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BACKGROUND: White blood cell counts are routinely
measured with automated hematology analyzers, by flow
cytometry, or by manual counting. Here, we introduce
an alternative approach based on DNA methylation
(DNAm) at individual CG dinucleotides (CpGs).

METHODS: We identified candidate CpGs that were non-
methylated in specific leukocyte subsets. DNAm levels
(ranging from 0% to 100%) were analyzed by pyrose-
quencing and implemented into deconvolution algo-
rithms to determine the relative composition of leuko-
cytes. For absolute quantification of cell numbers,
samples were supplemented with a nonmethylated ref-
erence DNA.

RESULTS: Conventional blood counts correlated with
DNAm at individual CpGs for granulocytes (r �
�0.91), lymphocytes (r � �0.91), monocytes (r �
�0.74), natural killer (NK) cells (r � �0.30), T cells
(r � �0.73), CD4� T cells (r � �0.41), CD8� T cells
(r � �0.88), and B cells (r � �0.66). Combination of
these DNAm measurements into the “Epi-Blood-Count”
provided similar precision as conventional methods in
various independent validation sets. The method was also
applicable to blood samples that were stored at 4 °C for 7
days or at �20 °C for 3 months. Furthermore, absolute
cell numbers could be determined in frozen blood sam-
ples upon addition of a reference DNA, and the results
correlated with measurements of automated analyzers in
fresh aliquots (r � 0.84).

CONCLUSIONS: White blood cell counts can be reliably
determined by site-specific DNAm analysis. This ap-
proach is applicable to very small blood volumes and

frozen samples, and it allows for more standardized and
cost-effective analysis in clinical application.
© 2017 American Association for Clinical Chemistry

Analysis of the composition of white blood cells is among
the most frequently requested laboratory tests in hema-
tological diagnostics (1 ). Leukocyte differential counts
(LDCs)11 can be determined by microscopic evaluation
and manual counting. Since the advent of automated cell
counters, LDCs are particularly analyzed by flow cyto-
metric technologies (2 ). Such automated analyzers sense
electrical impedance, optical light-scattering properties,
or fluorescence signal intensities (3–5 ). Fluorescent
staining of specific epitopes is the gold standard for def-
inition of lymphocyte subsets. However, immunopheno-
typic analysis is costly, relatively labor-intensive, and not
trivial to standardize. Furthermore, all of the aforemen-
tioned methods are applicable to only fresh blood sam-
ples; samples cannot be frozen for shipment or later
analysis (3, 6 ). Recently, genome-wide gene-expression
profiles (7–10) and epigenetic profiles (11–17) have
been used to deconvolute the cellular composition in
whole blood. Such alternative approaches might over-
come some of the limitations of the well-established
state-of-the-art procedures for LDCs. While these decon-
volution procedures may have several advantages, it must
be taken into account that they are not applicable for
analysis of erythrocytes and thrombocytes with inconsis-
tent mRNA content and lack of DNA. Because erythro-
cyte and thrombocyte counts are of particular clinical
relevance, conventional procedures cannot be completely
replaced by gene expression or epigenetic parameters.
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DNA methylation (DNAm) represents the best un-
derstood epigenetic modification. Methyl groups can be
added to the fifth carbon atom of cytosines, predomi-
nantly in a cytosine-guanine dinucleotide context (CpG
site). DNAm patterns have many advantages compared
to immunophenotypic analyses: (a) DNAm is directly
linked to cellular differentiation; (b) DNAm facilitates
absolute quantification at single-base resolution (ranging
from 0% to 100% DNAm); (c) every cell has only 2
copies of DNA and hence the results can be easily extrap-
olated to the cellular composition (in contrast to RNA,
which can be highly overrepresented in small subsets);
and (d) DNA is relatively stable, able to be isolated from
lysed or frozen cells and shipped at room temperature for
further analysis. So far, epigenetic estimations of LDCs
are based on microarray data taking multiple CpGs into
account; however, such profiling procedures are relatively
costly and hardly applicable in daily clinical routine.

In this study, we hypothesized that site-specific anal-
ysis of DNAm at individual CpG sites could reflect the
relative composition of leukocytes. Furthermore, we con-
ceived a method, based on DNAm patterns, for absolute
quantification of cell counts.

