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1 Introduction

Determining the number, energies and properties of vibration-rotational levels of a given one-dimensional

or effective radial potential, and calculating matrix elements and transition intensities coupling levels

of a single potential or levels of two separate potentials, are ubiquitous problems in chemical physics.

The present report describes a robust and flexible computer program for performing such calculations.

The original version of this program was based of the famous Franck-Condon intensity program of R.N.

Zare [1, 2, 3], but the present version is considerably modified, and incorporates several unique features.

In particular:

(i) it will automatically locate and calculate the widths of quasibound (or orbiting resonance, or tunneling

predissociation) levels;

(ii) it can calculate diatomic molecule inertial rotation and centrifugal distortion constants for levels of a

given potential;

(iii) it can readily locate levels with dominant wave function amplitude over either well of an asymmetric

double minimum potential;

(iv) it can automatically locate and calculate expectation values for all vibration-rotation levels of any

well-behaved single-minimum, “shelf state” or double minimum potential;

(v) as an extension of (iv), it can automatically generate (for example) Franck-Condon factors and the

radiative lifetimes for all possible discrete transitions allowed by specified (in the input data file)

rotational selection rules between the levels of two different potentials, or among the levels of a single

potential. While the present version generates the specified matrix elements and calculates Einstein

A coefficients using the Hönl-London factors for the case of singlet–singlet electronic transitions, it

may be generalized to treat other cases.

In the following, Section 2 presents the basic equation being solved, describes how the program func-

tions, and outlines some of its options. Section 3 then states the input/output conventions, indicates the

units assumed for the physical parameters of interest, and presents a shell to facilitate running the program

on a UNIX or Linux system. The program’s operation is controlled by the contents of a data file which

is read (on channel–5) during execution. The structure of this data file and the significance of the various

read-in parameters are described in Section 4. Section 5 then describes the most significant differences

between the current (8.0) and earlier [4] versions of this program. Finally, the Appendices outlines the

structure of the program and the roles of its various subroutines, and present listings of illustrative sample

data input files and of the resulting output.

The current version of the (extensively commented) source code for LEVEL and a ‘pdf’ file of this

manual may be obtained from the www site http://leroy.uwaterloo.ca/programs/ . While, there

are no charges associated with distribution or use of this program, its use should be acknowledged in

publications through reference to this report [5]. Users are also requested not to distribute the program

themselves, but to refer other prospective users to the above web site or to the author. The version

described herein includes corrections and enhancements incorporated up to 7 April 2007. Individuals

currently utilizing older versions of this code [4] will likely find it desirable to obtain the current version

since it has some corrections and additional functionality. I would also appreciate having users inform me

of any apparent errors or instabilities in the code, or of additional features which might appear desirable

for future versions.
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2 Outline of Program Operation and Options

2.1 Solving the Radial Schrödinger Equation

The core of the program is concerned with determination of the discrete eigenvalues and eigenfunctions of

the radial or (effective) one-dimensional Schrödinger equation

− ~2

2µ

d2Ψv,J(r)

dr2
+ VJ(r) Ψv,J(r) = Ev,J Ψv,J(r) (1)

in which µ is the effective or reduced mass of the system, J the rotational quantum number, and the effective

one-dimensional potential VJ(r) is a sum of the rotationless (electronic) potential V (r) plus a centrifugal

term. For the normal problem of a diatomic molecule rotating in three dimensions, this centrifugal potential

has the form [J(J + 1) − Ω2] ~2/2µr2 , where Ω = OMEGA is the projection of the electronic angular

momentum onto the internuclear axis. However, for the special case of a diatom rotating in two dimensions,

a case invoked by setting the read-in parameter OMEGA > 99 (see the discussion of data input statement
#5 in § 4), this term becomes [J2−1/4] ~2/2µr2 . The program also defines the reduced mass appearing in

Eq. (1) as Watson’s “charge-modified reduced mass” [6], µ= µW = (MAMB)/(MA +MB −meQ) , where

MA and MB are the atomic masses of the two atoms, me is the electron mass, and Q= CHARGE (see input

Read statement #1) is the ± integer net charge on the molecule (ion).

The core of the calculation is the solution of Eq. (1) to determine the eigenvalues Ev,J and eigen-

functions Ψv,J(r) of the potential VJ(r). This is done in subroutine SCHRQ, which is based on the

famous Cooley-Cashion-Zare routines SCHR [1, 2, 3, 7, 8], but incorporates special features, such as the

ability to automatically locate and calculate the widths of “quasibound” or tunneling-predissociation lev-

els [9, 10, 11, 12]. These are metastable levels which lie above the dissociation limit, but whose dissociation

is inhibited by a potential energy barrier.

