sets. Periodically (follow-
ing the Trickle timer), the two sets are permuted, and the
warmup one is emptied. As this technique does not require
element removal, it is suitable not only for bitmaps but also
for Bloom filters (this is a common way to implement aging
Bloom filters [6]).

3.3.3 Inclusion of the 1-hop Neighborhood

As an optimization, and to increase the number of avail-
able paths, we extend the routing set with the 1-hop neigh-
borhood of the nodes in the sub-DODAG. To do so, nodes
include (but do not merge the set of) all neighbors with
a good link in their routing set, including those that are
not children. The routing decision remains unchanged: go-
ing down ensures the packet will eventually reach either the
destination or a node having it in radio range.

3.4 Bloom Filters
Using bitmaps for storing the routing set requires com-

plete knowledge of all nodes in the network. Letting new
nodes join the topology would require to reset the network
and propagate new bitmaps. To support node insertion
without the need to reset the network, ORPL can also rep-
resent routing sets as Bloom filters.

3.4.1 Bloom Filter Basics

A Bloom filter is a space-efficient, probabilistic data struc-
ture for set insertion, membership query, and merging [5].
A filter is an array of m bits. Inserting an element is done
by setting k bits of the filter. The position of the k bits is
obtained deterministically by applying k hash functions on
the input. Checking the membership of an element is done
by hashing the element again and checking if all k bits are
already set. If not, one can conclude the element is not in
the set. If yes, then the element may be in the set, but there
is a possibility of false positives.

1 2 4 8 16 32 64 128 256 512
Number of Elements

0
20
40
60
80

100
Fa

ls
e

Po
si

tiv
es

 (%
)

Bloom filter, SAX (k=4)
Bloom filter, theory (k=4)
Bloom filter, SAX (k=1)
Bloom filter, theory (k=1)

Figure 5: The false positive rate in a Bloom filter
that uses SAX hash is close to the theoretical bound.
The number of hashes k tunes the system towards
optimality at either more full or more empty filters.

As an example setup for ORPL, assume an expected num-
ber of elements (addressable nodes in the network) n = 60, a
and Bloom filter size m = 256 bits. The optimal number of
hashes is k = m

n
× ln(2) ≈ 2.96. Using k = 3, the probability

of false positive p is [5]:

p =

(

1−

(

1−
1

m

)kn
)k

≈ 0.12928

which is a false positive rate of about 13%, for a space effi-
ciency of m

n
= 4.26 bit per inserted element.

3.4.2 Choice of the Hash Function(s)

A Bloom filter needs k hash functions that produce hashes
of size log2(m) bits. A common way to implement this is to
use a single hash function producing k × log2(m) bits, and
to split its output in k parts. With ORPL, nodes use their
Bloom filter during packet reception to decide whether to
acknowledge or not. Therefore, we need a hash function that
executes fast enough (less than the radio time of a frame).
We also need the hash function to be of reasonable memory
complexity, so it fits the target devices.

We choose a SAX (Shift-and-Xor) hash, which was iden-
tified by Ramakrishna et al. [33] as one of the simplest hash
functions that conciliates the properties of: uniformity, uni-
versality, applicability, and efficiency. It is computed as hn,
where ∀i ∈ [1;n], ci are the input bytes, and where hi is:

hi =

{

hi−1 ⊕ (hi−1<<5 + hi−1>>2 + ci) if i > 1;
0 if i = 1.

The quality of a simple hash function like SAX heavily
depends on the input it works with. To assess SAX in the
context of ORPL, and to calibrate our system, we run SAX
offline on an input set similar to what the routing set will
contain: IPv6 addresses that share the same prefix.

Figure 5 shows, for m = 256, k ∈ {1, 4}, and n ∈ [1; 512],
the false positive rate obtained by SAX against the theo-
retical bound. With this setup, SAX remains close to the
theoretical bound, under-performing it by a maximum of
10 percentage points. Note that the cases k = 1 and k = 4
intersect at n = 83. For ORPL, this means that choos-
ing k = 1 optimizes for nodes having the most full routing
sets, whereas k = 4 optimizes for more lightly loaded sets.
We evaluate the practical effects of m and k while running
ORPL in §4.5.

3.4.3 False Positive Recovery

Bloom filters imply false positives (FP), which, in the con-
text of routing sets, lead to wrong routing decisions (a node

forwards a packet downwards although the destination is
not in its sub-DODAG). As routing sets are propagated up-
wards in the routing topology, false positives also propagate.
When a FP occurs, the packet will be forwarded downwards
until hitting the source of the FP, a node having no potential
next hop for the current destination. After a fixed number
of failed transmissions, ORPL triggers a false positive recov-
ery mechanism that tries to reach the destination via other
routes. The recovery mechanism follows a two-step process:
Blacklisting and Returning When a node detects a
FP, it inserts the packet sequence number in a (short-lived)
blacklist, and then unicasts the packet back to the previous
hop. The packet is marked as being recovered.
Exploring Upon receiving a packet that is in recovery,
the parent makes another attempt to route downwards. If
it fails, the process is repeated recursively, i.e., the packet is
blacklisted and sent upwards. In the worst case, this results
in a full in-depth exploration of the subset of the DODAG
having the destination in its routing set. In practice, with
reasonably low false positive rates, only a small portion of
this subset is explored before finding a correct route.

Note that ORPL cannot distinguish an actual false pos-
itive from and a loss due to bad link conditions or topol-
ogy changes. Node disconnections have a similar impact as
false positives, leading to routing dead ends. To ensure the
packet will be dropped in reasonable time in bad link con-
ditions (e.g., external interference), we limit the number of
transmission attempts during recovery2.

3.5 Dealing with Network Dynamics
Wireless links in low-power networks are often bursty [36,

37], resulting in instability of the logical topology. To main-
tain a consistent topology, ORPL extends RPL’s datapath
validation and rank hysteresis mechanisms, adapting them
to the requirements of multipath routing and routing sets.
Datapath Validation Datapath validation consists in
using data traffic to detect inconsistencies and heal the
topology. To detect inconsistencies in the routing set, ORPL
performs a lookup in the local routing set for every packet
that is received or overheard. If the packet source is a child
but is not present in the set, it is added. If the packet source
is not a child, but is present in the routing set, ORPL trig-
gers a self-healing process: the node switches its routing set
(aging), and resets its Trickle timer.
Rank Hysteresis RPL’s rank hysteresis mechanism pre-
vents nodes from switching parent for too little rank im-
provements. ORPL extends it by applying it to all rank up-
dates, not only parent switches. Each node maintains both
a real and advertised rank. It does not advertise a new rank
until the change (positive or negative) reaches the hysteresis
threshold. Doing so, we make the topology more stable, and
make routing set inconsistencies less frequent.