Methods

SELECTION OF CANDIDATE CG DINUCLEOTIDES

For selection of cell-type-specific CpG sites, we used
DNAm profiles of purified leukocyte subsets that were
generated on the Illumina Infinium HumanMethyla-
tion450 BeadChip platform (Gene Expression Omni-
bus ID: GSE35069) (18 ). We used �-values, ranging
from 0 to 1, which roughly correspond to percentages
of DNAm. CpG sites on X and Y chromosomes were
excluded. Initially, we considered various statistical
approaches, but due to the relatively small number of
available data sets and because a large difference in
DNAm is of particular relevance, we finally prese-
lected candidate CpGs on the basis of the following 2
simple parameters: (a) we sorted CpGs by the differ-
ence between the mean �-value of 1 purified leukocyte
subset and the mean �-value of all other subsets to
select CpGs with the highest � for each subset and (b)
we sorted CpGs by the sums of variation of �-values
within each subset and all other subsets to select CpGs
with relatively little variation between the biological
replicates of the data set GSE35069. The discrimina-
tory power of these CpG sites was then tested on an
independent data set of purified leukocyte subsets pro-
vided on the Array Express database (E-MTAB-2145)
(19 ). Furthermore, CpGs with systematic DNAm
changes upon aging or between male and female sam-
ples were excluded. For the remaining candidate
CpGs, different combinations were tested for preci-
sion of cell-type predictions on the GSE35069 data

set. Combinations that showed the highest linear cor-
relation with known “real” leukocyte counts were fur-
ther pursued for pyrosequencing assays. This work
flow for selection of cell-type-specific CpGs is also
depicted in Fig. 1 in the Data Supplement that accom-
panies the online version of this article at http://
www.clinchem.org/content/vol64/issue3).

For cellular quantification, we selected CpGs that
were consistently methylated across all hematopoietic cell
types. We used the following DNAm profiles (all gener-
ated with HumanMethylation450 BeadChips): (a) puri-
fied leukocyte subsets: GSE35069 (18 ) and E-MTAB-
2145 (19 ); (b) whole blood from healthy donors:
GSE32148 (20 ) and GSE41169 (21 ); and (c) DNAm
profiles of blood disorders such as acute myeloid leuke-
mia: The Cancer Genome Atlas (22 ), GSE58477 (23 ),
GSE62298 (24 ); myelodysplastic syndrome: GSE51758
(25 ); B-cell lymphoma: GSE37362 (26 ); acute lympho-
blastic leukemia: GSE69954 (27 ). Candidate CpGs were
selected that are consistently highly methylated in each of
these data sets (mean �-value �0.975).

BLOOD SAMPLES

Peripheral blood samples for the training set (n � 60)
and for validation set I (n � 44) were obtained from
the Health Effects in High-Level Exposure to PCB
(HELPcB) program (28 ). The study was approved by the
local ethics committee of the RWTH Aachen University
(EK 176/11). Peripheral blood samples for validation set
II (n � 70, including patient samples without hemato-
poietic malignancy), validation set III (n � 41), and val-
idation set IV (n � 38), as well as serum samples (n � 18)
were obtained from the Department of Hematology,
Oncology, Hemostaseology, and Stem Cell Transplanta-
tion and from the Department of Transfusion Medicine
according to the guidelines specifically approved by the
local ethics committee of the RWTH Aachen University
(EK 099/14).

CONVENTIONAL ANALYSIS OF BLOOD COUNTS

Blood samples from the HELPcB program were analyzed
with the Sysmex XN-9000 hematology analyzer (Sysmex
Deutschland GmbH) and immunophenotypic analysis
was performed as previously described (29 ). In brief,
EDTA anticoagulated whole blood was incubated for
20 min at room temperature with fluorescently labeled
antibody pairs (CD3/CD4, CD3/CD8, CD3/CD19,
CD3/CD16�CD56) and isotype-matched controls
(IgG1 FITC/IgG2a PE, all from Becton Dickinson).
Erythrocytes were lysed with BD FACS lysing solution
and leukocytes were analyzed on a FACSCalibur with use
of the BD Simulset software (Becton Dickinson). LDCs
of validation set II and IV were determined either (a)
with an automated hematology analyzer (Coulter AcT
diff2, Beckman Coulter), (b) by microscopic analysis of
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blood smears, and/or (c) by immunophenotyping and
flow cytometric analysis on a Navios flow cytometer
(Beckman Coulter). Blood samples of validation set III
were analyzed with an Abbott Cell-Dyn Emerald hema-
tology system (Abbott Laboratories).