The accuracy of the eigenvalues and eigenfunctions obtained is largely determined by the size of the

(fixed) radial mesh RH (Read #4 of the input data file) used in the numerical integration of Eq. (1).

For potentials that are not too steep or too sharply curved, adequate accuracy is usually obtained using

an RH value which yields a minimum of 15 to 30 mesh points between adjacent wavefunction nodes in

the classically allowed region. An appropriate mesh size may be estimated using the particle-in-a-box

expression
RH = π/

(
NPN× [µ×max{E − V (r)}/16.857 629 20]1/2

)
(2)

in which NPN is the selected minimum number of mesh points per wavefunction node (say 25), max{E −
V (r)} is the maximum of the local kinetic energy (in cm−1) for the levels under consideration (in general

it is . the potential well depth), and the numerical factor is identified below in Section 3. A value of

NPN which is too small yields results which are unreliable, while too large a value may require excessive

computational effort or cause array dimensions to be exceeded. Thus, while Eq. (2) is a useful guide, a

careful user should always try different RH values in order to ensure that the results calculated achieve the

accuracy desired for their particular application.

The numerical integration of Eq. (1) is performed on the range from RMIN to RMAX (see Read statement
#4) using the Numerov algorithm [7, 13]. To initiate this integration, it is necessary to specify initial values

of the wave function at two adjacent mesh points at each end of the range. For truly bound states, the wave

function at the outer end of the range RMAX is initialized at an arbitrary value (say, unity), while its value at

the adjacent inner mesh point is determined using the first-order semiclassical or WKB wavefunction [14]

Ψv,J(r) ∝ [VJ(r)− Ev,J ]−1/4 exp

(
−
√

2µ/~2
∫ r

[VJ(r′)− Ev,J ]1/2 dr′
)

(3)

At short range, most realistic intermolecular potentials grow very steeply, causing the wavefunctions to die

off extremely rapidly with decreasing r . As a result, the wave function at the inner end of the range of
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integration is normally initialized by placing a node at the lower bound of this range, the read-in distance

RMIN. This is effected by setting Ψv,J(r = RMIN) = 0 and giving Ψv,J(r = RMIN + RH) an arbitrary (non-

zero) value. This is the normal case for a diatomic molecule problem. Note that one should normally set

RMIN>0 , as the centrifugal contribution to the potential becomes singular at r= 0 .

A special treatment of the inner boundary condition may be implemented if one is searching for eigen-

functions of a symmetric potential whose midpoint is located at RMIN. For asymmetric levels which would

have a node at RMIN, the normal treatment described above will suffice. However, another approach must be

implemented for symmetric levels of such a potential whose wave functions would have zero slope at RMIN.

This option is built into subroutine SCHRQ, and is invoked by setting the control parameter INNOD1≤ 0 .

However, since this is an unusual case, varying this parameter is not one of the normal options of the

current version of the main program, and a user who wishes to deal with this case may chose to either

add parameter INNOD1 to Read #17 (line #367 of the MAIN program), or to recompile the code with the

value of INNOD1 and INNOD2 defined on lines #365 & 366 of the code reset to 0.

If desired, a hard wall outer boundary condition may be imposed by setting the input integer IV(i) (see

Read #18), which would otherwise represent the vibrational quantum number, equal to a large negative

number which specifies the radial mesh point where this wall would be placed. In particular, setting

IV(i) < −10 causes a hard wall (wave function node) to be placed at mesh point number |IV(i)| for level–i.

In the Cooley procedure for finding the eigenvalues of Eq. (1) [7, 8], for any given trial energy the

numerical integration proceeds inward from RMAX and outward from RMIN until the two solution segments

meet at a chosen matching point rx . The discontinuity in their slopes at rx is then used to estimate

the energy correction required to converge on the eigenvalue closest to the given trial energy [15], and

this process is repeated until the energy improvement is smaller than the chosen convergence criterion

(parameter EPS of Read #4). This procedure usually converges very rapidly, and for a single-minimum

potential it is insensitive to the choice of the matching point rx , as long as it lies in the classically-allowed

region where the wavefunction amplitude is relatively large. However, to ensure high accuracy of calculated

expectation values or matrix elements, EPS should usually be set 2 orders of magnitude smaller than the

the actual eigenvalue precision required.

For an asymmetric double-well potential, wavefunctions usually have amplitudes of very different mag-

nitude over the two wells, and the eigenvalue correction algorithm [15] used by SCHRQ tends to become

unstable if the matching distance rx lies in the well where the wavefunction has very small amplitude. As

a result, it is usually necessary to require rx to lie in the well where its amplitude is the largest. In the

current version of the program, this choice is set by the internal control parameter INNER ( = SINNER),

which in turn is set to the appropriate value by the automatic vibrational level-finder subroutine ALF. As

a result, calculations involving vibrational levels of a double well or “shelf-state” potential are (usually)

performed just as routinely (for the user) as those for a normal single-well potential.