3.6 Implementation Aspects
We implement ORPL3 in the Contiki OS [14], based on

RPL. We review a number of relevant features that are spe-
cific to this implementation.
ContikiMAC At the MAC layer, we use Contiki-
MAC [13], a low-power-listening MAC, that we ex-
tend to support anycast. ContikiMAC is similar to

2Our implementation triggers recovery after 5 attempted
anycasts. Subsequent transmissions use only 2 attempts.
3ORPL is available at https://github.com/simonduq/orpl

Network Settings Experiment Protocol PDR (%) Latency (s) Duty Cycle (%)

Tx power: 0 dBm
Diameter: 5.7 hops

Density (min): 3 nodes
(avg): 17.1 nodes
(max): 33 nodes

Many-to-one

ORPL (+ ContikiMAC) 99.50 0.47 (max: 1.38) 0.48 (max: 2.58)

RPL (+ ContikiMAC) 97.39 1.14 (max: 4.56) 0.99 (max: 12.92)

ORW (+ BoX-MAC) 98.08 0.82 (max: 2.31) 1.08 (max: 2.96)

CTP (+ BoX-MAC) 98.46 1.98 (max: 12.29) 2.20 (max: 4.99)

LWB 99.88 2.82 (max: 3.58) 1.24 (max: 2.09)

LWB (small payload) 99.93 1.69 (max: 2.08) 0.61 (max: 1.25)

One-to-many
ORPL 98.96 0.96 (max: 1.90) 0.57 (max: 2.45)

RPL 91.92 2.09 (max: 6.72) 1.74 (max: 21.63)

Any-to-any
ORPL 98.48 1.08 (max: 2.35) 0.47 (max: 1.94)

RPL 71.29 3.75 (max: 12.75) 2.16 (max: 12.99)

Tx power: -10 dBm
Diameter: 9.8 hops

Density (min): 1 node
(avg): 9.3 nodes
(max): 24 nodes

Many-to-one
ORPL 98.85 1.22 (max: 3.66) 0.83 (max: 5.45)

RPL 96.19 2.17 (max: 6.63) 1.35 (max: 13.32)

One-to-many
ORPL 98.10 1.60 (max: 3.60) 0.69 (max: 2.92)

RPL 90.76 2.82 (max: 6.95) 1.82 (max: 16.06)

Any-to-any
ORPL 95.45 1.97 (max: 3.45) 0.41 (max: 2.94)

RPL 74.44 4.27 (max: 26.17) 1.16 (max: 12.66)

Table 1: Experiments Summary. ORPL improves latency and energy consumption over other solutions, for
all traffic patterns as well as with reduced network density. LWB is the most robust protocol, but has a
substantially higher latency and consumes more energy than ORPL, even when used with reduced payload.

BoX-MAC-1 [30], in that it uses the data packet itself as
preamble. It has two major differences with BoX-MAC-1.
(1) Its wakeup consists of two clear channel assessments that
last 192µs (similarly to BoX-MAC-2), instead of radio listen-
ing for a few milliseconds. (2) ContikiMAC has a phase-lock
mechanism, where senders record their neighbor’s wake-up
phase, and use it to make the next transmissions cheaper.
Note that phase lock is used for unicast only, not broadcast
nor ORPL anycast.

We extend the ContikiMAC default phase lock guard time
from 15 to 63 ms, which we found necessary to avoid losing
synchronization when long wakeup intervals are used. We
use Contiki’s default number of transmission attempts, 5,
with an exponential backoff, which we found to achieve a
good balance between reliability and latency.
Software Acknowledgments We implement anycast
for the TelosB platform and its cc2420 radio chip. We dis-
able hardware acknowledgments and configure the chip to
trigger an interrupt after receiving the 802.15.4 frame and
IPv6 headers. From the interrupt, we check the destination
IPv6 against the routing set, compare ranks, make the for-
warding decision, and send an ACK if we decide to forward
the packet.
Control Traffic On the data plane, ORPL uses the
standard RPL Hop-by-Hop extension header, that contains,
among others fields, the current routing direction (up or
down) and the rank of the sender. On the control plane,
ORPL extends the periodic DIO beacons with the current
routing set of the sender. In our implementation, the rout-
ing set is sent as a separate frame, as the default DIO almost
fills out a complete 802.15.4 frame.
Memory We review the amount of volatile memory used
by RPL and ORPL, in two parts: (1) Neighbor tables, which
scale linearly with network density. This includes link qual-
ity estimates, MAC addresses and other small bits of in-
formation. In the current implementation, each neighbor
consumes 18 bytes, for both RPL and ORPL. (2) Routing
tables, which scale linearly with network size. In RPL, each
routing entry consumes 48 bytes (global and local IPv6 ad-
dresses, lifetime and other data). In ORPL, two routing

sets (one active, one warmup) are enough to cover the whole
network. In our evaluation, we use bitmaps of 17 bytes, or
Bloom filters between 8 and 80 bytes, to address 135 nodes
(from 0.47 to 4.74 bits per entry and per filter).

In our experiments, with a maximum of 33 neighbors and
135 nodes, RPL consumes 33× 18 + 135× 48 = 7074 bytes,
whereas ORPL uses 33× 18 + 2× 80 = 754 bytes of RAM.
Note that the routing tables of RPL could be made substan-
tially smaller through address compression, but reaching the
compactness of ORPL’s routing sets seems difficult (routing
tables contain strictly more information).

4. EVALUATION
In this section, we evaluate ORPL experimentally through

our implementation. We first show, in a data collection
scenario, that ORPL increases RPL’s reliability, latency
and energy-efficiency. ORPL also outperforms other state-
of-the-art solutions such as the Collection Tree Protocol
(CTP) [21], Opportunistic Routing for WSN (ORW) [26]
or the Low-Power Wireless Bus (LWB) [18]. Second, we
focus on our routing-set-based forwarding mechanism, and
demonstrate that opportunistic routing also improves down-
wards routing. Then, we focus on the effects of Bloom filters
and the false positive recovery mechanism. We then demon-
strate the benefits of ORPL in robustness, through experi-
ments that emulate a network outage in the testbed. Finally,
we evaluate ORPL in a scenario where individual nodes re-
quest and respond to one-another. We find that ORPL is
even more beneficial to any-to-any routing than it is to up-
wards or downwards routing alone, because of its ability to
shortcut different branches of the topology. A summary of
our experiments is presented in Table 1.

4.1 Methodology
We evaluate ORPL in the Indriya testbed [11] which has

135 TelosB nodes spanning three floors of an office build-
ing4. We use node 20 as the network root, at the third floor,

4Indriya has a total of 139 nodes, of which 135 were available
at the time we ran our experiments.

125 250 500 1000 2000 4000
Wakeup Interval (ms)

50

60

70

80

90

100

Pa
ck

et
 D

el
iv

er
y

Ra
tio

 (%
)

RPL
ORPL w=0.1
ORPL w=0.5

(a) Reliability

125 250 500 1000 2000 4000
Wakeup Interval (ms)

0
2
4
6
8

10
12
14
16

La
te

nc
y

(s
)

(b) Latency

125 250 500 1000 2000 4000
Wakeup Interval (ms)

0

1

2

3

4

5

Du
ty

 C
yc

le
 (%

)

(c) Energy

125 250 500 1000 2000 4000
Wakeup Interval (ms)

0

10

20

30

40

50

Du
pl

ic
at

e
Tr

af
fic

 (%
)

(d) Transmissions

Figure 6: Upwards Routing. At any wakeup interval, ORPL outperforms RPL in reliability and latency,
despite its significantly higher duplicate rate. In its most energy-efficient setting (interval of 1000 ms), RPL
has a duty cycle of 0.57% and a latency of 2.51 s. ORPL, at an interval of 500 ms, conciliates a duty cycle of
0.48% and a latency of 0.47 s.

maximizing the network diameter. In most experiments, we
use the maximum transmission power of the cc2420 radio
chip, i.e., 0 dBm. This leads to a diameter of 5.7 hops (av-
eraged over our RPL runs) and a density ranging from 3 to
33 neighbors, 17.1 on average. To assess ORPL in a less
dense environment, we also run experiments with a trans-
mission power of -10 dBm, the minimum power that led
to a fully-connected network. With -10 dBm, the diame-
ter is 9.8 hops and the density between 1 and 24 neighbors,
9.3 on average. In all experiments, the application payload
is 64 bytes. In the RPL and ORPL cases, all traffic is carried
in UDP datagrams over 6LoWPAN.

