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Abstract. We present a graph-based tool for analysing Java programs
operating on dynamic data structures. It involves the generation of
an abstract state space employing a user-defined graph grammar. LTL
model checking is then applied to this state space, supporting both
structural and functional correctness properties. The analysis is fully
automated, procedure-modular, and provides informative visual feedback
including counterexamples in the case of property violations.

1 Introduction

Pointers constitute an essential concept in modern programming languages, and
are used for implementing dynamic data structures like lists, trees etc. However,
many software bugs can be traced back to the erroneous use of pointers by e.g.
dereferencing null pointers or accidentally pointing to wrong parts of the heap.
Due to the resulting unbounded state spaces, pointer errors are hard to detect.
Automated tool support for validation of pointer programs that provides mean-
ingful debugging information in case of violations is therefore highly desirable.

ATTESTOR is a verification tool that attempts to achieve both of these goals.
To this aim, it first constructs an abstract state space of the input program by
means of symbolic execution. Each state depicts both links between heap objects
and values of program variables using a graph representation. Abstraction is per-
formed on state level by means of graph grammars. They specify the data struc-
tures maintained by the program, and describe how to summarise substructures
of the heap in order to obtain a finite representation. After labelling each state
with propositions that provide information about structural properties such as
reachability or heap shapes, the actual verification task is performed in a second
step. To this aim, the abstract state space is checked against a user-defined LTL
specification. In case of violations, a counterexample is provided.
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In summary, ATTESTOR’s main features can be characterized as follows:

— It employs context-free graph grammars as a formal underpinning for defining
heap abstractions. These grammars enable local heap concretisation and thus
naturally provide implicit abstract semantics.

— The full instruction set of Java Bytecode is handled. Program actions that are
outside the scope of our analysis, such as arithmetic operations or Boolean
tests on payload data, are handled by (safe) over-approximation.

— Specifications are given by linear-time temporal logic (LTL) formulae which
support a rich set of program properties, ranging from memory safety over
shape, reachability or balancedness to properties such as full traversal or
preservation of the exact heap structure.

— Except for expecting a graph grammar that specifies the data structures han-
dled by a program, the analysis is fully automated. In particular, no program
annotations are required.

— Modular reasoning is supported in the form of contracts that summarise the
effect of executing a (recursive) procedure. These contracts can be automat-
ically derived or manually specified.

— Valuable feedback is provided through a comprehensive report including (min-
imal) non-spurious counterexamples in case of property violations.

— The tool’s functionality is made accessible through the command line as well
as a graphical user and an application programming interface.

Awvailability. ATTESTOR’S source code, benchmarks, and documentation are avail-
able online at https://moves-rwth.github.io/attestor.

2 The Attestor Tool

ATTESTOR is implemented in Java and consists of about 20.000 LOC (excluding
comments and tests). An architectural overview is depicted in Fig. 1. It shows the
tool inputs (left), its outputs (right), the ATTESTOR backend with its processing
phases (middle), the ATTESTOR frontend (below) as well as the API connecting
back- and frontend. These elements are discussed in detail below.

2.1 Input

As shown in Fig. 1 (left), a verification task is given by four inputs. First, the
program to be analysed. Here, Java as well as Java Bytecode programs with
possibly recursive procedures are supported, where the former is translated to
the latter prior to the analysis. Second, the specification has to be given by a
set of LTL formulae enriched with heap-specific propositions. See Sect. 3 for a
representative list of exemplary specifications.

As a third input, ATTESTOR expects the declaration of the graph grammar
that guides the abstraction. In order to obtain a finite abstract state space,
this grammar is supposed to cover the data structures emerging during program
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Fig. 1. The ATTESTOR tool

execution. The user may choose from a set of grammar definitions for standard
data structures such as singly- and doubly-linked lists and binary trees, the
manual specification in a JSON-style graph format and combinations thereof.

Fourth, additional options can be given that e.g. define the initial heap config-
uration(s) (in JSON-style graph format), that control the granularity of abstrac-
tion and the garbage collection behaviour, or that allow to re-use results of
previous analyses in the form of procedure contracts [11,13].

2.2 Phases

ATTESTOR proceeds in six main phases, see Fig. 1 (middle). In the first and third
phase, all inputs are parsed and preprocessed. The input program is read and
transformed to Bytecode (if necessary), the input graphs (initial configuration,
procedure contracts, and graph grammar), LTL formulae and further options
are read.

Depending on the provided LTL formulae, additional markings are inserted
into the initial heap (see [8] for details) in the second phase. They are used to
track identities of objects during program execution, which is later required to
validate visit and neighbourhood properties during the fifth phase.

In the next phase the actual program analysis is conducted. To this aim,
ATTESTOR first constructs the abstract state space as described in Sect. 2.3 in
detail. In the fifth phase we check whether the provided LTL specification holds
on the state space resulting from the preceding step. We use an off-the-shelf
tableau-based LTL model checking algorithm [2].
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If desired, during all phases results are forwarded to the API to make them
accessible to the frontend or the user directly. We address this output in Sect. 2.4.