In general, the outward and inward numerical integration must start at distances RMIN and RMAX

(input via Read #4), respectively, which lie sufficiently far into the classically-forbidden regions (where

VJ(r) > Ev,J ) that the wavefunction has decayed by several orders of magnitude relative to its amplitude

in the classically-allowed region. The present version of the code prints warning messages if this decay is

not by a factor of at least 10−9; if such warnings are printed, a smaller RMIN or larger RMAX value will be

needed to ensure the desired accuracy for such cases. On the other hand, if RMIN or RMAX lie sufficiently far

into the classically-forbidden regions that [VJ(r)− E] becomes extremely large, the integration algorithm

can become numerically unstable for the given mesh size. For realistic diatomic molecule potential curves,

this situation is only likely to occur near RMIN. If it does, a warning message is printed and the beginning

of the integration range is automatically shifted outward until the problem disappears. However, use of

a slightly larger value of RMIN will cause these warning messages to disappear and (marginally) reduce
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the computational effort. For most diatomic molecules, a reasonable value of RMIN is ca. 0.6 − 0.8 times

the smallest inner turning point encountered in the calculation, but for hydrides or other species of low

reduced mass, even smaller values may be necessary.

The program internally defines the upper bound on the range of numerical integration RMAX as the

smaller of the value read in (Read #4) and the largest distance consistent with the specified mesh and the

internally-defined (see § 3) potential and distance array dimension NDIMR. As with RMIN, the choice of RMAX

is not critical, as long as (for truly bound states) the wave function has decayed to an amplitude much

smaller than that in the classically allowed region, and the same amplitude decay test of 10−9 is used for it.

However, due to the anharmonicity of typical molecular potential curves, the requisite values of RMAX are

much larger for highly excited vibrational levels than for those lying near the potential minimum. In order

to reduce computational effort, an integration range upper bound rend(v, J) is therefore determined for

each level using the semiclassical result of Eq. (3), which shows that the wavefunction dies off exponentially

in the classically forbidden region with an exponent of

−
√

2µ/~2
∫ rend(v,J)

r2(v,J)
[VJ(r)− Ev,J ]1/2 dr (4)

where the turning point r2(v, J) marks the outer end of the classically accessible region at this energy Ev,J .

For each level it considers, SCHRQ first locates r2(v, J), and then determines a value of rend(v, J) which is

sufficiently large to ensure that this starting amplitude is smaller than that in the classically-allowed region

by a factor of at least 10−9. In calculations for levels spanning a wide range of energies, the program’s use

of this procedure can reduce the overall computation time by a factor of two or more.

2.2 Locating Quasibound Levels and Determining Their Widths

Quasibound or orbiting resonance levels are metastable eigenstates of Eq. (1) which lie at energies above

the potential asymptote VJ(r =∞) , but below a maximum in the outer part of the potential. As discussed

in Refs. [9] & [10], the most efficient way of treating such levels is to determine their energies by applying

an Airy function boundary condition at the third (outermost) turning point, and to calculate their widths

using a uniform semiclassical method. The former appears to be the most accurate and efficient bound-state

type method of locating quasibound or tunneling predissociation levels proposed to date [9, 10, 11, 16, 17].

It is virtually exact for narrow (long-lived) states, while for the very broadest levels lying marginally below

barrier maxima, its differences with any competitive methods is at most a small fraction (. 0.2) of the level

width (FWHM). More accurate predictions for such short-lived states would require a detailed simulation

of the actual process by which they are observed, since different methods of observing a given quasibound

level may yield apparent energies differing by a small fraction of the level width. For example, if such

levels are being observed spectroscopically, the peaks in the actual bound→ continuum spectrum would be

calculated using a photodissociation simulation code [18, 19].

In the present program, the width calculation is based on Eq. (4.5) of Connor and Smith [11]; a more

transparent description of this procedure may be found in §II.B of Ref. [12]. This is a uniform semiclassical

procedure in which the predissociation rate may be thought of as being the product of the probability of

tunneling past the barrier at the specified energy, times the vibrational frequency (inverse of the vibrational

period) for the system trapped in the well behind the barrier. The actual calculation requires the evaluation

of an integral of the type seen in Eq. (4) across the interval between the two outermost classical turning

points (i.e., with the upper bound rend(v, J) replaced by the outermost turning point r3(v, J)), and of an

analogous integral across the classically allowed interval between the two inner turning points:√
2µ/~2

∫ r2(v,J)

r1(v,J)
[Ev,J − VJ(r)]−1/2 dr (5)
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together with (the energy derivative of) a phase correction factor which takes account of the proximity

to the barrier maximum [10, 11]. This procedure yields widths which are expected to be very reliable,

particularly for narrow (long-lived) levels, but may have uncertainties of up to ca. 10% or more for the

very broadest levels [10, 11]. To obtain more accurate results for such levels would again require one to

perform a direct simulations of the process by which they are observed.