ISOLATION OF DNA AND BISULFITE CONVERSION

Genomic DNA was isolated from blood with the
QIAamp DNA Mini Kit (Qiagen). Genomic DNA from
1 mL of serum was isolated with the PME free-circulating
DNA extraction kit (GS/VL system; Analytik Jena). Ei-
ther 1 �g of DNA from peripheral blood or the complete
DNA sample from serum was bisulfite-converted with
the EZ DNA Methylation Kit (Zymo Research).

GENERATION OF NONMETHYLATED REFERENCE DNA FOR

QUANTIFICATION

Target regions were PCR amplified (Eppendorf Master-
cycler 5341; Eppendorf AG), cloned into the pBR322
vector (Thermo Fischer), expanded in DH5� E.coli,
and isolated with the plasmid DNA purification kit
(Macherey-Nagel). Mixtures of blood and reference
DNA were subjected to DNA isolation and bisulfite con-
version, as described above.

PYROSEQUENCING

Specific regions covering the CpG site of interest were
amplified by PCR (Eppendorf Mastercycler 5341) with
primers as indicated in Table 1 in the online Supplemen-
tal Data. Pyrosequencing was performed on a PyroMark
Q96 ID System with use of region-specific sequencing
primers and results were analyzed with the PyroMark Q
CpG software (Qiagen).

MASSARRAY ANALYSIS

Converted DNA was amplified by PCR with use of the
HotStart Plus PCR Master Mix (Qiagen; Table 2 in the
online Supplemental Data). A 10-�L portion of PCR
product was in vitro transcribed and cleaved in a base-
specific (U-specific) manner with use of RNase A (T-
Cleavage MassCleave Kit; Agena Bioscience). The cleaved
products were then analyzed by the MALDI-TOF mass
spectrometer (MassARRAY Analyzer 4 System; Agena
Bioscience).

DECONVOLUTION OF LEUKOCYTE SUBSETS ON THE BASIS OF

DNA METHYLATION MEASUREMENTS

DNAm measurements can be represented by a matrix W
of size f � k [f: number of CpGs (features); k: number of
cell types]. The methylation data of the blood samples are
represented by a matrix V of size f � n (n: number of
blood samples) and are modeled as a linear combination
of the purified cell types W, with their mixture propor-
tions H [k � n matrix—each of the n columns corre-

sponds to the mixture proportion of the respective blood
sample (same column in V)]: V � WH.

For estimation of H, a nonnegative least-squares
(NNLS) approach is used to avoid negative mixture pro-
portions. For implementation purposes, we use the mul-
tiplicative update rule of Lee et al. (30 ):

Ha�
j�1 � Ha�

j
�WTV	a�

�WTWH j	a�

Here, j is the iteration index, WT indicates the transpose
of matrix W, and a and � are the row and column indices,
respectively. Leukocyte proportions were then adjusted
to a total sum of 100%.

To inversely predict the percentages of DNAm in
individual leukocyte subsets, we used the respective iter-
ative formula for estimating W (30):

Wia
j�1 � Wia

j �VHT 	ia

�W jHHT 	ia

QUANTIFICATION OF CELL NUMBERS ON THE BASIS

OF DNA METHYLATION

On mixture of genomic DNA with a nonmethylated ref-
erence DNA, the amount of DNAm can be mathemati-
cally described as the ratio of methylated to total DNA:

DNAm �
a � CR � b � CG

CR � CG

Here, CR and CG resemble the copy number of the refer-
ence DNA and the genomic DNA, respectively; a and b
are absolute DNAm levels in controls consisting of either
pure reference DNA or blood DNA, respectively (e.g.,
7% and 93% DNAm in our analysis). To determine the
copy number of the reference plasmids (CR), we used the
following formula:

