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FINDING MINIMAL COST-TIME RATIO CIRCUITS

Bennett Fox
The Rand Corporation, Santa Monica, California
(Received June 28, 1968)

In the treatment of routing problems, other authors have used column
generators to introduce, into the basis of the master problem, the solution
that corresponds to a cycle in a graph with minimal cost-to-time ratio.
This subproblem is of independent interest and corresponds to deterministic
Markov renewal programming; this note presents an efficient method for
its solution, intuitive basis for which is a search for a way to route flow so
that the cost-time trade-off is optimal. This flow-circulation problem is
solved parametrically by the out-of-kilter algorithm.

E SEEK a cycle in a network N with minimal cost-to-time ratio, a problem
that has already been considered by DaNTz16, BLATTNER, AND Rao.®
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It appears that the chief difference between their approach and ours is in the method
for solving the subproblems, which must be solved parametrically in trial loss
rates. Later, the methods will be briefly compared. Our solution’s intuitive
basis is a search for a way to route flow so that the cost-time trade-off is optimal.
This flow circulation problem is solved parametrically by the out-of-kilter algo-
rithm.

Without loss of generality, we suppose that there is at most one directed arc
(%, 7) leading from node % to node 5. Each arc (¢, j) in the network has a cost
cij and a time ¢;;. Let A denote any cycle contained in C, the set of cycles in N.
Its cost and time are, respectively, c(4) = 3 (i jpea €ij and t(A) = X (i, jea bij.
The loss rate r(4) = c¢(4)/t(A) is to be minimized over AeC. Thus, we seek an
A attaining 7* =mingcr(4). To do this, it is convenient to introduce the func-
tions v(B, A) =c(4)—Bt(A) and 2(B) =mins.cv(B, A). It is easy to verify that
z(-) is piecewise linear, decreasing, and concave.

Consider the B, say B8*, for which 2(8) =0. Then

O=min, {c(4)—B*(A)}=mins {[c(4)/t(4)]—L*} =r*—B".

Thus, 8* =r* and a cycle A* minimizing v(8*, A) is a cycle of minimum cost-to-time
ratio.

THE ALGORITHM

WE ARE now in a position to give an algorithm for finding A*. Deferring the
details for the subproblem to the next section, we give the main routine:

1. k=1

2. For some A, say A, compute r(4).

3. Set B =r(4s).

4. Test whether 2(8;) vanishes.

5. If 2(Bx) =0, terminate with the corresponding cycle A; that minimizes
v(B, A); Ay is optimal.

6. Find a cycle As;1 such that r(4z) <Bi and return to 3 with & replaced
by k+1.

The algorithm is finite, since at any nonterminal step Biy1 <Bi, 41, 4s, - -+, Az
are distinct, and there is only a finite number of cycles.

It remains to give a method for steps 4 and 6. We use the out-of-kilter algo-
rithm (Forp AND FuLkerson,# Crasenitl), taking advantage, for k>1, of the
preceding solution. As we shall see in the section after next, we can expect most
ares to remain in kilter after the change from 8: to Bxr1. The labeling procedure
simplifies, since the are flows are 0 or 1 and we start with a feasible circulation.

THE SUBPROBLEM

To po sTEP 4 of the main routine, we define relative arc costs dij(8) =cij —Bts.
With these relative arc costs, we look for the minimal-cost-flow circulation C*(8)
in the network, each arc and node having unit capacity. The node capacities can
be handled directly, analogously to WoLLMER,[®"! or indirectly using dummy
arcs with unit capacity.

Since the optimal flows are integral, if C*(8) has multiple cycles (loops with
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unit flow), they must be disjoint in view of the node capacities. Hence, the
cycles of C*(B8) are easy to enumerate. Let A,° satisfy

T(Abo) =minAtc‘(nk)T(A).

In the circulation C*(8y), let z%; be the flow in are (1, /). The value of this circu-
lation is

w(B) =D s,i z5i(cii—Butii)-

One easily verifies that 2(8x) 2w(B:) and 2(8x) =0=w(Bi) =0, provided that 8* <.
In the algorithm, the condition is clearly satisfied. Since at each nonterminal
step w(Bx) <0, the number
=i Thicsi Doii Thitis

is less than B;.

Obviously, r(4:°) sax. Collecting our observations, we have the following
rule:

If w(B) =0, Ax° is optimal and B* =Bk. If w(Bx) <0, set Agy1=A4;° in step 6
of the main routine.

When 8 =8*, the null circulation also solves the subproblem. However, the
miniminal cycle from the preceding iteration is optimal.

We remark that oy corresponds to the simplex multiplier that would be ob-
tained by decomposing the linear program (I):

minzg,; xiici;, 0= a;; for all 4, 4, Z; x,-;=21 z;; for all j, Z;,,’ it =1,

that determines the minimal cost-to-time cycle, using a minimal-cost-circulation
subproblem. We can impose unit capacities on the flow, since oy is independent
of any uniform positive flow amplification. (Geometrically, this corresponds to
the fact that the solutions to the flow-balance equations lie in a convex polyhedral
cone with vertex at the origin. The optimal solution will lie on a ray extending
from the origin and passing through a vertex of the unit hypercube.) Program
(I) corresponds to a deterministic Markov renewal program in which there is an
optimal policy with a single recurrent chain (see JEwWeLL,!® Fox,l and especially
DenaRrpO aND Foxkl).