On a practical note, if the end of the numerical integration range RMAX is smaller than the outermost

turning point r3(v, J) of the metastable level of interest, the program attempts to generate a reasonable

estimate of the width by completing the quadrature analytically while approximating the potential on the

remainder of the interval by a centrifugal-type term C2/r
2 attached to the potential function at RMAX. If

this approximation is invoked, warning messages are written to the main channel–6 output file (e.g., see

the output for Case 3 in Appendix G).

2.3 Calculating Diatomic Molecule Centrifugal Distortion Constants

The rotational sublevels of a given vibrational level of a molecule are conventionally represented by the

power series

Ev,J = G(v) + Bv[J(J + 1)] − Dv[J(J + 1)]2 + Hv[J(J + 1)]3 + ... (6)

If desired, the program will calculate values of the inertial rotation constant Bv = (~2/2µ)〈v, J |1/r2|v, J〉
and of the first six centrifugal distortion constants associated with this expansion (Dv, Hv, Lv, Mv, Nv

and Ov). These constants have their normal significance for rotationless (J = 0) vibrational levels [20], and

are simply related to derivatives of the energy with respect to [J(J + 1)] when calculated for vibration-

rotation levels with J > 0 . Calculation of these constants is invoked by setting input parameter LCDC > 0

(see Read #17), and are performed using a subroutine based on Tellinghuisen’s reformulation [21] of the

exact quantum mechanical method of Hutson [22], which has been extended to higher order to allow the

calculation of Nv and Ov. To ensure stable, fully convered calculations, it is often necessary to make the

eigenvalue convergence parameter EPS of Read #4 quite small (e.g., . 10−6 cm−1).

2.4 Calculating Expectation Values, Matrix Elements, and Einstein A Coefficients

If desired, the program will calculate expectation values or matrix elements of a function M(r) which may

be defined either by interpolating over an array of input values, by a user-defined analytic function, or as

a power series in a specified radial variable RFN(r) :

M(r) =
MORDR∑
i=0

DM(i)× RFN(r)i (7)

where parameters MORDR, IRFN and RREF defining the extent of the power series and the nature of the radial

variable RFN(r) are input via Read #19, and the power series coefficients DM(i) are input via Read #20.

In this last option, the radial variable RFN(r) is defined by the choice of input variable IRFN in the range

−4 ≤ IRFN ≤ 9 (see comments for Read #19 in § 4), while setting IRFN ≥ 10 causes M(r) to be defined

by interpolating over and extrapolating beyond a set of read-in numerical values, and setting IRFN≤ −10

causes M(r) to be a user-defined analytic radial function. For this last case, code for calculating the desired

function should be inserted in the program in the manner illustrates by the example in lines #498–519 of

the main program. If M(r) is to be defined by interpolating over an array of read-in points, the necessary

information is input via Reads #21− 24.

The conventional Franck-Condon factor FCF = |〈Ψv′,J ′ |Ψv′′,J ′′〉|2 is the square of the matrix element of

the zeroth power of RFN(r) , and will be generated whenever any off-diagonal matrix elements are calculated

(i.e., whenever input parameter LXPCT≥ 3 ). In this case, the program also assumes that M(r) is the

transition dipole function (in debye), and uses its matrix element to calculate the Einstein A coefficient
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coupling the two levels in question. For cases in which a pointwise (IRFN≥ 10 ) or analytic user-defined

(IRFN≤ −10) matrix element argument function M(r) is chosen, MORDR and RREF are dummy variables, and

no DM(i) coefficients are read in. Note: to calculate only Franck-Condon factors, one should set MORDR < 0 ,

in which case IRFN and RREF are dummy variables and no DM(i) values are read in.

The Einstein A coefficient for the rate of spontaneous emission from initial-state level (v′, J ′) into

final-state level (v′′, J ′′) is defined by the expression [20, 23]

A = 3.1361891×10−7
S(J ′, J ′′)

2J ′ + 1
ν3
∣∣〈Ψv′,J ′ |M(r)|Ψv′′,J ′′〉

∣∣2 (8)

Here: A has units s−1, M(r) is the dipole moment (or transition dipole) function in units debye, ν

the emission frequency in cm−1, S(J ′, J ′′) the Hönl-London rotational intensity factor and Ψv′,J ′ and

Ψv′′,J ′′ are the unit normalized initial and final state radial wave functions. The present version of the

code incorporates S(J ′, J ′′) expressions for singlet↔ singlet transitions obeying the parity selection rule,

with ∆Λ = 0 or ±1 . However, while versions of this code prior to 7.7 used the S(J ′, J ′′) expressions

of Herzberg [20], subsequent versions use the revised Hönl-London factors recommended by Hansson and

Watson [24], which for Π−Σ or Σ−Π transitions are a factor of four larger than those reported by Herzberg

[20] (see also Bernath [23]). To generalize these selection rules for other cases, a user will need to modify

lines #60− 106 of subroutine MATXEL.