CR � 1.5 �
mR � NA

MW

where mR is the added reference amount (e.g., 0.011 ng
of LSM14B), NA is Avogadro’s constant, and MW is the
molar weight of the reference DNA (calculated for the
plasmid with LSM14B sequence: 2.85 � 106 gmol�1).
The correction factor 1.5 was empirically determined
and relates to the fact that purified plasmids comprise
fragments of the bacterial genome or other plasmids.
With these parameters, the copy numbers of the genomic
DNA (CG) can be inversely calculated, and hence the cell
numbers in a given blood sample:

cells/�L �
CR � �DNAm � a	

2 � v � �b � DNAm	

The term “2” stems from the fact that each cell comprises
2 copies of genomic DNA; v is the volume of analyzed
blood in �L.
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Results

IDENTIFICATION OF INDIVIDUAL CPG SITES TO DISCERN

LEUKOCYTE SUBSETS

For selection of candidate CpGs, we used DNAm data of
purified granulocytes, CD4� T cells, CD8� T cells, B
cells, NK cells, and monocytes (GSE35069) (18 ). For
each of these cell types, we selected CpG sites that facil-
itated best discrimination based on the following 2 crite-
ria: (a) highest difference in mean �-value of the subset

and the mean �-value of all other hematopoietic cell
types and (b) low variance of �-values within samples of
the corresponding subset and within all other cell types.
This analysis was initially performed for granulocytes
(Fig. 1A) and then repeated for the other cell types (see
Figs. 2 and 3 in the online Supplemental Data). Further-
more, DNAm profiles of T cells, B cells, and NK cells
were combined to identify CpGs that reflected the entire
lymphocyte population. Best performing CpG sites were
validated on a second data set of purified leukocyte sub-

Fig. 1. Selection of cell-type-specific CpG sites for the Epi-Blood-Count.

Scatterplot to exemplarily depict selection criteria for the CpG site for granulocytes (cg05398700): (i) high difference betweenmean�-values

in granulocytes and the mean �-values of all other cell types (rest) in DNAm profiles of purified cell types (GSE35069) (18 ); and (ii) a low

variance of�-values within the granulocytes and within the other hematopoietic subsets (A). For all selected candidate CpGs, the�-values of

the reference data set (GSE35069) (18 ) are depicted for each leukocyte subset as compared to all other cell types (B). White blood counts in

peripheral blood were analyzed with a Sysmex XN-9000 (for granulocytes, lymphocytes, and monocytes), and lymphocytes were further

classifiedwith a FACSCalibur (training set; n=60) (C). DNAm levels at the cell-type-specific CpG siteswere analyzedbypyrosequencing. Linear

regression formulas are indicated for each cell type.
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sets (E-MTAB-2145; see Fig. 4 in the online Supplemen-
tal Data) (19 ).

For granulocytes, we selected a CpG site in the gene
WD repeat domain 20 (WDR20;12 cg05398700). Nota-
bly, CpGs with the highest discriminatory power for
CD4� T cells and CD8� T cells are linked to the genes
CD4 (cg05044173) and CD8A (cg25939861), respec-
tively. The selected CpG site for lymphocytes was in the
gene FYN protooncogene (FYN; cg17587997); for T cells
in B-cell CLL/lymphoma 11B (BCL11B; cg16452866); for
B cells in WD repeat domain, phosphoinositide interacting
2 (WIPI2; cg02665297) that is involved in maturation of
phagosomes; for NK cells in solute carrier family 15 mem-
ber 4 (SLC15A4; cg13617280) that has been implicated in
systemic lupus erythematosus; and for monocytes in centro-
mere protein A (CENPA; cg10480329; Fig. 1B). Thus, our
straightforward procedure identified CpGs that are associ-
ated with genes of relevant function in the corresponding
cell types. To estimate whether DNAm at these CpGs is also
reflected on gene expression level, we used microarray data
sets of purified subsets (GSE28490) (31). In fact, cell-type-
specific hypomethylation of the relevant CpGs was often
associated with higher gene expression, albeit this was not
observed for WDR20, WIPI2, and CENPA (see Fig. 5 in the
online Supplemental Data).