2.3 Abstract State Space Generation

The core module of ATTESTOR is the abstract state space generation. It employs
an abstraction approach based on hyperedge replacement grammars, whose the-
oretical underpinnings are described in [9] in detail. It is centred around a graph-
based representation of the heap that contains concrete parts side by side with
placeholders representing a set of heap fragments of a certain shape. The state
space generation loop as implemented in ATTESTOR is shown in Fig. 2.

Initially it is provided with add
the initial program state(s), el states
that is, the program counter Sk state
corresponding to the starting —@7
statement together with the ini- —
tial heap configuration(s). From
these, ATTESTOR picks a state e e
at random and applies the
abstract semantics of the next
statement: First, the heap con-
figuration is locally concretised
ensuring that all heap parts b
required for the statement to
execute are accessible. This is

add to
state space

fixpoint
reached

enabled by applying rules of the
input graph grammar in for-
ward direction, which can entail
branching in the state space.
The resulting configurations are
then manipulated according to
the concrete semantics of the statement. At this stage, ATTESTOR automati-
cally detects possible null pointer dereferencing operations as a byproduct of the
state space generation. In a subsequent rectification step, the heap configuration
is cleared from e.g. dead variables and garbage (if desired). Consequently, mem-
ory leaks are detected immediately. The rectified configuration is then abstracted
with respect to the data structures specified by means of the input graph gram-
mar. Complementary to concretisation, this is realised by applying grammar
rules in backward direction, which involves a check for embeddings of right-
hand sides. A particular strength of our approach is its robustness against local
violations of data structures, as it simply leaves the corresponding heap parts
concrete. Finalising the abstract execution step, the resulting state is labelled
with the atomic propositions it satisfies. This check is efficiently implemented by
means of heap automata (see [12,15] for details). By performing a subsumption
check on the state level, ATTESTOR detects whether the newly generated state
is already covered by a more abstract one that has been visited before. If not, it

by existing
state

Fig. 2. State space generation.
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Fig. 3. Screenshot of ATTESTOR’s frontend for state space exploration. (Color figure
online)

adds the resulting state to the state space and starts over by picking a new state.
Otherwise, it checks whether further states have to be processed or whether a
fixpoint in the state space generation is reached. In the latter case, this phase is
terminated.

2.4 Output

As shown in Fig.1 (right), we obtain three main outputs once the analysis is
completed: the computed abstract state space, the derived procedure contracts,
and the model checking results. For each LTL formula in the specification, results
comprise the possible answers “formula satisfied”, “formula (definitely) not sat-
isfied”, or “formula possibly not satisfied”. In case of the latter two, ATTESTOR
additionally produces a counterexample, i.e. an abstract trace that violates the
formula. If ATTESTOR was able to verify the non-spuriousness of this counterex-
ample (second case), we are additionally given a concrete initial heap that is
accountable for the violation and that can be used as a test case for debugging.

Besides the main outputs, ATTESTOR provides general information about the
current analysis. These include log messages such as warnings and errors, but
also details about settings and runtimes of the analyses. The API provides the
interface to retrieve ATTESTOR’s outputs as JSON-formatted data.

2.5 Frontend

ATTESTOR features a graphical frontend that visualises inputs as well as results
of all benchmark runs. The frontend communicates with ATTESTOR’s backend
via the API only. It especially can be used to display and navigate through the
generated abstract state space and counterexample traces.

A screenshot of the frontend for state space exploration is found in Fig. 3.
The left panel is an excerpt of the state space. The right panel depicts the
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currently selected state, where red boxes correspond to variables and constants,
circles correspond to allocated objects/locations, and yellow boxes correspond
to nonterminals of the employed graph grammar, respectively. Arrows between
two circles represent pointers. Further information about the selected state is
provided in the topmost panel. Graphs are rendered using cytoscape. js [6].

3 Evaluation

Tool Comparison. While there exists a plethora of tools for analysing pointer
programs, such as, amongst others, FORESTER [10], GROOVE [7], INFER [5],
Hip/SLEEK [17], KORAT [16], JUGGRNAUT [9], and TVLA [3], these tools differ
in multiple dimensions:

— Input languages range from C code (FORESTER, INFER, HIP/SLEEK) over
Java/Java Bytecode (JUGGRNAUT, KORAT) to assembly code (TvLA) and
graph programs (GROOVE).

— The degree of automation differs heavily: Tools like FORESTER and INFER
only require source code. Others such as Hip/SLEEK and JUGGRNAUT addi-
tionally expect general data structure specifications in the form of e.g. graph
grammars or predicate definitions to guide the abstraction. Moreover, TVLA
requires additional program-dependent instrumentation predicates.

— Verifiable properties typically cover memory safety. KORAT is an exception,
because it applies test case generation instead of verification. The tools
Hip/SLEEK, TvLA, GROOVE, and JUGGRNAUT are additionally capable of
verifying data structure invariants, so-called shape properties. Furthermore,
Hrip/SLEEK is able to reason about shape-numeric properties, e.g. lengths of
lists, if a suitable specification is provided. While these properties are not
supported by TVLA, it is possible to verify reachability properties. Moreover,
JUGGRNAUT can reason about temporal properties such as verifying that
finally every element of an input data structure has been accessed.