2.5 Defining the Rotationless Potential V (r)

The potential function package which reads required input and returns the potential array and associ-

ated parameters is controlled by subroutine PREPOT. It uses subroutine package GENINT for interpola-

tion/extrapolation over a set of read-in turning points, and subroutine POTGEN for generating analytic

potential functions. Values of the necessary input parameters enter via Read statements #5–16; for the

2–state case invoked by inputting NUMPOT = 2 , this block of input statements is read twice.

One may choose to define a potential either by a set of NTP turning points { XI(i) , YI(i) } input via

Read #8, or (if NTP≤ 0 ) by an analytic function. In the former case, interpolation over the read-in

turning points to produce the array with mesh size RH required for the numerical integration of Eq. (1)

is performed in a manner specified by the input parameter NUSE. For NUSE> 0 this involves the use

of piecewise NUSE–point polynomials (typically NUSE= 8 or 10), while for NUSE≤ 0 the interpolation

uses a cubic spline function. If the range of numerical integration [RMAX, RMIN] extends beyond that of

the input turning points, appropriate extrapolation procedures are invoked. In particular, at distances

smaller than the second of the read-in turning points XI(2) , the potential is extrapolated inward with an

exponential function fitted to the first three turning points. Similarly, if RMAX > XI(NTP−1) the potential

for r > XI(NTP−1 ) is extrapolated outward either as an exponential-type function or as a (sum of)

inverse-power terms, as specified by parameters ILR, NCN and CNN of Read #6 (see § 4).

To define the potential by an analytic function, rather than by an array of points, the integer input

parameter NTP of Read #5 should be set ≤ 0 . The program then skips Reads #6–8 and proceeds instead

to #9–16 (see § 4), where it reads values of the parameters defining the chosen analytic potential. The

present version of the code allows for the following seven families of analytic potential energy functions.

(i) The familiar Lennard-Jones(m,n) potential:

V (r) = De

[(
n

m− n

)(re
r

)m
−
(

m

m− n

)(re
r

)n]
(9)

(ii) Various polynomial potentials based on Seto’s modification [25] of Šurkus’ GPEF potential form [26],

which incorporates the familiar Dunham [27], Simons-Parr-Finlan [28], and Ogilvie–Tipping [29] ex-

pansions as special cases invoked by particular definitions of the expansion variable

z = [(r)p − (re)
p]/[aS (r)p + bS (re)

p] (see discussion of Read #9 in § 4):
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V (r) = c0 z
2

(
1 +

∑
i=1

ci z
i

)
(10)

(iii) The “Extended Morse Oscillator” EMO function [25, 30, 31, 32]

V (r) = De

[
1− eφ(r) (r−re)

]2
(11)

where φ(r) is a simple polynomial in the Šurkus variable [26]

yp(r) = [ (r)p − (re)
p] / [ (r)p + (re)

p] (12)

in which p is a selected small positive integer. The exponent polynomial may in general have different

orders for r > re and r ≤ re , while truncating it at the constant term yields the familiar simple

Morse potential.

Another Morse-type function allowed by POTGEN is Hua Wei’s 4–parameter potential [33]

V (r) = De

(
[1− e−b (r−re)]/[1− C e−b (r−re)]

)2
(13)

(iv) The “Morse/Long-Range” (MLR) [34] or “Morse/Lennard-Jones” (MLJ) [35, 32] functions, in which

a flexible form for the potential well incorporates one (for MLJ) or more (for MLR) of the leading

inverse-power terms which define the theoretically predicted long-range interaction energy [35, 32]:

V (r) = De

[
1 − uLR(r)

uLR(re)
e−φ(r) yp(r)

]2
(14)

where φ(r) is a constrained polynomial in the Šurkus variable [26] which is normally written as

φ(r) = [1− yp(r)]
N∑
i=0

φi [yp(r)]
i + yp(r) φ∞ (15)

in which φ∞ = limr→∞ φ(r) = ln {2De/uLR(re)} . The general form of uLR(r) is [36, 34]

uLR(r) =
Cm1

rm1
+

Cm2

rm2
+ . . . (16)

and as r →∞ , the overall potential takes on the form V (r) ' De − uLR(r). The one-term version

of Eq. (16) yields is what was called an ‘MLJ’ function, while for two or more terms it is called an

‘MLR’ potential. While there is a single set of φi expansion coefficients, the polynomial in Eq. (15)

may have different orders for r > re and r ≤ re . Alternate expressions for the exponent coefficient

φ(yp) are also allowed; see comments associated with Read #9 in § 4.