4.1.1 Protocols

Throughout our evaluation, we compare ORPL against
RPL. In the case of periodic data collection, we also include
CTP [21], ORW [26] and LWB [18] as reference points.
RPL We used RPL as the basis of ORPL’s design and
implementation. Comparing against it allows to isolate the
effects of opportunistic routing from other factors such as
MAC layer or OS. We run RPL over Contiki with ETX [10]
as a routing metric.
CTP CTP is the default collection protocol in TinyOS,
often used as a benchmark. CTP informed the design of
RPL, and, in many-to-one scenarios, the two protocols re-
semble each other. We run CTP over BoX-MAX, the default
low-power MAC in TinyOS.
ORW ORW extends CTP with opportunistic routing over
low-power anycast. To the best of our knowledge, it is
the only low-power opportunistic routing protocol imple-
mented for sensors and tested experimentally (ORW runs
over TinyOS and BoX-MAC). ORPL, when routing up-
wards, operates similarly to ORW.
LWB The Low-Power Wireless Bus (LWB) is a protocol
that follows a radically different approach. It bases every
communication on Glossy [19], a network flooding mecha-
nism that exploits constructive interference of synchronous
transmissions. Targeting periodic traffic applications, LWB
schedules Glossy rounds to satisfy the load advertised by the
nodes in the network. It was shown to outperform state-of-
the-art collection and many-to-many protocols under various
network conditions [18].

We use a Contiki-based implementation of LWB that was
provided by its authors. We enable the low-latency mode,
in which the network coordinator schedules new rounds as

aggressively as possible, trading energy for latency [18]. The
minimum period is set to 1 second, the maximum to 30 sec-
onds. Glossy rounds are sensitive to the network diameter
and frame size. We run LWB in two different settings: (1)
supporting full 64 byte payload (round time of 20 ms), (2)
supporting smaller payload (15 byte, with a round time of
10 ms [18]). Because LWB is designed for periodic traffic,
we use it with constant inter packet interval, instead of ran-
domized transmissions within an interval.

4.1.2 Metrics

We focus on three key metrics. (1) The Packet Delivery
Ratio (PDR) is the fraction of packets received over those
sent, in end-to-end communication. It tells how reliable the
protocol is. (2) The packet latency is also measured end-
to-end, from the application requesting transmission at the
source node, to the application receiving the data at the
target node. To minimize latency in random access net-
works is one of the main goals of ORPL. (3) We use duty
cycle, the portion of radio on-time, as a metric for energy
efficiency. This metric is a good proxy for power, because
typical sensor platforms have their power profile dominated
by the radio chip, and because transmit and listen opera-
tions commonly have a similar current draw. Furthermore,
duty cycle, unlike the actual power consumption in Watts,
is a platform-independent metric. We measure the nodes’
duty cycle in software using Contiki’s energy profiler [15].

Unless otherwise mentioned, all our experiments run for a
duration of one hour. The results are averaged over at least
three runs, and error bars show the standard deviation.

4.2 Upwards Routing
Our first series of experiments focuses on the most tra-

ditional traffic pattern in sensor networks: periodic data
collection. Nodes send packets randomly with an aver-
age interval of 4 min. The resulting network load is
0.56 packet/second, which, in most settings (exception of
RPL with a wakeup interval of 4000 ms), is well below net-
work saturation.

4.2.1 Effect of Wake-up Interval

Figure 6 summarizes our results with RPL and ORPL for
various ContikiMAC wake-up intervals and parameter w.
With all settings, ORPL is more reliable than RPL, and
maintains a reliability above 99.5% at any wakeup interval

125 250 500 1000 2000 4000
Wakeup Interval (ms)

0
1
2
3
4
5

Du
ty

 C
yc

le
 (%

) Tx
Rx
MAC Baseline

(a) RPL

125 250 500 1000 2000 4000
Wakeup Interval (ms)

0
1
2
3
4
5

Du
ty

 C
yc

le
 (%

)

(b) ORPL

Figure 7: Energy Profiles (Upwards Routing). RPL
and ORPL have different optima, because of a dif-
ferent balance between reception and transmission.

below 4000 ms (Figure 6a). RPL reaches a maximum packet
delivery ratio of 97.39%. As the wakeup interval increases,
the performance of RPL drops due to network congestion.

Figure 6b shows that ORPL also reduces latency. In
most cases, its end-to-end latency is below the ContikiMAC
wakeup interval, i.e., packets are forwarded up to the root
in less than a cycle time (e.g., latency of 0.47 s for a wakeup
interval of 500 ms). This is a result of low-power anycast ex-
ploiting the first awoken node that provides routing progress.
Figure 6c shows that RPL and ORPL have different energy
tradeoffs. ORPL is most energy efficient at a wakeup inter-
val of 500 ms (duty cycle of 0.48%) and RPL at an interval of
1000 ms (duty cycle of 0.57%). We find w = 0.5 to produce
the best results in this data collection experiment.

Figure 6d shows that ORPL produces an significant num-
ber of duplicates, accounting for between 9% to nearly 50%
of the traffic in our runs. This is an inherent drawback of
ORPL, which becomes more pronounced as the wakeup in-
terval decreases (or as the density increases). At an interval
of 4000 ms, the duplicate rate is high due to network con-
gestion that triggers more collisions and retransmissions.

Overall, we find a 500 ms wakeup interval to offer a good
compromise, with both RPL and ORPL achieving a latency
below 2 seconds and a duty cycle below 1%. We use a default
period of 500 ms and w = 0.5 for next experiments.

4.2.2 Limits of ORPL Against RPL

In our experiments, ORPL nearly constantly outperforms
RPL in all metrics. However, we believe the phase-lock
mechanism of ContikiMAC can be improved with more ac-
curate synchronization and tighter timings.

Figure 7 details the energy profile of RPL and ORPL. At
a period of 1000 ms or 2000 ms, RPL achieves a duty cycle
lower than ORPL, thanks to phase lock. However, increasing
the period further causes nodes to lose synchronization and
waste energy. In other words, the growing green area at the
right end of Figure 7a is an artefact of the current phase
lock implementation having loose timings. With a better
synchronization and shorter guard times, we expect RPL to
be the most energy-efficient solution as the period increases
(while still having ORPL superior in reliability and latency).

4.2.3 Comparison with CTP and ORW

Table 1 includes a comparison against CTP [21] and
ORW [26]. Note that both protocols run atop TinyOS
and BoX-MAC, whereas RPL and ORPL use Contiki and
ContikiMAC. We use a wake-up period of 2 seconds for
BoX-MAC, which leads to the best average duty cycle in
our experimental setup.