Benchmarks. Due to the above mentioned diversity there is no publicly avail-
able and representative set of standardised benchmarks to compare the afore-
mentioned tools [1]. We thus evaluated ATTESTOR on a collection of challenging,
pointer intensive algorithms compiled from the literature [3,4,10,14]. To assess
our counterexample generation, we considered invalid specifications, e.g. that a
reversed list is the same list as the input list. Furthermore, we injected faults
into our examples by swapping and deleting statements.

Properties. During state space generation, memory safety (M) is checked. More-
over, we consider five classes of properties that are verified using the built-in
LTL model checker:
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Table 1. The experimental results. All runtimes are in seconds. Verification time
includes state space generation. SLL (DLL) means singly-linked (doubly-linked) list.

No. states State space gen. | Verification | Total runtime
Benchmark Properties Min Max Min |Max Min |Max |Min |Max
SLL.traverse M, S, R, V, N, X 13 97 |/0.030/0.074 0.039|0.097|0.757 | 0.848
SLL.reverse M, S, R, V, X 46 268 |0.050|0.109 0.050{0.127|0.793 | 0.950
SLL.reverse (recursive) M, S, V, N, X 40 823 |0.038|0.100 0.044/0.117/0.720|0.933
DLL.reverse M, S, R, V,N, X 70 | 1508 |0.076|0.646 0.097]0.712]0.831|1.763
DLL.findLast M, C, X 44 44 10.0690.069 0.079]0.079|0.938 | 0.938
SLL.findMiddle M, S, R, V, N, X 75 456 |0.060|0.184 0.060|0.210|0.767|0.975
Tree.traverse (Lindstrom) | M, S, V, N 229 |67941 |0.119|8.901 0.119]16.52|0.845|17.36
Tree.traverse (recursive) |M, S 91 |21738 0.075|1.714 0.074|1.765|0.849 | 2.894
AVLTree.binarySearch M, S 192 192 0.117]0.172 0.118]0.192]0.917|1.039
AVLTree.searchAndBack M, S, C 455 455 0.193/0.229 0.205|0.289|1.0811.335
AVLTree.searchAndSwap M, S, C 3855 | 4104 |0.955|1.590 1.004|1.677|1.928|2.521
AVLTree.leftMostInsert M, S 6120 | 6120 |1.879|1.942 1.932|1.943|2.813|2.817
AVLTree.insert M, S 10388 | 10388 |3.378|3.676 3.378|3.802|4.284 |4.720
AVLTree.sl1ToAVLTree M, S, C 7166 | 7166 |2.412|2.728 2.440|2.759 | 3.383 | 3.762

— The shape property (S) establishes that the heap is of a specific shape, e.g. a
doubly-linked list or a balanced tree.
— The reachability property (R) checks whether some variable is reachable from
another one via specific pointer fields.
— The wvisit property (V) verifies whether every element of the input is accessed
by a specific variable.
— The neighbourhood property (N) checks whether the input data structure coin-

cides with the output data structure upon termination.

— Finally, we consider other functional correctness properties (C), e.g. the return

value is not null.

Setup. For performance evaluation, we conducted experiments on an Intel Core
i7-7500U CPU @ 2.70 GHz with the Java virtual machine (OpenJDK version
1.8.0-151) limited to its default setting of 2 GB of RAM. All experiments were run
using the Java benchmarking harness JMH. Our experimental results are shown
in Table 1. Additionally, for comparison purpose we considered Java implemen-
tations of benchmarks that have been previously analysed for memory safety by
FORESTER [10], see Table 2.
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Discussion. The results show that
both memory safety (M) and shape

Table 2. FORESTER benchmarks (memory
safety only). Verification times are in sec-

(S) are efficiently processed, with onds.
regard to both state space size and Benchmark No. states|Verification
runtime. This is not surprising as SLL.bubblesort 287 0.134
these properties are directly han- SLL.deleteElement 152 0.096
dled by the state space generation SLLHeadPtr (traverse) | 111 0.095

. . SLL.insertsort 369 0.147
engine. The most challenging tasks - Bt

. . List0fCyclicLists 313 0.153

are the visit (V) and neighbourhood ;5 = 379 0.207
(N) properties as they require to DLL insertsorti 4302 1.467
track objects across program execu- DLL.insertsort2 1332 0.514
tions by means of markings. The lat- DLL.buildAndReverse | 277 0.164
ter have a similar impact as pointer ~CyclicDLL (traverse) | 104 0.108
variables: increasing their number L ree-construct 44 0.062
. . Tree.constructAndDSW|1334 0.365
impedes abstraction as larger parts SkipList.insert 302 0.160
of the heap have to be kept concrete. guiprist.puila 330 0.173

This effect can be observed for the
Lindstrom tree traversal procedure

where adding one marking (V) and three markings (N) both increase the verifi-
cation effort by an order of magnitude.
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