(v) The “Double-Exponential Long-Range” or DELR potential of Ref. [12]:

V (r) = Ae−2φ(r) (r−re) − B e−φ(r) (r−re) + VLR(r) (17)

where φ(r) is a simple power series in the Šurkus variable of Eq. (12), VLR(r) is a function chosen to

represent the long-range region,

VLR(r) =
∑
m

Dm(r) Cm/rm (18)

and factors A and B are defined in terms of the well depth and the properties of VLR(r) at re :

A = De + VLR(re) + V ′LR(re)/φ0 (19)

B = 2De + 2VLR(re) + V ′LR(re)/φ0 (20)

where V ′LR(re) ≡ dVLR(r)/dr|r=re . Two choices for the damping functions Dm(r) in Eq. (18) are

those proposed by Tang and Toennies [37] and by Douketis et al. [38]:
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DTT
m (r) = 1 − e−3.16ρd r

m∑
k=0

(3.16 ρd r)
k/k! (21)

DDS
m (r) =

[
1 − exp

{
−3.97(ρd r)/m − 0.39(ρd r)

2/
√
m
}]m

(22)

where ρd = PARM(NVARB−1) is a system-dependent scaling parameter.

(vi) The generalized HFD function defined in terms of the reduced distance variable x = r/re [39, 40]:

V (r) = Axγ e−β1 x−β2 x
2 −D(x)

∑
m

Cm/r
m (23)

in which D(x) = exp {−α1[α2/x− 1]α3} is a damping function which cuts off the inverse-power

terms at short distances.

(vii) A form introduced by Tiemann and co-workers [41] which represents the main part of the potential

by a GPEF-like power series:

V (r) = a0 + a1 ξ + a2 ξ
2 + a3 ξ

3 + a4 ξ
4 + ... (24)

in which ξ ≡ ξ(r, b, rm) = (r − rm)/(r + b rm) , and the parameter b is chosen to take account of

the different steepness of the potential for r greater and less than rm . The existence of a non-zero

linear term ( a1 6= 0 ) in Eq. (24) means that the parameter rm only approximately corresponds to

the equilibrium distance. At a specified small distance, this power series is smoothly joined to an

exponential function, and beyond a specified large distance, it is replaced by a sum of inverse power

terms (see § 4).

Note that except for the simple polynomial potentials of type (ii), all of these analytic potentials are

defined relative to the absolute energy at the asymptote, which is specified by input parameter VLIM

(see Read #5). For GPEF-type potentials of type (ii), input parameter VLIM specifies the absolute

energy at the potential minimum.

A user may readily introduce their own analytic potential function form by simply replacing subroutine

POTGEN with their own potential routine. To retain consistency with the rest of the present code, such

a user-prepared POTGEN subroutine should have the argument list:

POTGEN(LNPT, N, IAN1, IAN2, IMN1, IMN2, VLIM, R, RM2, VV, NCN, CNN)

The first argument, parameter LNPT, is an integer which in program LEVEL has a value ≥ 1 .∗ The other

input quantities are the integer N specifying the size of the array of radial distances R(i) (in Å) at which

potential values are to be generated, the squared inverse distance array RM2(i) = 1/R(i)2 , the absolute

energy VLIM (in cm−1) at the potential asymptote, and integers giving the atomic numbers (IAN1 & IAN2)

and mass numbers (IMN1 & IMN2) of that particular isotopologue (required for calculating BOB terms, see

below). The subroutine is expected to return the desired N–point array of potential function values VV(i)

(in units cm−1), as well as the integer NCN and real positive coefficient CNN. Under the option in which

the program automatically searches for many or all vibrational levels of a given potential (when input

parameter NLEV1 is large and negative, see Read #17), the limiting long-range potential is assumed to

have the form V (r) ' D− CNN/rNCN , and the parameters NCN and CNN returned from POTGEN are used in a

near-dissociation theory [42, 43, 44] algorithm to estimate the number and energies of missing levels. If the

user’s analytic potential has a barrier maximum or dies off exponentially rather than as an inverse power,

NCN should be set at some large integer value (e.g., NCN= 99 ).
∗While not used in LEVEL, LNPT is retained in the calling sequences of subroutines GENINT and POTGEN to facilitate

the use of these subroutines in other programs.
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2.6 Born-Oppenheimer Breakdown Radial Strength functions

In recent years, it has become increasingly common for combined-isotopologue spectroscopic data analyses

to require the inclusion of atomic-mass-dependent Born-Oppenheimer breakdown (BOB) corrections to

the rotationless and centrifugal potential energy functions. LEVEL will include such terms if the value of

input parameter IBOB> 0 . These (optional) functions are defined as in Ref. [45]. In particular, for each

atom a = A or B, the additive correction to the potential energy function is defined as a constrained

polynomial in the Šurkus variable of Eq. (12)(
Ma −M ref

a

Ma

) ym(r)ua∞ + [1− ym(r)]

Na
ad∑

j=0

uaj [yp(r)]
j

 (25)

where Ma is the mass of the particular isotope of atom-a, M ref
a the mass of the chosen reference isotope

of that species [45], ym(r) and yp(r) have the form of Eq. (12), and the integers m and p are chosen as

discussed in Ref. [45].