125 250 500 1000 2000
Wakeup Interval (ms)

0
2
4
6
8

10
12
14
16

La
te

nc
y

(s
)

RPL
ORPL w=0.1
ORPL w=0.5

(a) Latency

125 250 500 1000 2000
Wakeup Interval (ms)

0

1

2

3

4

5

Du
ty

 C
yc

le
 (%

)

(b) Energy

Figure 8: Downwards Routing. ORPL, through its
routing-set-based forwarding, enables opportunistic
downwards routing, saving energy and latency.

As expected ORW improves CTP in reliability, latency
and energy, in a similar proportion as ORPL improves RPL.
We also find that ContikiMAC-based solutions (RPL and
ORPL) outperform BoX-MAC-based solutions (CTP and
ORW). This is explained by ContikiMAC’s cheaper wakeup
and phase-lock mechanism, which lead to a substancially
lower baseline than BoX-MAC. At the network layer, in the
particular case of data collection, RPL and ORPL operate
similarly to respectively CTP and ORW.

4.2.4 Comparison with LWB

Table 1 includes a comparison against LWB [18]. In our
experiments, LWB is more reliable than ORPL, with a de-
livery ratio of 99.93% against 99.76%. This is a result of
the Glossy flooding that exploits constructive interference.
ORPL achieves significantly lower latency than LWB, with
an average of 0.47 s against 1.69 s to 2.82 s. This is explained
by the fact that LWB which targets periodic traffic applica-
tions requires nodes to wait for the next schedule from the
network coordinator before transmitting.

ORPL outperforms LWB in average energy, but note that
LWB spreads the load more evenly among nodes. Indeed,
the most loaded node with LWB has a duty cycle of 1.25
or 2.09% against 2.58% for ORPL. Load balancing is not
the first target of ORPL, but we believe the protocol could
be improved in that direction, for example by taking the
energy level into account in the rank calculation, affecting
the depth in the logical topology.

Finally, a major difference between the two protocols is
that while LWB is tailored for periodic traffic, ORPL is a
generic routing infrastructure supporting on-demand traffic,
which makes it appealing for IP-based networks.

4.3 Downwards Routing
We now investigate the downwards routing mechanism of

ORPL, in which nodes perform opportunistic routing di-
rected by routing sets. At this stage, we represent the rout-
ing set as a bitmap, to rule out the effect of Bloom filter
false positives. The experiment has two steps: (1) network
convergence, where the ORPL or RPL topology is built un-
til the root has all destinations in its routing set, and (2)
application execution, where the root sends a packet to a
randomly chosen node every 4 s.

Due to memory restrictions of the TelosB nodes, RPL
was unable to address the whole testbed. We restrict the
set of addressable nodes to half of the testbed (nodes with

8 16 32 48 64 80 bm
Bloom Filter Size, m (bytes)

0

20

40

60

80

100
Fr

ac
tio

n
of

 P
ac

ke
ts

 (%
)

Lost, No FP
Lost, FP
Received, FP & recovery
Received, FP & no recovery
Received, no FP

(a) Reliability

8 16 32 48 64 80 bm
Bloom Filter Size, m (bytes)

0

10

20

30

40

50

La
te

nc
y

(s
)

95th percentile
80th percentile
50th percentile

(b) Latency

8 16 32 48 64 80 bm
Bloom Filter Size, m (bytes)

0

1

2

3

4

5

6

Du
ty

 C
yc

le
 (%

)

(c) Energy

8 16 32 48 64 80 bm
Bloom Filter Size, m (bytes)

0

5

10

15

20

25

30

35

Ho
ps

 A
fte

r R
ec

ov
er

y

(d) Hop Count After Re-
covery

m k

8 1
16 2
32 4
64 4
80 6

(e) k used

Figure 10: Effect of the Bloom Filter Size m. A Bloom filter of 32 bytes or more achieves a PDR above 98%
and performs nearly as well as a bitmap (marked as “bm”). Below that size, the false positive rate increases,
more recoveries are triggered, which leads to increased latency and duty cycle.

0 1 2 3 4 5 6 7 8
Hop Count

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

RPL
ORPL w=0.5
ORPL w=0.1

2 4 6 8 10 12 14
Unique Parents (forwarders) Used
0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(a) Upwards Routing

0 1 2 3 4 5 6 7 8 9
Hop Count

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

2 4 6 8 10 12 14 16
Unique Parents (prev. hop) Used

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

(b) Downwards Routing

Figure 9: Hop Count and Unique Parents (wakeup
interval = 500 ms). In the downwards case, ORPL
exploits even more routing diversity than in the up-
wards case, but also has higher hop count.

an even ID), i.e., 67 nodes. The resulting RPL routing table
consumes 3.1 kB of RAM. In contrast, ORPL needs only two
(one active and one warmup) bitmaps of 9 bytes to address
the same subset of the testbed.

Figure 8 shows that our routing-set-based anycast makes
ORPL not only superior in data collection, but also in down-
wards traffic. Both ORPL and RPL perform worse down-
wards than upwards, because their routing topology is built
and optimized in the upwards direction. At a wakeup pe-
riod of 500 ms, ORPL reduces RPL’s latency from 2.09 s
to 0.96 s (see Figure 8a), and the duty cycle from 1.74% to
0.57% (see Figure 8b). ORPL is also more reliable, with a
PDR of 99.0% against 91.9% for RPL.

Figure 9 takes a closer look at the routing topology, in
number of hops and parent diversity, at a wakeup period
of 500 ms. The figure shows that ORPL exploits routing
diversity, including in the downwards case, with a unique
parent count up to 16 on individual nodes. This comes at
the price of a higher hop count, especially when w is set to
a low value. It shows that our routing-set-based forwarding
mechanism exploits spatial diversity in downwards routing
– a necessary step to make any-to-any routing possible.

4.4 Effect of Network Density
Because ORPL utilizes as many neighbors as possible for

forwarding, its performance depends on the network density.
Table 1 shows that even with a reduced density (transmis-
sion power set to -10 dBm), ORPL improves RPL for all
traffic patterns in reliability, latency and energy. The rela-
tive benefits of ORPL over RPL are slightly decreased, but
remain significant. For instance, in many-to-one traffic, the
latency is improved by a factor of 1.8 (this factor was 2.2 at
0 dBm), and the duty cycle by a factor of 2.6 (was 3.1 at
0 dBm). In earlier work, we reported similar ratios when
comparing ORW to CTP in data collection with different
network densities [26]. With all traffic patterns including
any-to-any, ORPL keeps the average latency below 2 s, in a
9.8-hop network and with a wakeup interval of 0.5 s.

4.5 Bloom Filters and Recovery Mechanism
We have assessed ORPL in upwards and downwards rout-

ing while representing routing sets as bitmaps. We now use
Bloom filters instead of bitmaps which makes ORPL suitable
in scenarios where all nodes are not known at deployment
time. We perform downwards routing in a scenario similar
to the previous subsections, with the difference that we now
address all nodes in the testbed.

During our experiments, we log every insert and merge
operation on Bloom filters. This way, we compute offline
the exact routing set of every node at any point in time. We
distinguish true positives from false positives by comparing
this set against the routing decision made by the nodes.