Subsequently, we analyzed if DNAm at our candi-
date CpGs correlated with the fractions of corresponding
subsets. To this end, we established pyrosequencing as-
says for the selected CpG sites and analyzed 60 peripheral
blood samples. Cell counts with a Sysmex XN-9000 he-
matology analyzer correlated well with DNAm at the
respective CpG sites for granulocytes (Pearson correla-
tion coefficient: r � �0.91), lymphocytes (r � �0.91),
and monocytes (r � �0.74). Furthermore, immunophe-
notypic analysis correlated for T cells (r � �0.73),
CD4� T cells (r � �0.41), CD8� T cells (r � �0.88),
B cells (r � �0.66), and to a lesser extent for NK cells
(r � �0.30; Fig. 1C). The candidate CpGs did not reveal
a clear association with age or gender (see Fig. 6 in the online
Supplemental Data). Taken together, DNAm measure-
ments at our CpGs correlated with the frequency of corre-
sponding leukocyte subsets in whole blood samples.

DECONVOLUTION OF GRANULOCYTES, MONOCYTES,

AND LYMPHOCYTES

Subsequently, we analyzed if the fractions of granulo-
cytes, monocytes, and lymphocytes can be recapitulated
in 44 independent blood samples by pyrosequencing of

DNAm at the 3 relevant CpGs. Initially, the percentages
of cells were simply calculated on the basis of the linear
regression formulas of the subsets in the training set (Fig.
1C). In comparison to measurements of the Sysmex XN-
9000 analyzer, these linear regression models revealed a
high correlation (r � 0.99 across all cell types). The mean
absolute deviation was only 3.2% for granulocytes, 2.2%
for lymphocytes, and 1.4% for monocytes (Fig. 2A).

Alternatively, we integrated the DNAm levels of the
3 CpGs into an NNLS linear regression model. This
model was trained on 60 blood samples of the training
set and subsequently termed “Epi-Blood-Count.” The
NNLS linear regression approach does not depend on an
a priori database of cell-type-specific DNAm reference
profiles for the selected CpG sites. In fact, DNAm esti-
mates based on deconvolution were very similar to the
�-values of DNAm profiles of purified subsets (18 ) (Fig.
2B). This approach gave similar accuracies as the linear
regression formulas for individual CpGs (Fig. 2C). To
simplify application for the users, an Excel calculator for
the 3-CpG NNLS model is provided in Table 3 in the
online Supplemental Data.

There are notorious differences between cell count-
ing systems (1 ). Therefore, we applied the Epi-Blood-
Count on a second validation set (in total 70 blood sam-
ples) that were either measured with a Coulter counter
(Coulter ACT diff2; n � 24), and/or by manual count-
ing of blood smears by highly specialized laboratory staff
(n � 66). Coulter counter results revealed high correla-
tion with Epi-Blood-Count, albeit mean numbers of
granulocytes and lymphocytes were underestimated by
4.4% and overestimated by 5.5%, respectively, indicat-
ing that there might be a systemic deviation between the
2 analyzers (Fig. 2D). The correlation between manual
blood counts and Epi-Blood-Count was slightly lower
(Fig. 2E), but direct comparison of Coulter counter re-
sults and manual counting revealed lower correlations,
too (Fig. 7 in the online Supplemental Data). Further-
more, we have exemplarily analyzed if the Epi-Blood-
Count was also applicable to MassARRAY measure-
ments. The DNAm measurements by pyrosequencing
and MassARRAY analysis correlated, but our pyrose-
quencing measurements appeared to be more reliable
(Fig. 8 in the online Supplemental Data).

Subsequently, the accuracy of the Epi-Blood-Count
was determined with blood samples that had been stored
for 7 days at 4 °C (n � 10). The results correlated with
manual counting at day 0, but mean numbers of granu-
locytes and lymphocytes were underestimated by 9.1%
or overestimated by 7.2%, respectively (Fig. 2F). A sim-
ilar shift has been described for automated analyzers
upon storage of blood samples for only 72 h (32 ). Fur-
thermore, Epi-Blood-Count was compared in aliquots of

12 Human Genes:WDR20,WD repeat domain 20; CD4, CD4 molecule; CD8A, CD8a mol-
ecule; FYN, FYN protooncogene, Src family tyrosine kinase; BCL11B, B-cell CLL/lym-
phoma 11B; WIPI2, WD repeat domain, phosphoinositide interacting 2; SLC15A4,
solute carrier family 15member 4; CENPA, centromere protein A; LSM14B, LSM family
member 14B; ZC3H3, zinc finger CCCH-type containing 3.
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Fig. 2. Epi-Blood-Count of granulocytes, lymphocytes, and monocytes.