The centrifugal BOB correction is a multiplicative factor [1 + gA(r) + gB(r)] applied to the centrifugal

contribution to the overall potential function VJ(r) of Eq. (1), where the terms associated with the two

atoms a = A or B have the same type of radial form as the “adiabatic” potential function corrections of

Eq. (25):

ga(r) =
M ref
a

Ma

 yp(r) t
a
∞ + [1− yp(r)]

Na
na∑

j=0

taj [yp(r)]
j

 (26)

3 Units, Physical Constants, Array Dimensions,

Input/Output Conventions, and Program Execution

Unless otherwise specified, the units of length and energy used throughout this program, and assumed for all

input data, are Å and cm−1, respectively. The main exception is that the transition dipole function M(r) of

Eqs. (7) used for calculating the Einstein coefficients of Eq. (8), defined in terms of the expansion coefficients

DM(i) of Read #20 (see § 4), is assumed to be in debye (where 1 debye = 3.335 640 952×10−30 [C ·m] =

0.393 430 295 [au] ). Note, however, that in the IRFN ≥ 10 option for generating the radial function defining

the matrix element argument (see Read #19) by numerical interpolation over a set of read-in points, the

channel–6 output describing the read-in transition moment function values being interpolated over may

(incorrectly) refer to their units as cm−1 rather than debye, since the interpolation is done by the same

subroutine package set up to deal with an input pointwise potential. Note too that if set of read-in points

is used to define the potential or the matrix element argument M(r), the values may be in any convenient

units, as appropriate conversion factors are always also read in (see Reads #7 & 23) to convert them to

the appropriate units.

The values of the physical constants appear in the program in two places. The first is the dimensionless

factor ~2/(2u0E0 r0
2) = 16.857 629 20 in the radial Schrödinger equation of Eq. (1), where the choice of

reference mass u0 = 1 amu, distance r0 = 1 Å, and energy E0 = 1 cm−1 effectively define the units of the

input/output variables. The second is in the collections of terms defining the numerical factor in Eq. (8)

used in calculating the Einstein coefficient for the rate of spontaneous emission. Our current values of

these constants are based on the 2002 CODATA recommended values of Ref. [46], while the atomic isotope

masses stored in subroutine MASSES were taken from the compilation of Ref. [47].

The array dimension limits which a user may wish to change are set in PARAMETER statements in the

main driver routine and in subroutines GENINT and SPLINT. In the former, NDIMR (currently 80001) is the

maximum dimension of the radial mesh array on which the potential, wave functions and radial expectation
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value/matrix element arguments are defined. For systems of small reduced mass, it could be safely set

considerably smaller than this. The second parameter set in the main program is VIBMX (currently 400),

which defines the maximum number of vibration/rotation levels for which vibrational eigenvalues may be

read and stored, and the upper bound on the number of rotational sublevels which may be stored when

applying the NJM> 0 option to automatically generate many J sublevels for a given v (see Read #17).

The two other array-size parameters set inside the code are NTPMX (currently 1600) which is the maximum

number of potential function points (or radial matrix element M(r) values, for IRFN > 10 ) which may be

read in, which is set in GENINT, and MAXSP (set in SPLINT), the number of spline coefficients required

when interpolating over the read-in function values, and should be set equal to 4× NTPMX .

The program reads input data on channel–5, writes standard output to channel–6, and optionally

(controlled by parameters LPPOT, LCDC and LXPCT of Reads #5 & 17) writes a condensed output file to

one or more of channels 7–10. Those executing the program using a UNIX or Linux operating system

environment may wish to create and store in the system or user’s ‘bin’ directory a shell named (say) ‘rlev’,

such as that shown here:

# UNIX shell ‘rlev’ to execute the compiled version of program LEVEL named
# lev.x, which is stored in the user’s directory /upath/ with input data
# file $1.5, and write output to $1.6, $1.7, etc. all in the current
# directory.
#
time ~/upath/lev.x < $1.5 > $1.6
mv fort.7 $1.7 >& /dev/null
mv fort.8 $1.8 >& /dev/null
mv fort.9 $1.9 >& /dev/null
mv fort.10 $1.10 >& /dev/null

This shell allows the program to be executed with the simple command: rlev 〈filename〉 where

〈filename〉.5 is the input data file the user has created (〈filename〉 may be any name, usually chosen

to identify a particular case). In this case the standard output from channel–6 will be written to file

〈filename〉.6, and the channel–7, channel–8, channel–9, and channel–10 output will be written to files

〈filename〉.7, . . . , 〈filename〉.10, respectively.

