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Letters to the Editor

COMPUTATIONAL RESULTS OF AN INTEGER
PROGRAMMING ALGORITHM

Patrick D. Krolak
Vanderbilt University, Nashville, Tennessee
(Received October 4, 1967)

This note reports on a method for solving the general integer linear pro-
gramming problem that is called the Bounded Variable Algorithm. It first
describes the basic algorithm and then makes a comparison of limited scope
between the Bounded Variable Algorithm and other published algorithms
on a set of common problems.

N THE FIELD of integer linear programming, which has been rapidly expanding

in recent years, the work has proceeded along several lines: The best known line )
is probably the cutting-plane approach,l*4 but modifications of dynamic pro- ‘
gramming have been tried by others,[*") and recent papers have dealt with trun-
cated enumeration.

The work in truncated enumeration has centered around formulations of the
integer linear programming (ILP) problem as a (0-1) ILP, i.e., reducing all general
variables to the sums of binary variables,[1 but a few papers have attacked the
problem directly.419 In addition to these exact algorithms, there have been
several heuristics proposed.t-2

This note gives the computational experience with an algorithm called the
“Bounded Variable Algorithm,” which uses truncated enumeration to solve general
ILP problems without recourse to binary variables.

THEORY

WrrHOUT ToO much of a loss in generality (for details on how to take care of the
remaining cases, see reference 21), we can state the general ILP problem as: maxi-
mize z= cx, subject to Ax<b and D=<x=<U, where U, D, ¢, and x are integer
n-vectors, A is an m Xn matrix, and b is an m-vector.

Now, suppose we solve the following linear programming problems subject to
the same constraints as the ILP except for the integer requirement in «:

max ex, 1)
max Y sz, @
max . pt:T;, (3)
min X peizs, @
min ex, 16)]
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where B is the set of indices of variables in the optimal basis of (1). The above five
results give us five additional constraints on the integer solution that we shall, for
obvious reasons, call redundant constraints (for example, z;*, the integer optimal
solution, must satisfy ex:* <max [ex], where [a] is the greatest integer <a).

Append the five new redundant constraints to the A-matrix and the b-vector
and drop all the constraints in the original A-matrix that are not binding at op-
timality. Call the appended matrix A; and the matrix formed by the dropped
constraints A;. Now reorder the variables in such a fashion that all the variables
whose indices are in B are first in sequence.

The Bounded Variable Algorithm is based on a lemma that depends upon a
simple observation. Given two n-vectors D and U, where DU, and an 4 and
a b, then we shall define two integer n-vectors D’ and U’ where the jth component
of U’ satisfies

Ui'=min{ min {[bl—zkd—a”(]h— Zh“aul)k]}, [UJ]}

for all Idars>0 ary

and the jth component of D’ satisfies

Dy= max{ max {[bt ~ > kranUs— ZuuauDk_*_l]}, (DJ]}

for all Idayp;<o ars

where J — is the set of all indices with k #J and having a;x 0, and J + is the set
of all indices with k=J and having a;; >0.
Lemma. For D' and U’ as defined above, D' SxS U’ for all-integer x salisfying
AxSbad DxsU.

A trivial observation is that there exists no integer x satisfying the constraint
set if D’ is not less than or equal to U’.

Now, using the lemma, the redundant constraints, and the reordered variables,
we state the Bounded Variable Algorithm:

(1) Given two integer vectors U and D that are upper and lower bounds on any
possible solution vector x, we define a list L; to be a collection of integers

L‘={J|]=Du Di+1, AR Ug}

(2) Pick an integer from list L, say ki. Set z; =k;.

(3) Use the lemma to get a new upper and lower bound on z,, given that we
have set the boundson z, to be equal to k.  If Dy > U/, gotostep (5). If Dy S Uy
generate a list L, and pick a value from L, to set z, at and go to (4).