Blood samples of validation set I (n = 44) were analyzed by pyrosequencing at the 3 CpGs related to granulocytes, lymphocytes, and

monocytes (A). The DNAm levels were implemented into the linear regression formulas of Fig. 1C to estimate cell fractions, and the results

correlated withmeasurements on a Sysmex XN-9000 hematology analyzer. The heat maps compare the�-values for purified cell types in the

reference data set (Reinius et al., 450k Bead Chip; GSE35069) and estimated DNAm levels for these cell types on the basis of deconvolution

of pyrosequencing measurements (PSQ) (B). These estimations are based on DNAm levels at the 3 CpGs for granulocytes (WDR20), lympho-

cytes (FYN), andmonocytes (CENPA) in whole blood of the training set (n = 60) that were then implemented into the reverse approach of the

nonnegative least-squares (NNLS) linearmodel. Estimates for DNAm levels of individual subsets were in linewith�-values of purified subsets

inmicroarray data. These estimates for DNAm levels were then used for NNLS predictions in independent validation sets, and Epi-Blood-Count

results correlated with measurements on a Sysmex XN-9000 hematology analyzer (C; n = 44), on a Coulter counter (D; n = 24), and

microscopic analysis of blood smears andmanual counting by a trained operator (E; n = 66). Epi-Blood-Count measurements were tested on

blood samples after storage for 7 days at 4 °C (F; n=10), or for 3months at−20 °C (G; n=41). Epi-Blood-Count was used to estimate the cell

type of origin of cell-free circulating DNA (cfDNA) in serum samples (H). Measurements are compared to cell counts in whole blood (WB) by

manual counting. These results indicate that cfDNA is particularly derived fromgranulocytes. r=Pearson correlation coefficient;MAD=mean

absolute deviation.
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fresh blood vs storage for 3 months at �20 °C (validation
set III; n � 41). The results revealed a high correlation
(r � 0.99; Fig. 2G), indicating that the Epi-Blood-Count
was applicable to frozen samples. Another advantage of
the Epi-Blood-Count is that it requires only very small
amounts of DNA. We have exemplarily used this ap-
proach to estimate the origin of cell-free circulating DNA
(cfDNA) in serum. The results indicated that cfDNA in
serum is particularly derived from granulocytes, which
indeed have a very short half-life (33 ) (Fig. 2H).

ADDITIONAL CLASSIFICATION OF LYMPHOCYTE SUBSETS

The Epi-Blood-Count was further extended to classify
lymphocytes subsets. To this end, DNAm at the candi-
date CpGs for B cells, NK cells, CD4� T cells, and
CD8� T cells were analyzed by pyrosequencing in the
60 blood samples from the training set. To estimate
DNAm in leukocyte subsets, we imputed immunophe-
notypic and DNAm measurements into the NNLS re-
gression model. With this deconvolution approach, the
estimated percentages of DNAm for each hematopoietic
subset closely resembled the �-values of the purified sub-
sets in DNAm profiles (18 ) (Fig. 3A). The 6-CpG Epi-
Blood-Count model was tested on the training set (Fig.
9A in the online Supplemental Data) and on 2 indepen-
dent validation sets (Fig. 3B; and see Fig. 9B in the online
Supplemental Data). Immunophenotypic analysis and
Epi-Blood-Count revealed a clear correlation: across all
cell types the correlation coefficient was r � 0.98 with a
mean of 3.1% for the mean absolute deviation. An Excel

calculator for the 6-CpG NNLS model is provided in
Table 4 in the online Supplemental Data. Furthermore,
the measurements were also relatively stable after storage
of blood samples at 4 °C for 7 days without fixation (see
Fig. 9C in the online Supplemental Data).