4.5.1 Effect of the Bloom Filter Size m

We first focus in Figure 10 on the effect of the Bloom filter
size m on routing performance. We vary the size between
8 bytes and 80 bytes, and use the corresponding number of
hashes k given in Figure 10e. As the false positive rate of a
Bloom filter depends on the number of bits per element, not
on the size nor number of elements alone, reducing the filter
size emulates scenarios with larger scale. With an 8-byte
filter, the root works with as little as 0.47 bit per element.
We also run experiments with a bitmap (marked as “bm”)
as a baseline, without false positive recovery.

Figure 10a shows the fraction of packets that either are
(1) received without FP on the path, (2) received after a
FP that did not require recovery, (3) received after a FP
that triggered recovery, (4) lost due to FP or (5) lost with-

1 2 3 4 5 6 7 8
Number of Hashes, k

0

20

40

60

80

100
Fr

ac
tio

n
of

 P
ac

ke
ts

 (%
)

Lost, No FP
Lost, FP
Received, FP & recovery
Received, FP & no recovery
Received, no FP

(a) Reliability

1 2 3 4 5 6 7 8
Number of Hashes, k

0

5

10

15

20

25

La
te

nc
y

(s
)

95th percentile
80th percentile
50th percentile

(b) Latency

1 2 3 4 5 6 7 8
Number of Hashes, k

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Du
ty

 C
yc

le
 (%

)

(c) Energy

1 2 3 4 5 6 7 8
Number of Hashes, k

0

5

10

15

20

25

Ho
ps

 A
fte

r R
ec

ov
er

y

(d) Hop Count After Re-
covery

k n

1 177
2 99
3 59
4 44
5 35
6 30
7 25
8 22

(e) Optimal
n

Figure 12: Effect of the Number of Hashes (m = 32 bytes). The number of hashes k affects the cost of
recovery, and the resulting latency and energy. In this experiment, the optimal k is 3 or 4 (depending on the
target metric).

0 20 40 60 80 100 120
Node index (by increasing rank)

0
20
40
60
80

100
120
140

No
de

s
in

 B
lo

om
 F

ilt
er

False Positives
True Positives

(a) m = 8 bytes

0 20 40 60 80 100 120
Node index (by increasing rank)

0
20
40
60
80

100
120
140

No
de

s
in

 B
lo

om
 F

ilt
er

(b) m = 64 bytes

Figure 11: False Positives per Node. Increasing the
filter size from 8 to 64 bytes reduces the rate of false
positives from 74.1 to 1.2%.

out FP. False positives that do not require recovery occur
when a node does not have the destination in its routing set
but finds opportunistically a next hop that can route to it.
ORPL is reliable, with a packet delivery ratio above 98% for
m ≥ 32 bytes. The number of false positives increases as m
decreases, but, in all cases, a large portion of false positives
is successfully recovered. In the case of m = 32 bytes for
example, of the 15.2% of packets that experience false posi-
tives, 3.9 pp (percentage points) were received with no need
for recovery, 9.9 pp received thanks to recovery, and 1.4 pp
were dropped.

Figure 10b and Figure 10c show the penalty imposed by
false positive recovery on duty cycle and latency. At a filter
size of 64 bytes and above, latency and duty cycle stabi-
lize. Smaller filter sizes decrease performance, as recoveries
become both more frequent and costly (longer exploration).
Figure 10d shows the number of hops that are needed to
reach the destination after recovery. With m = 8 bytes,
this number exceeds 30 for the 95th percentile, leading to
latencies in the range of a minute.

To get a complete understanding of how false positives are
distributed across the nodes, Figure 11 shows, for a filter size
of 8 bytes and 64 bytes, the number of elements actually in

the routing set (true positives) and the number of testbed
nodes that appear to be in the set (false positives). Note
that because we test the Bloom filter only against the nodes
actually in the network, the sum of true positives and false
positive never exceeds 135. With m = 8 bytes, the routing
sets have on average 74.1% false positives. The resulting
end-to-end PDR with this same extreme setting was 85.3%.
With m = 64 bytes, the false positive rate drops to 1.2%,
leading to a PDR of 99.76%.

4.5.2 Effect of the Number of Hashes k

When dimensioning Bloom filters for a given ORPL de-
ployment, one has to choose k, the number of hashes (num-
ber of bits set at each insertion). There exists an optimal
k for a given expected number of elements (see Figure 12e)
and bloom filter size, yet choosing k is difficult because nodes
have heterogeneous routing sets. We investigate the trade-
offs of k in a given network setup: 135 nodes and a Bloom
filter size m = 32 bytes.

Figure 12 shows the performance obtained with k ∈ [1; 8].
The metrics that are most impacted by k are the number
of hops after recovery (Figure 12d), and consequently the
latency (Figure 12b). For instance, at k = 4, the 95th per-
centile of nodes have a latency of 6.20 s against 20.49 s for
k = 7. The overall duty cycle (Figure 12c) and reliability
(Figure 12a) are also affected by k, to a lesser extent.
We find that k should not necessarily be dimensioned for

a routing set that contains all nodes in the network. In the
above experiment, the best k values are 3 or 4 (depending
on the target metric), which optimizes 32-byte filters for
respectively 59 and 44 elements – well below 135, the number
of addressable nodes. This is explained by two factors: (1)
Although the false positive rate increases with the number
of nodes in the routing set, the absolute number of FP does
not necessarily. Nodes with intermediately full filters have
more nodes that are actually not in their set, leading to
more instances of false positives. Optimizing Bloom filters
for intermediate nodes alleviates this problem. (2) False
positives occurring farthest from the root are the most costly
to recover, as they require more hops. Optimizing k for
nodes with lightly-loaded Bloom filters eliminates the most
costly recoveries.

Figure 13 shows the true positives and false positives ob-
tained with m = 32 bytes and k = 1 or k = 8. These
two configurations have false positive rates that are very

0 20 40 60 80 100 120
Node index (by increasing rank)

0
20
40
60
80

100
120
140

No
de

s
in

 B
lo

om
 F

ilt
er

False Positives
True Positives

(a) k = 1

0 20 40 60 80 100 120
Node index (by increasing rank)

0
20
40
60
80

100
120
140

No
de

s
in

 B
lo

om
 F

ilt
er

(b) k = 8

Figure 13: False Positives per Node (m = 32 bytes).
k affects the distribution of false positives, either
mostly close to the root (k = 8) or more evenly
spread over nodes (k = 1). This impacts both the
number of false positives and the cost of recovery.

similar (respectively 23.9% and 24.3%), but distributed dif-
ferently among nodes. With k = 1, all nodes have false
positives. With k = 8, nodes with less than 20 elements
have no false positive, but more densely populated nodes
experience higher false positive rate.

Finding the best k for a given network is a difficult task, as
it depends on the nodes connectivity. In practice, we recom-
mend to proceed to a network calibration, such as presented
in this section, before the final deployment.