UPDATING

NoticeE THAT 8 decreases from one iteration to the next and that this decrease
is strict if 8 B*. Thus, the subproblem’s relative costs, which are of the form
¢ij—Ptij+0:—0;—~a;, are increased. Here 6; and 8; are the node potentials for
nodes ¢ and j respectively, i.e., they are the simplex multipliers for the flow-balance
equations for nodes ¢ and j. Of course, o;; is the multiplier for the capacity con-
straint on arc (7, ). Analysis of the complementary slackness conditions used in
the out-of-kilter algorithm reveals that all ares carrying no flow following the
preceding iteration are still in kilter. The only ares (if any) that go out of kilter
are those carrying unit flow and whose relative costs change from negative or zero
to positive. During each iteration, the in-kilter arcs remain in kilter. Each
breakthrough puts all formerly out-of-kilter arcs in the chain in kilter.
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ACCELERATION

STEP 6 of the main routine served to find a 8, namely 8441, such that 8* <Bx1 <B.
If we had at hand a B, say B141, such that 8* <Bi,1 <Bry1, it would then be better
to return to step 4 with By, It is essential that B* <Bi,.; otherwise, the sub-
problem gives the null circulation and no optimal cycle is necessarily at hand.
However, ;3,:.,4 need not correspond to a loss rate for any cycle.

We try to find a suitable 8,1 by extrapolation, but we do not always succeed.
As Eric Denardo has pointed out (in a personal communication) the B-intercept,
say Bps1, of the line through the leftmost two points so far obtained on the graph
of w versus § satisfies 8% <B;4,, since w is concave decreasing. We could thus
modify the return to step 4 to use Bgy1 Or Bry1, Whichever is smaller.

OTHER APPROACHES

Dantzig, Blattner, and Rao®® use an approach that solves a subproblem para-
metrically by a shortest path approach that corresponds to the simplex method,
except that steepest descent is not used. By contrast, we solve our subproblem
by the out-of-kilter algorithm. In general, we expect that it requires more effort
to solve our subproblem, but that the gain per iteration is greater. It appears
that we take greater advantage of the previous solution (the section “Updating”).
However, we do not know which algorithm is more efficient.

The work of Rao aAND Z1ionTs[¥! appeared after our first draft was completed.
Their publication contains related ideas, but does not preempt the present paper.

Lawrgr® has proposed an approximate procedure based on binary search (bisec-
tion) of an interval [a,b] for a zero of z (c¢f. the introduction), where z(a) >0 and
2(b) <0. He takes advantage of the fact the search requires knowing only the
sign of 2 at the points checked.

The discrete-time case (all £;; =1) has been solved using a ‘shortest route’ ap-
proach (LawLERr[), Suarirol™), which one suspects is best for this case.

No empirical comparisons are available, since our algorithm has not yet been
programmed. Of course, any such comparisons would be biased by differences in
the skills of the respective programmers. Perhaps most revealing would be least-
squares polynomial fits to the running times as a function of the number of nodes
in the network.

RELATED PROBLEMS

IN THE section on “The Subproblem” we pointed out that finding a cycle in a
network with minimal cost-to-time ratio corresponds to deterministic single chain
Markov renewal programming. An extension of the network formulation tfo
deterministic multichain programs can be given along similar lines. The stair-
case-structured linear programming derived by Denardo and Fox!! can be broken
apart by decomposition so that the subproblem is exactly the network flow problem
already given, except for its objective function. The master program, however,
is no longer trivial. Even so, in large problems the network approach is probably
more efficient than a direct attack using the simplex method on the original pro-
gram,
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In applications, the general multichain case seldom arises. Routing problems
in which the ‘links’ can carry two-way traffic are single-chain problems, assuming
that the terminals are connected.

Norman aNp WHITED have indicated heuristically that certain nondeterminis-
tic Markov programs can be solved approximately as deterministic programs using
expectations. Our algorithm can be applied to the resulting program.

Another application of our algorithm occurs in scheduling parallel computations
(Rerreriy),

One might think there is an analogous network formulation for nondeterministic
Markov renewal programs, perhaps using networks with gains (JEwsLLl?), but
the author has been unable to find a canonical network representation for such
programs.
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BINOMIAL DISTRIBUTION SAMPLE-SIZE NOMOGRAM

S. Matlin
General Electric Company, Valley Forge, Pennsylvania
(Received August 14, 1968)

This note gives a nomogram that provides a rapid approximation to the
required sample size to be taken from a binomial distribution for a desired
precision and confidence.

O EMPLOY a Monte Carlo computer program, for example in calculating the

kill probability (p) of an RV against a point target, the user is confronted

with the problem of how many simulations or runs (n) to make. This sample size

is a function of how accurately p is desired (within say =€) and with what con-

fidence (y) the conclusion can be drawn that the true lies p within e of the esti-

mated p. The attached sample-size nomogram provides a rapid approximation
to the required n, given € and v.

USE OF THE NOMOGRAM

TaE NoMOGRAM is entered at the suspected value of p. One proceeds up to the
desired value of ¢, then across to the required confidence level v, and finally down
to the number of runs n. If p is expected to be less than 0.5, the same nomogram
may be used by entering it at (1 —7) instead of at . If the user has no prior
notion of how large p may be, then an upper limit to the sample size required may
be found by assuming $ =0.5.

The interpretation of the confidence level is: if one takes samples of size n
repeatedly from a binomially distributed population with parameter p, and com-
putes the estimate $ of p from each sample, then the intervals pi=te, fate, ---,
Pr+€ may be constructed, where P, is computed from the kth repetition of taking
a sample of size n; the fraction of these intervals that will contain the true p tends
to v as k increases.

DERIVATION

THE NoMOoGRAM was constructed by approximating the binomial distribution by a
normal distribution having mean np and variance p(1-—p)/n, which is a valid
approximation when n is large (np =9). The relation employed is:

Prob {p~dy V3 Q—p)/n<p<p+d, VP A—p)/n}=7,
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