(4) Continue as in step (3), generating a list for each variable in succession and
setting the appropriate variable equal to some member of the list. At the ith
variable, the information that the variables z,, - - -, z;_; have been set at some pos-
sible value within their feasible limits is used to calculate the ith variable’s bounds.
Eventually either we get to the nth list, where we successfully apply the lemma to
both the A, and A, matrices and hence a feasible solution is found, or some variable
is found, say z;, whose bounds are D,/ > U, in which case, according to the theorem,
we can conclude that no possible solution exists having the values assumed for
Zy, +--, Ty If a feasible solution is generated, go to (7). If the bounds are con-
tradictory, go to (5).
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(5) In attempting to get bounds in the Jth variable, it was found that no integer
solution was possible. Go to the (J/ —1)st list and remove from it the value at
which z,_; was assigned. Either list L;; is empty or it is not. If it is not, assign
Zs_1 & value from the remaining members of L,_; and go to (4). If thelist L,_, is
empty, then go to (6).

(6) If J>2, then there can be no solution having the assigned values z,, - - -,
Zs_s, since this combination has been tried for all possible values of z,_; and has

TABLE 1
ComPARISON OF COMPUTATIONAL EXPERIENCE ON CoOK AND EcHoLs DaTta
7072
7072 | DREBES d EcHols
» * B.V.A.| Coox min | heuristic| Bon heuristic
nim| Zy Zip | 7044 | 7072 Rao
min min | RAO | 360-50 | o 7072
exact [ min Hstic min
(C) |20 8 1204 1271] 1.52 | 5.30 1 o.1r (R) F)
C) |20 o 1327 1516 2.05 | 9.83 1 o.1 (R) (F)
(C) | 20] 10 1264 1345 3.04| 9.51 1 o.1 (R) (F)
(C) | 20| 10 4616 4701 3.66 | 18.66 2 0.1 (R) (¢3)]
©C) |25 8 3221] 3332] 0.65 | 9.90 1 0.2 (R) (S)
(C) [25| 8| 5367 5454/ 7.60} 19.95 3 0.3 (R) (F)
€ 25| o 1774| 1898 8.95 | 18.20 2 o.1 (R) F)
(C) | 20| 10| 23544 23858 11.90 | 62.08 4 0.8 (R) S)
(C) | 24|15 50020 5247| 9.70 | 39-47 3 0.2 (R) (F)
(C) |2t |21 5153| 5334| 16.00 | 57.17 4 (F) jo.2 (R) (F)
(E) 9! 7| 107097 107118 0.70 | — 4 4.431 (F)
(E) | 21| 27 540 506] 8.60 | — 2 1.936 (F)
(E) | 12| 10 17 18/ 0.26 — | 83.00{ 0.5 0.628

(C) Data taken from the appendix of Cook’s report.

(E) Data taken from the appendix of Echol’s report.

(R) Rao’s suboptimal heuristic produces answers of the order 0.9 Z*.
(S) An optimal answer reported but no computing time.

(F) A suboptimal answer reported.

failed to generate a feasible solution. Set J =J—1 and go to (5). If J =2, then
no possible solution exists. Go to (8).

(7) A feasible solution has been found. (Note that at the point where the
feasible solution was found there were bounds on the nth variable such that
D,'sU,’, and any choice from the nth list would produce a feasible x). We now
set z, to the largest number of list L, if ca=0 or to the smallest member if ¢, <0.
This gives us the largest feasible solution for the previously set values of z,, - - -, Zn-1.
Update the redundant constraints and store the feasible solution. Now go to (5).

(8) If no feasible solutions are found, then there is no integer solution. If
feasible solutions are generated, then the last one generated is optimal.

This procedure is, of course, finite, and is similar to several proposals involving
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truncated enumeration.[%.1518  The bounding device is, of course, extremely simple
and further steps listed in references 21 and 22 are needed to make the program
computationally efficient.