4.6 Robustness
We assess the robustness of RPL and ORPL when expe-

riencing a network outage, to (1) measure the benefits of
ORPL in a challenging environment, and (2) evaluate our
recovery mechanism when facing topology changes. We run
ORPL under two different settings: either using a 64-byte
Bloom filter, or using a bitmap. We run the downwards traf-
fic experiment as in §4.3 where only nodes with an even node
ID are addressable. Nodes with an odd node ID participate
in routing but are not the target of traffic. Among those,
half (randomly chosen set that is kept identical for all runs)
experience an outage during which they cannot receive nor
send any data. This reflects for example scenarios where
battery maintenance requires to disconnect a part of the
network, or where external interference (e.g., WiFi or Blue-
tooth) affects communication. The outage lasts for 10 min,
and is repeated every 25 min during a 2-hour experiment.

Figure 14 shows that RPL experiences a sharp drop in re-
liability during the first outage, consequence of failed MAC
transmissions. Nodes react by switching parent, which heals
the topology and slowly improves reliability. The next out-
ages result in less churn.

In contrast, ORPL does not need to adjust its topol-
ogy during network outages. Anycast transmissions use any
available forwarder as a next hop, leaving many node failures
unnoticed (“MAC Tx Attemps” remains almost constant).
When a transmission fails, the recovery mechanism is trig-
gered and keeps reliability high (98.8% on average through-
out this experiment). This mechanism is primarily designed

0
20
40
60
80

100

PD
R

(%
)

ORPL (Bloom filter) ORPL (Bitmap) RPL Outage

0
1
2
3
4
5

M
AC

 T
x

At
te

m
pt

s
(#

)

0.0
0.2
0.4
0.6
0.8
1.0

Pa
re

nt
 S

w
itc

he
s

(#
/m

in
ut

e)

0

2

4

6

La
te

nc
y

(s
)

0 20 40 60 80 100
Time (minutes)

0

1

2

3

Du
ty

 C
yc

le
 (%

)

Figure 14: Robustness. ORPL maintains a reliabil-
ity close to 100% during outages, partially through
its recovery mechanism. RPL adjusts to topology
changes, but loses data in the process.

for Bloom filter false positives, but handles and recovers
from any network inconsistency in the same way. This re-
sults in increased latency during outages. The dotted line in
Figure 14 shows the results obtained with a bitmap (no re-
covery mechanism): less reliability but more stable latency.

4.7 Any-to-Any, Bidirectional Traffic
We now evaluate RPL and ORPL in an IP-based request-

response scenario, representing applications such as REST-
ful resource querying with CoAP [25].

We select 9 nodes in the network, at left, center and right
positions of each of the three floors of the testbed (as de-
tailed in the upper part of Figure 15). Node 20, at the

center of the third floor , is still used as the network root.
Each node initiates communication with another randomly
chosen node, at random time with an average interval of
2 minutes. Upon receiving a request, the target node replies
to the originator. We set up ORPL to use bitmaps (Bloom
filters had comparable results, because only 9 addressable
nodes led to no false positives), and run the experiments
for 2 hours. Note that in any-to-any routing, packets are
routed upwards and then downwards to the destination. In
this request-response scenario, the process is repeated twice.

Figure 15 shows the hop count and round-trip time be-
tween every pair of nodes. These results shown are from a
single run, to reflect the heterogeneity of per-node latency
obtained with a given DODAG. With RPL, the pair of nodes
〈left of third floor, center of first floor〉 was not able to

Third floor nodes: 28 , 20 , 12 . Second floor nodes: 50 , 56 , 72 . First floor nodes: 94 , 92 , 112 .

0

5

10

15

20

Ro
un

d
Tr

ip
 T

im
e

(s
)

RPL
ORPL

Pair of nodes involved

0
2
4
6
8

10

Ho
ps

Figure 15: Any-to-any Round Trip. For every single pair of nodes, ORPL achieves substantially shorter and
more constant round trip time than RPL. This is due to both the opportunistic nature of anycast, and the
shortcuts ORPL takes in the DODAG during any-to-any routing.

communicate, due to topology inconsistencies. ORPL de-
creases latency substantially, with a median round trip for
the median pair of nodes of 2.02 s vs. 6.16 s for RPL.

Looking at round-trip times and hop count as a whole, we
observe two distinct cases:
Gains Due to Fast Forwarding In certain cases, ORPL
has a higher hop count than RPL, but a lower round-trip
time. This is similar to what we have already witnessed in
the up- and down-traffic experiments: ORPL saves time at
each hop through anycast, even if that implies longer paths.
Gains Due to Shortcuts In other cases, ORPL has a
lower hop count than RPL, leading to even higher latency
savings. This is explained by the shortcuts ORPL exploits
during any-to-any routing (§3.2), and by the optimization
that consists in including all direct neighbors the routing set
(§3.3). For example, in this experiment, the pair of nodes

〈left of second floor, right of first floor〉 has an average
latency of 19.52 s with RPL, against 1.34 s with ORPL.

An interesting finding is that in spite of its opportunistic
nature, ORPL obtains more stable round-trip times than
RPL. The hop count of ORPL has a higher standard de-
viation than that of RPL, because the routing path varies
across transmissions. However, because ORPL selects the
first awoken neighbor that offers routing progress as the next
hop, the resulting end-to-end latency is more stable than
with RPL. In other words, the irregularities of link quality
and wakeup schedule are compensated by ORPL through
adaptive path selection.

5. DISCUSSION
With ORPL, we have demonstrated the applicability of

opportunistic routing to low-power IP networks with arbi-
trary traffic patterns. We discuss our design and the impact
and limitations of our approach.
Impact on Applications RPL targets a variety of appli-
cations involving low-power communication, such as build-
ing automation, smart cities, or healthcare. These appli-
cations typically have well-defined delay requirements. For
instance, assume the latency must be in the order of 500 ms.
In our data collection scenario (see §4.2), this would be
achieved with RPL and a MAC wakeup interval of 125 ms,
leading to a network duty cycle of 4.19%. The opportunistic

nature of ORPL allows to reach a comparable latency at a
MAC wakeup interval of 500 ms, with a network duty cycle
of 0.48%. With this example application, ORPL reduces en-
ergy consumption by a factor of 8.7 times, thus significantly
lowering the battery maintenance cost.
Scalability A main feature of ORPL is its scalability. In
our experiments, we addressed 135 nodes with a PDR of
99.8% using a 64-byte Bloom filter. Larger networks, with
thousands of nodes, are foreseen e.g., in building automa-
tion systems that exploit sub-GHz frequency bands [23].
Such large networks can be covered by ORPL in two ways:
(1) Using a Bloom filter that exceeds the size of a single
datagram, broadcasted to the neighbors after fragmentation.
Fragmented traffic can be supported by low-power-listening
MAC with little overhead, by repeatedly sending the frag-
ments as preamble, and having the receivers listen until they
get the full datagram [16]. (2) Using a bitmap, and reboot-
ing the network upon addition of new nodes to propagate
the new network map. A 64-byte bitmap, which typically
fits a single datagram, can accommodate up to 512 nodes. In
both cases, ORPL improves RPL’s scalability significantly,
both in memory and control traffic, because it reduces the
routing state to a set of nodes.
Interoperability The main advantage of IP and RPL in
sensor networks is interoperability, both above IP (hetero-
geneous applications and networks) and below IP (hetero-
geneous link layers). With opportunistic routing in general,
link-layer interoperability is an issue, because unlike unicast,
anycast transmissions do not target a specific neighbor and
its link layer. While RPL can handle heterogeneous link
layers almost transparently, ORPL would need to run one
instance of the protocol per link layer.
Generality ORPL is designed for low-power-listening
802.15.4 networks carrying IP traffic. Our design, however,
is more generic. ORPL could target other physical and link
layers as long as they can support any form of anycast. Even
non duty-cycled MAC layers can be considered, following a
more traditional anycast design, e.g., similar to ExOR [4],
which includes a list of potential forwarders in the frame
header and uses a duplicate suppression mechanism. The
design principles of ORPL are also largely independent of
IP, and could be applied with no effort to any network layer.