QUANTIFICATION OF CELL NUMBERS ON THE BASIS OF DNA

METHYLATION

We reasoned that quantification of cell numbers on the basis
of DNAm would be feasible if samples were supplemented
with a suitable reference DNA of known concentration
(Fig. 4A). To this end, we identified 3 CpG sites that were
consistently highly methylated (�-value �0.975) across
DNAm profiles of leukocyte subsets and of whole blood of
healthy individuals, patients with leukemia, or patients with
lymphoma (see Fig. 10 in the online Supplemental Data).
The selected CpG sites were within “like SM” domain
(LSM) family member 14B (LSM14B; cg06096175), zinc
finger CCCH-type containing 3 (ZC3H3; cg25834632),
and a CpG site not associated with any gene (cg09414987).
The corresponding sequences were cloned into plasmids to
obtain nonmethylated reference DNAs.

Initially, we analyzed serial dilutions of reference
DNA (LSM14B) in 2 independent peripheral blood sam-
ples (Fig. 4B). Notably, the results were in line with the-
oretical estimates by mathematical calculation, indicat-
ing that the method was robust for cellular quantification
(Fig. 4C). The precision of this approach was particularly
high for DNAm levels between 20% and 80%, if copy
numbers of reference DNA and genomic DNA were sim-

Fig. 3. Leukocyte differential counts with 6 CpG sites.

The heat maps compare the �-values of the relevant CpGs in the reference DNAm data sets from Reinius et al. (GSE35069) and estimated

DNAm levels based on the reverse approach of NNLSwith use of the pyrosequencing (PSQ) results of the training set (n=60; in analogy to Fig.

2B) (A). These estimates of DNAm values were subsequently implemented into the NNLS matrix to estimate the proportions of cell types.

Leukocyte differential counts were determined based on pyrosequencing of the 6 CpGs in validation set I (n = 44) (B). The results correlated

with conventionalmeasurements on a Sysmex XN-9000hematology analyzer and immunophenotypic analysis with FACSCalibur. r=Pearson

correlation coefficient; MAD =mean absolute deviation.
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ilar. To increase this range, we used the other 2 reference
DNAs at higher and lower concentration, respectively
(see Fig. 11 in the online Supplemental Data).

Subsequently, we mixed 150 �L of frozen blood
(n � 41; validation set III) with our LSM14B reference
DNA and analyzed DNAm at the relevant CpG site by
pyrosequencing. The calculated cell numbers correlated
well with cell counts that were automatically measured in
fresh blood (r � 0.84; Fig. 4D). Furthermore, combined
epigenetic analysis of relative LDCs with absolute cell
numbers correlated with measurements of an automated
hematology analyzer for individual leukocyte subsets
(n � 38; validation set IV; r � 0.97; Fig. 4E).

Discussion

Analysis of DNAm patterns in blood holds enormous
diagnostic potential. We demonstrate that site-specific
analysis at individual CpG sites facilitates relative quan-
tification of leukocyte subpopulations. In analogy, im-

munophenotypic analysis is based on individual cell-
type-specific epitopes. Notably, several candidate CpGs
of the Epi-Blood-Count are related to the same genes
addressed in immunophenotypic analysis. Overall, the
precision of the Epi-Blood-Count was comparable to the
well-established conventional methods (1, 34 ).

Other groups have previously described LDC algo-
rithms based on genome-wide DNAm profiles of Illu-
mina BeadChip microarrays (11, 12, 35 ). This enables
combination of a multitude of CpGs into bioinformatic
predictors, which generally increases the precision of epi-
genetic signatures (36 ). On the other hand, the precision
of DNAm measurements at individual CpGs is higher in
pyrosequencing data than �-values on Illumina Bead-
Chips (37 ). Microarray analysis is relatively time-
consuming and expensive. This might be the reason why
the number of available DNAm profiles with matched
flow cytometric analysis is still relatively low. Reinius
et al. provided flow cytometric analysis for 6 DNAm
profiles (18 ), and Absher and colleagues provided 44

Fig. 4. Cell quantification based on DNA methylation.