TABLE 11
CompPARISON OF COMPUTATIONAL EXPERIENCE ON HALDI AND IBM DaTtA
IBM
IBM IBM |CDC | CDC | CDC |IBM 360-63 IBM
7090 7090 | 3600 | 3600 | 3600 | 7004 “qoas | 1944
sec. sec. sec. | sec. | sec. | sec. sec.
sec.
Source m n %
=
IPM3@ | LIPI® | & g - S |BVA.| H
Sl Yl o |5 &
Bl A | @ | oo g
= d = =] [
Haldi 5 3 6 F 9.0 F F 79.9 il 30 —
6 5 6 F 7.5 F 3.2 ] 43.48 12 12 —
7 5 4 F 7.8 F F F 1 24
8 5 4 F 6.4 F 3.0} F 13 9 2
9 6 6 5.18 3.2 F 3.59| 5.48 — 8
10 12 10 71.1 9.1 F F F — 17 4
IBM 1 7 7 2.3 1.86 | 1.01 1.14) I.04] — 18 I
2 7 7 2.8 3.0 | 1.05 1.08 1.14) — 21 1
3 4 3 2.63 2.86 | 0.75 0.62| 0.48 — 4 1
4 15 15 5.03 | 11.66 | 3.5 3.08 3.64] 4o00| 23 6
5 15 15 51.6 66.5 F 26 62.8 | >600| 154 114
9 50 15 | 633 473 F s 95.4| — — 36
4 pt. 6 8 2.2 1.767/ 0.89 | o0.90| 0.76] — 3 —
problem

F, Failed to converge after 14,000 iterations.

@ IPM, R. Levitan and Gomory of IBM, Share distribution # 1190.8!
®) L1PI, Haldi and Issacson of Standard Oil.?

) ILP2-1 and ILP2-2, Summers of CDC.1!

@ IPSC, Woolsey of Sandia Corporation.[*

() Balas (o-1), Lemke and Spielberg of IBM.[2¢]

() Geoffrion, A. M. Geoffrion of Rand Corporation.*?]

COMPUTATIONAL EXPERIENCE

THE COMPUTATIONAL experience of this algorithm is listed in three tables. It will
be noted by those familiar with the works of the other authors that the data cover
an extremely diverse set of problem types going from low to high ranges in density,
per cent negativity, and bounds on variables.(®! The data in Table II are made up
of problems that have very small ranges on the variables, and hence the binary
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codes can be expected to be very efficient; still, the Bounded Variable Algorithm
does solve the problems in reasonable times. In addition to the work reported in
the tables, the author has solved over 50 additional problems and found that, for
problems of 50 variables or less, the code has so far always produced a close, if not
optimal, solution in 10 minutes of IBM 7044 time.
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TABLE II1
n m 7044, min
P 50 5 13
K 48 6 9
H 135 15 3
H 15 15 2

P Average time of three problems, the original stated in PETERSEN,[1!] the
other two having the b vector changed. The variables are all (o-1).

K Average time of ten problems. Five additional problems were termi-
nated after 12 minutes with feasible solutions close to the LP optimal solution.

H Average time of 6 problems of HiLLIERS type 1.113]

H Average time of 6 problems of HiLLIERs type IL.[15]
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AN APPROACH TO SOME STRUCTURED LINEAR
PROGRAMMING PROBLEMS

John M. Bennett and David R. Green
University of Sydney, Sydney, Australia
(Received October 10, 1966)

A recent paper by J. M. BENNETT describes a decomposition algorithm
for the class of linear programming problems commonly called ‘angular
systems.” This note draws attention to a variant of the algorithm that is
particularly suited to problems in which certain submatrices are sparse.

E CONSIDER the decomposition algorithm for the class of linear program-
ming problems, commonly called ‘angular systems,’ that was presented in a
recent paper by J. M. Bennett,] and assume that its submatrices B* are sparse.
The result is a variant of the algorithm that is particularly suited to problems where
this assumption holds.
This variant involves modifying the calculation of the shadow costs. The
method outlined in Bennett’s paper [equation (7)] uses a matrix

G=|[-- -{B"“)—B'“)A"(”’A‘(‘)l- -] 6))

for computing the shadow costs. This matrix is used for no other purpose in the
algorithm.

An alternative procedure for computing the shadow costs is to calculate the last
row of the transforming matrix T and then to post-multiply this row by

AW "
" @

AR

B . . . BD

The last P elements of the last row of T' are given by Fp , and the remaining
elements are available as

—[Fp.B:® 41®1|...|Fp BH® gx®1] ®