6. RELATED WORK
The potentials of opportunistic routing in low-power wire-

less networks were first shown from a theoretical perspec-
tive [1, 12, 29, 35]. GeRaF [40] and RAW [31] were the
first to propose routing protocols that exploit anycast to re-
duce latency in duty-cycled networks. A number of variants
followed, based on synchronous [32] or asynchronous MAC
layers, receiver-initiated [38] or sender-initiated [1, 2, 12,
26]. Pavković et al. [32] also extended RPL with multipath
routing, but focusing on data collection only, and choosing
a next hop opportunistically at the sender rather than leav-
ing the forwarding decision to the receiver. Any-MAC [1]
proposes a generic scheme to extend any duty-cycled MAC
with anycast capabilities, aiming for opportunistic routing.

Most of the protocols above share the design principle
of making the forwarding decision at the receiver, based on
whether it is closer to the destination or not. There are, how-
ever, a number of different approaches in building a topology
that enable routing towards a given destination:
Mesh Networks ExOr [4] is probably the most well-
known opportunistic routing protocol. It targets WiFi mesh
networks, has a link-state approach, and uses ETX as a met-
ric to calculate distance from any node to another. Period-
ically, ExOr floods the network with topology information,
so that every node has the full knowledge of the topology.
Similarly, MORE [9] builds its topology using ETX, but uses
network coding to exploit spacial reuse.
Geographic Opportunistic routing was applied early on
geographic routing protocols [28, 31, 40]. In that case, the
forwarding decision is based on physical node locations. This
approach is often used analytically or in simulation, but is
sometimes complex to put in practice, because real nodes do
not always have location information and because there is
no direct mapping between distance and radio connectivity.
Random Walk A more exotic category is random walk,
investigated analytically by Basu et al. [3]. The authors sug-
gest that random walk has good properties in load balancing
and fault tolerance, but would be outperformed in latency
by routing protocols that exploit topology information.
Single-Sink The majority of recent work in opportunistic
routing for sensor networks focuses on data collection [20,
26, 32, 38]. This approach allows to reason on the pure any-
cast forwarding mechanism, and typically enables compar-
isons against CTP [21] as a benchmark. ORW [26] proved
the practical feasibility of opportunistic routing in large scale
duty-cycled networks. To support multiple destinations, this
family of protocols would require to propagate not only dis-
tances to the sink, but distances to all nodes in the network;
a solution with poor scalability properties.

ORPL addresses the challenge of any-to-any routing in
low-power networks, and differs from existing opportunistic
routing protocols in the following ways:
Topology ORPL uses a rooted multipath topology (a
DODAG) rather than a full mesh, aiming for inexpensive
topology maintenance. We show that opportunistic routing
makes possible to take shortcuts between different branches
of the topology, significantly improving any-to-any routing.
Forwarding Decision Traditionally, the forwarding de-
cision in opportunistic routing is based on a forwarder list in-
cluded in the packet header. In ORPL, no additional header
is used, and the forwarding decision is left to the receiver
based on the gradient and the nodes in the sub-DODAG.
Routing State ORPL replaces traditional routing tables

by routing sets that are propagated and merged through the
network in a scalable way. The routing set is represented
either as a bitmap or a Bloom filter.

Bloom filters [5] find many other applications in network-
ing [7], typically for multicast [22], loop detection, or queue
management. A notable example is CBFR [34], a routing
protocol for mobile sensor networks that uses Bloom filters.
Targeting (always-on) mobile nodes, CBFR proposed the
use of counting Bloom filters for gradual forgetting of rout-
ing information. This inspired us to use aging Bloom filters
for ORPL’s routing set.

7. CONCLUSION
We presented ORPL, an opportunistic routing protocol

that provides any-to-any routing in low-power IPv6 net-
works. The opportunistic nature of ORPL brings low la-
tency and robustness to duty-cycled networks. By adopting
a rooted topology and moving the forwarding decision from
the sender to the receiver, ORPL routes to any destina-
tion using simple, scalable routing sets. Our testbed-based
evaluation demonstrates the benefits of ORPL over state-of-
the-art solutions and for various traffic patterns, including
when routing along probabilistic Bloom filters. We believe
the concepts of ORPL – in particular opportunistic routing
based on routing sets – to be also applicable and useful in
other contexts than wireless sensor networks.

Acknowledgments

We would like to thank the CIR Lab in Singapore for pro-
viding the Indriya testbed, and Federico Ferrari for his
help in setting up the LWB experiments. We also thank
Sébastien Dawans for his feedback in early stages of this
work. This work was partly funded by the European
Commission through CALIPSO (contract number FP7-ICT-
2011.1.3-288879) and by SSF, the Swedish Foundation for
Strategic Research.

8. REFERENCES
[1] F. Ashraf, N. H. Vaidya, and R. Kravets. Any-MAC:

Extending any Asynchronous MAC with Anycast to
Improve Delay in WSN. In Proceedings of the Conference
on Sensor, Mesh and Ad Hoc Communications and
Networks (IEEE SECON), 2011.

[2] F. Ashref, R. H. Kravets, and N. H. Vaidya. Exploiting
Routing Redundancy using MAC Layer Anycast to
Improve Delay in WSN. SIGMOBILE Mob. Comput.
Commun. Rev., 14, 2010.

[3] P. Basu and C.-K. Chau. Opportunistic Forwarding in
Wireless Networks with Duty Cycling. In Proceedings of the
Workshop on Challenged Networks (ACM CHANTS), 2008.

[4] S. Biswas and R. Morris. ExOR: Opportunistic Multi-Hop
Routing for Wireless Networks. In Proceedings of the
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (ACM
SIGCOMM), 2005.

[5] B. H. Bloom. Space/Time Trade-offs in Hash Coding with
Allowable Errors. Commun. ACM, 13(7):422–426, July
1970.

[6] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and
G. Varghese. Beyond Bloom Filters: From Approximate
Membership Checks to Approximate State Machines.
Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications (ACM SIGCOMM), 2006.

[7] A. Broder and M. Mitzenmacher. Network Applications of
Bloom Filters: A Survey. In Internet Mathematics, pages
636–646, 2002.

[8] N. Burri, P. V. Rickenbach, and R. Wattenhofer. Dozer:
Ultra-Low Power Data Gathering in Sensor Networks. In
Proceedings of the Conference on Information Processing
in Sensor Networks (ACM/IEEE IPSN), 2007.

[9] S. Chachulski, M. Jennings, S. Katti, and D. Katabi.
Trading Structure for Randomness in Wireless
Opportunistic Routing. In Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communications (ACM SIGCOMM), 2007.

[10] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A
High-Throughput Path Metric for Multi-Hop Wireless
Routing. Wirel. Netw., 11(4):419–434, July 2005.

