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A CONJECTURE CONCERNING THE SMALLEST BOUND ON
THE ITERATIONS IN LINEAR PROGRAMMING

T L Saaty
Office of Naval Research, Washington, D C
(Recerved July 6, 1962)

N SOLVING hnear programming problems accurate estimates of the number of

iterations needed to reach the optimum are important to have It has been
mentioned 1n the hterature that computing experience indicates this number of
iterations to be of the order of twice the number of constraints We have been
mformed by two computing groups that a number of large linear programming
problems have been left unsolved because, after many hours of machine operation,
1t was not known how much longer the process would continue

Here through heuristic arguments based on what appears to be a reasonable

conjecture we give an upper bound to the number of iterations for algorithms which
change one vector at a time, such as the simplex process

A hinear programming problem, as defined 1n matrix notation, requires a vector
220 (nonnegativity constraints) be found that satisfies the constramnts Az <b,
and maximizes the hnear function cx  Herez=(z:, ,za), 4=[a,,] =1, ,m,
71=1, , n), b=(by, , bm) and ¢=(cy, , Cn) 18 the cost vector With the
original (the primal) problem 1s associated the dual problem yA =¢, y 20, by =
minimum, where y=(y, , Ym) A duabty theorem asserts that if either the
primal or the dual has a solution, then the values of the objective functions of both
problems at the optimum are the same It is a relatively easy matter to obtain
the solution vector of one problem from that of the other

In the onginal problem one usually has m <n Thus all the vertices of the
regon of solutions hie on the coordinate planes Tlus follows from the fact that,
generally, 1n n-dimensions, n hyperplanes each of dimension (n—1) intersect at a
pomnt The dual problem defines a polytope m m-dimensional space In this
case not all vertices need lie on the coordinate planes

Geometrically, the mequality constrants of the problem define a convex set
(the feasible region) whose boundary 1s a polytope in n-dimensions, and the objec-
tive function defines a hyperplane that 1s translated in a parallel direction towards
that pomnt of the convex region which yields the optimum (e g, if mimmizing this
pomt yields the shortest distance of the objective hyperplane from the onigin) Itis
mtwtively obvious, at least in 3 dimensions, that the optimum 1s on the boundary
and 1s usually a vertex of the polyhedron However, WEYL has proven this fact
for the n-dimensional case If all vertices were easily obtanable, then one could
evaluate the objective function at each vertex until the optimum 1s attained From
this 1t 15 clear that there should be a natural interest in the number of vertices of
polytopes There 1s, of course, the stronger interest 1n estimating the number of
steps required to solve a linear programming problem by various procedures and
particularly by the simplex process Because specific critema for choosing new
vectors, etc , are used, the simplex process does not require the use of all the vertices
It sumply follows a network path towards the optimum
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To each hyperplane of the constramnt set corresponds a vector that may be used
to form a basmis A feasble basis corresponds to a vertex of the constramnt poly-
hedron This vertex 1s the mtersection of hyperplanes from which the basis vectors
are taken Note that the number of planes defiming the vertex may exceed the
dimension and hence one chooses from among them a number that corresponds to
the dimension Each change of basis 1s effected by dropping one vector and select-
ing a new one  Geometrically, this corresponds to moving from one vertex of the
polyhedron to an adjacent vertex, which 1s the intersection of planes that mnclude
all but one of those planes that mtersect 1n the previous vertex If we associate
with each vector a pomnt m the plane and join that point to all other associated
points, we have all possible ways of changing vectors, having started with a given
basis  Some of these changes may not be feasible since not all hyperplanes define

vertices of the constraint polyhedron In all there are (m ; n) lines joimng these

associated points and therefore there are at most that many changes of bases How-
ever, there 1s a question as to whether 1t may not be possible that a connecting line
may be repeated, 1 e, that one vector may replace the same vector 1t previously
replaced 1n another basis We assume that this cannot happen, 1e, two given
vectors may be exchanged no more than once (with one of them replacing the other)
mn all choices of bases It would appear that there 18 no theoretical reason why
algorithms may not exist that satisfy this conjecture  For example, there 1s com-
puting evidence supporting it for the simplex algorithm under nondegeneracy and
without cyching  Our search among experts using the ssmplex process to solve linear
programs has not produced counter examples It 1s beheved that practical experi-
ence that shows that the number of iterations of the simplex process of the order of
twice the number of constramts mcreases the plausibility of this conjecture since
our subsequent argument produces an upper bound close to that estimated from
computing experience

If our assumption 1s accepted we have an upper bound of (m; n) possible
changes of bases However, this number may be reduced because of the fact that
one does not return to an old basis Thus, for example, the simplex process 1m-
proves the value of the objective function or leaves 1t the same from one change of
basis to the next, 1e , from one vertex of the polyhedron to that which replaces it in
a change of basis

The argument now proceeds as follows In m dimensions (the simplex process
selects a basis of m vectors for an n vanable, m essential constraints problem) there
are at least m edges meeting at a vertex of a polyhedron With a change of basis
the objective hyperplane transits across one of these edges to a new adjacent vertex,
since there 18 only one edge joming any two vertices of a polyhedron However,
the objective hyperplane, 1n 1ts move towards the optimum vertex, will never return
to the vertex 1t has just left, and hence it will never transit across any of the remain-
ng (m —1) or more edges leading out of the previous vertex to other vertices These
vertices may be reached through other edges connecting from other vertices but
never again from the given vertex This imphes, 1 the change of basis interpreta-

tion, that, whatever the total number of changes of bases s, 1¢e, (m ;— n)) 1t must be
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reduced by a factor of at least 4 m, 1e, out of every m possible changes, one 18
chosen, and the 14 anses from the fact that a change of basis mvolves two vertices
and a direction connecting them 18 counted twice, 1 e, once at each vertex Thus
we must consider a reduction of only 14 m 1n the number of changes of bases Thus,

finally we have
m+n _ 2 (min
("37)/ sm =5 (07)

as an upper bound to the number of iterations This dominates 2(m+n) the
quantity observed m practice Incidently, we have seen examples 1n which the
iterations of the simplex method exceed 2(m +-n) but not the above bound

If a result 1s desired for n-dimensions, 1 e, if one uses the dual-simplex process,
then the following 1s the upper bound to the number of feasible bases

2 (m+n
n\ 2 )

2 (m-+n)

since n>m Note that the bmomial coefficient in the foregomng results includes
nonfeasible changes of bases

It 18 possible by means of parametric programming to transform all the regions
contamned 1n the intersections of the (n —1)-dimensional hyperplanes of the problem
to a convex region This may be described by the blowing up of spikes projecting
from the feasible region A spike 15 defined by no more than (m+n —1) planes and
hence 1t 1s basically another polytope, at least one of whose (n—1)-dimensional
faces comncides with an (n—1)-dimensional face of the convex polytope of feasible
solutions Then the linear programming problem can be solved with respect to

the new region 'With this modification, (2/n) (m;— n) remams the upper bound

which 18 dominated by

to the total number of iterations of the dual simplex method and (2/m) (m;— n)

for the simplex method 1tself  In other words the estimate also apphes to problems
m which there are many extraneous (nonfeasible) intersections, which by para-
metrization may be made to define vertices of feasible regions for new problems

ReMark The use of artificial bases (unit vectors) with very high costs, enables
circumventing degeneracy, 1e, the nonexstence of the approprniate dimensional
bases By starting at a distant pomnt m the positive orthant with an artificial
basis, the objective function reaches the feasible region from (generally) a best
direction, 1 e, with a ‘smallest’ number of 1terations