Schematic presentation of cellular quantification based on DNAm levels with a nonmethylated reference DNA (A).Two blood samples (donor

1 and 2; 150 μL) were mixed with a serial dilution of the reference plasmid comprising the nonmethylated sequence of LSM14B (0.0002 ng

to0.1100ng) (B). DNAmlevels (analyzedbypyrosequencing) continuously declinedwithhigher concentrationsof referenceDNA. If the results

were plotted as a logarithmic ratio of reference DNA [ng] per cell (determinedwith the Abbott Cell-Dyn), therewas an almost linear association

in the DNAm range between 20% and 80%. Notably, the observed DNAm levels closely resembled themathematically expected DNAm levels

(black curve) (C). Calculated cell numbers based on the reference plasmid LSM14B clearly correlated with cell numbers determined with the

Abbott Cell-Dyn analyzer (n= 41; validation set III) (D). Furthermore, epigenetic quantification could be combined with epigenetic LDCs: Cell

numbers for granulocytes, lymphocytes, and monocytes correlated with cell numbers determined with a Coulter counter (n = 38; validation

set IV) (E). r = Pearson correlation coefficient; MAD =mean absolute deviation.

Leukocyte Counts Based on DNA Methylation

Clinical Chemistry 64:3 (2018) 573

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
lin

c
h
e
m

/a
rtic

le
/6

4
/3

/5
6
6
/5

6
0
8
8
7
4
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



DNAm profiles with conventional LDCs (38 ). Notably,
the precision of genome-wide algorithms on these data
sets was similar to the performance of the Epi-Blood-
Count in our cohorts (see Tables 5 and 6 in the online
Supplemental Data) (14 ). Furthermore, Koestler and co-
workers compared their microarray-based predictions
with complete blood counts, and the correlation for
monocytes (r � 0.60) and lymphocytes (r � 0.61) was
not better than our 3-CpG Epi-Blood-Count (36 ). Ei-
ther way, site-specific analysis of individual CpGs by py-
rosequencing is better applicable to daily routine in clin-
ical diagnostics than microarray analysis of DNAm
profiles: analysis is feasible in 2 days and might be imple-
mented into semiautomated procedures.

It remains to be demonstrated if the Epi-Blood-
Count is also applicable to patient material. Particularly,
hematopoietic malignancies have a major effect on the
epigenetic makeup that needs to be taken into account.
So far, the Epi-Blood-Count does not consider eosino-
phils, basophils, immature granulocytic precursors, or
more specialized lymphocyte subsets such as naı̈ve, mem-
ory, or regulatory T cells. Furthermore, we expect that it
should be possible to integrate CpGs that are indicative
for blasts, atypical lymphocytes, and hematopoietic pro-
genitors for extended epigenetic differential counts. Al-
ternative methods for DNAm analysis, such as barcoded
bisulfite amplicon sequencing or digital PCR, may ulti-
mately pave the way for more sensitive deconvolution of
rare subsets. Furthermore, analysis of neighboring CpG
sites of the same amplicon may increase robustness as
described for detection of circulating tumor DNA (39 ).
It is, however, unlikely that epigenetic analysis of LDCs
will completely replace the conventional cell counters,
because it cannot address erythrocytes and thrombocytes,
which hardly comprise DNA.

In this study, we describe an entirely new approach
for cellular quantification based on DNAm that is based
on addition of a nonmethylated reference sequence of
known concentration. In analogy, quantification of cell
numbers has been established in flow cytometry by addi-
tion of beads as quantification standards (40 ). Our re-
sults indicate that the DNAm-based approach reaches a
similar precision as manual, semiautomated, and auto-

mated cell counts (41 ), but it is also applicable to cryo-
preserved samples.

In summary, our Epi-Blood-Count has various ad-
vantages over the well-established conventional methods:
(a) blood can be frozen after sampling for long-term stor-
age, shipment, and subsequent analysis; (b) it is applica-
ble to small volumes of blood (few microliters, whereas at
least 700 �L is required for immunophenotypic analy-
sis); and (c) DNAm levels at individual CpGs provide an
absolute measure that may facilitate better standardiza-
tion between laboratories than immunophenotypic anal-
ysis by flow cytometry. Our proof-of-concept study
therefore opens the door for epigenetic white blood cell
counts in clinical application.
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