[11] M. Doddavenkatappa, M. C. Chan, and A. Ananda.
Indriya: A Low-Cost, 3D Wireless Sensor Network Testbed.
In Proceedings of the Conference on Testbeds and Research
Infrastructures for the Development of Networks &
Communities (TridentCom), 2011.

[12] H. Dubois-Ferriè andre, M. Grossglauser, and M. Vetterli.
Valuable Detours: Least-Cost Anypath Routing.
IEEE/ACM Trans. Netw., 19(2), 2011.

[13] A. Dunkels. The ContikiMAC Radio Duty Cycling
Protocol. Technical Report T2011:13, Swedish Institute of
Computer Science, 2011.

[14] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - A
Lightweight and Flexible Operating System for Tiny
Networked Sensors. In Proceedings of the Conference on
Local Computer Networks (IEEE LCN), 2004.

[15] A. Dunkels, F. Österlind, N. Tsiftes, and Z. He.
Software-based On-line Energy Estimation for Sensor
Nodes. In Proceedings of the Workshop on Embedded
Networked Sensor Systems (IEEE Emnets), 2007.

[16] S. Duquennoy, F. Österlind, and A. Dunkels. Lossy Links,
Low Power, High Throughput. In Proceedings of the
Conference on Embedded Networked Sensor Systems (ACM
SenSys), 2011.

[17] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang,
and A. Terzis. Design and Evaluation of a Versatile and
Efficient Receiver-Initiated Link Layer for Low-Power
Wireless. In Proceedings of the Conference on Embedded
Networked Sensor Systems (ACM SenSys), 2010.

[18] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele.
Low-Power Wireless Bus. In Proceedings of the Conference
on Embedded Networked Sensor Systems (ACM SenSys),
2012.

[19] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh.
Efficient Network Flooding and Time Synchronization with
Glossy. In Proceedings of the Conference on Information
Processing in Sensor Networks (ACM/IEEE IPSN), 2011.

[20] J. Flathagen, E. Larsen, P. Engelstad, and O. Kure.
O-CTP: Hybrid Opportunistic Collection Tree Protocol for
Wireless Sensor Networks. In Proceedings of the Workshop
on Practical Issues in Building Sensor Network
Applications (IEEE SenseApp), 2012.

[21] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and
P. Levis. Collection Tree Protocol. In Proceedings of the
Conference on Embedded Networked Sensor Systems (ACM
SenSys), 2009.

[22] Z. Heszberger, J. Tapolcai, A. GulyÃa֒s, J. Biro,
A. Zahemszky, and P.-H. Ho. Adaptive Bloom Filters for
Multicast Addressing. In Proceedings of the Workshop on
High-Speed Networks (IEEE HSN), 2011.

[23] JP. Vasseur and J. Hui and S. Dasgupta and G. Yoon. RPL
Deployment Experience in Large Scale Networks. IETF
draft-hui-vasseur-roll-rpl-deployment-01, WiP.

[24] J. Kim, X. Lin, and N. B. Shroff. Optimal Anycast
Technique for Delay-Sensitive Energy-Constrained
Asynchronous Sensor Networks. IEEE/ACM Trans. Netw.,

19(2):484–497, Apr. 2011.
[25] M. Kovatsch, S. Duquennoy, and A. Dunkels. A Low-Power

CoAP for Contiki. In Proceedings of the Workshop on
Internet of Things Technology and Architectures (IEEE
IoTech), 2011.

[26] O. Landsiedel, E. Ghadimi, S. Duquennoy, and
M. Johansson. Low Power, Low Delay: Opportunistic
Routing meets Duty Cycling. In Proceedings of the
Conference on Information Processing in Sensor Networks
(ACM/IEEE IPSN), 2012.

[27] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
Self-Regulating Algorithm for Code Propagation and
Maintenance in Wireless Sensor Networks. In Proceedings
of the Symposium on Networked Systems Design &
Implementation (USENIX NSDI), 2004.

[28] S. Liu, K.-W. Fan, and P. Sinha. CMAC: An
Energy-Efficient MAC Layer Protocol using Convergent
Packet Forwarding for Wireless Sensor Networks. ACM
Trans. on Senor Networks, 5, 2009.

[29] X. Mao, X.-Y. Li, W.-Z. Song, P. Xu, and
K. Moaveni-Nejad. Energy Efficient Opportunistic Routing
in Wireless Networks. In Proceedings of the Conference on
Modeling, Analysis and Simulation of Wireless and Mobile
Systems (ACM MSWiM), 2009.

[30] D. Moss and P. Levis. BoX-MACs: Exploiting Physical and
Link Layer Boundaries in Low-Power Networking.
Technical Report SING-08-00, Stanford, 2008.

[31] V. Paruchuri, S. Basavaraju, A. Durresi, R. Kannan, and
S. S. Iyengar. Random Asynchronous Wakeup Protocol for
Sensor Networks. In Proceedings of the Conference on
Broadband Communications, Networks, and Systems
(IEEE BROADNETS), 2004.

[32] B. Pavković, F. Theoleyre, and A. Duda. Multipath
Opportunistic RPL Routing over IEEE 802.15.4. In
Proceedings of the Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (ACM
MSWiM), 2011.

[33] M. V. Ramakrishna and J. Zobel. Performance in Practice
of String Hashing Functions. In Proceedings of the
Conference on Database Systems for Advanced
Applications (DASFAA), 1997.

[34] A. Reinhardt, O. Morar, S. Santini, S. Zöller, and
R. Steinmetz. CBFR: Bloom Filter Routing with Gradual
Forgetting for Tree-structured Wireless Sensor Networks
with Mobile Nodes. In Proceedings of the Symposium on a
World of Wireless Mobile and Multimedia Networks (IEEE
WoWMoM), 2012.

[35] G. Schaefer, F. Ingelrest, and M. Vetterli. Potentials of
Opportunistic Routing in Energy-Constrained Wireless
Sensor Networks. In Proceedings of the European
Conference on Wireless Sensor Networks (EWSN), 2009.

[36] K. Srinivasan, M. Jain, J. I. Choi, T. Azim, E. S. Kim,
P. Levis, and B. Krishnamachari. The κ Factor: Inferring
Protocol Performance using Inter-Link Reception
Correlation. In Proceedings of the Conference on Mobile
Computing and Networking (ACM MobiCom), 2010.

[37] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and
P. Levis. The β Factor: Measuring Wireless Link
Burstiness. In Proceedings of the Conference on Embedded
Networked Sensor Systems (ACM SenSys), 2008.

[38] S. Unterschütz, C. Renner, and V. Turau. Opportunistic,
Receiver-Initiated Data-Collection Protocol. In Proceedings
of the European Conference on Wireless Sensor Networks
(EWSN), 2012.

[39] T. Winter (Ed.), P. Thubert (Ed.), and RPL Author Team.
RPL: IPv6 Routing Protocol for Low power and Lossy
Networks, Mar. 2012. RFC 6550.

[40] M. Zorzi and R. R. Rao. Geographic Random Forwarding
(GeRaF) for Ad Hoc and Sensor Networks: Energy and
Latency Performance. IEEE Trans. on Mobile Computing,
2(4):349–348, 2003.