4 Data file Structure and input parameter definitions

All of the READ statements for inputting data to the program, and the associated logical structure, are

listed here. The following subsection then provides a detailed description of the nature and/or options

associated with each of the input variables.

#1 READ(5,*,END=999) IAN1, IMN1, IAN2, IMN2, CHARGE, NUMPOT

#2a IF(IAN1.LE.0) READ(5,*) NAME1, MASS1

#2b IF(IAN2.LE.0) READ(5,*) NAME2, MASS2

#3 READ(5,*,END=999) TITL

#4 READ(5,*) RH, RMIN, RMAX, EPS

DO IPOT= 1, NUMPOT

#5 READ(5,*) NTP, LPPOT, OMEGA, VLIM

IF(NTP.GT.0) THEN

#6 READ(5,*) NUSE, IR2, ILR, NCN, CNN

#7 READ(5,*) RFACT, EFACT, VSHIFT

#8 READ(5,*) (XI(I), YI(I), I= 1,NTP)

ELSE

#9 READ(5,*) IPOTL, MPAR, NSR, NCMM, NVARB, IBOB, DSCM, REQ

#10 IF(IPOTL.GE.4) READ(5,*) (MMLR(I), CMM(I),I= 1, NCMM)

#11 IF(NVARB.GT.0) READ(5,*) (PARM(I), I=1,NVARB)
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IF(IBOB.GT.0) THEN

#12 READ(5,*) MN1R, MN2R, PAD, MAD, NU1, NU2, PNA, NT1, NT2

IF(PAD.GT.0) THEN

#13 IF(NU1.GE.0) READ(5,*) U1INF, (U1(I), I=0,NU1)

#14 IF(NU2.GE.0) READ(5,*) U2INF, (U2(I), I=0,NU2)

#15 IF(NT1.GE.0) READ(5,*) T1INF, (T1(I), I=0,NT1)

#16 IF(NT2.GE.0) READ(5,*) T2INF, (T2(I), I=0,NT2)

ELSE

#13a IF(NU1.GE.0) READ(5,*) U1INF, (U1(I), I=0,NU1),Aad1,Rad1

#14a IF(NU2.GE.0) READ(5,*) U2INF, (U2(I), I=0,NU2),Aad2,Rad2

#15a IF(NT1.GE.0) READ(5,*) T1INF, (T1(I), I=0,NT1),Ana1,Rna1

#16a IF(NT2.GE.0) READ(5,*) T2INF, (T2(I), I=0,NT2),Ana2,Rna2

ENDIF

ENDIF

ENDIF

ENDDO

#17 READ(5,*) NLEV1, AUTO1, LCDC, LXPCT, NJM, JDJR, IWR, LPRWF

NLEV= MAX(1,NLEV1)

#18a IF(AUTO1.GT.0) READ(5,*) (IV(I), IJ(I), I= 1,NLEV)

#18b IF(AUTO1.LE.0) READ(5,*) (IV(I), IJ(I), GV(I), I= 1,NLEV)

IF((LXPCT.NE.0).AND.(LXPCT.NE.-1)) THEN

#19 READ(5,*) MORDR, IRFN, RREF

#20 IF((IABS(IRFN).LE.9).AND.(MORDR.GE.0)) READ(5,*) (DM(J), J= 0,MORDR)

IF(IRFN.GE.10) THEN

#21 READ(5,*) NRFN, RFLIM

#22 READ(5,*) NUSEF, ILRF, NCNF, CNNF

#23 READ(5,*) RFACTF, MFACTF

#24 READ(5,*) (XIF(I), YIF(I), I= 1,IRFN)

ENDIF

ENDIF

IF(IABS(LXPCT).GE.3) THEN

#25 READ(5,*) NLEV2, AUTO2, J2DL, J2DU, J2DD

#26a IF(AUTO2.GT.0) READ(5,*) (IV2(I),I= 1,NLEV2)

#26b IF(AUTO2.GT.0) READ(5,*) (IV2(I),GV(I),I= 1,NLEV2)

ENDIF

Definitions and Descriptions of Input File Data

Read integers identifying the molecule or system.

#1. READ(5,*) IAN1, IMN1, IAN2, IMN2, CHARGE, NUMPOT

IAN1 & IAN2 : integer atomic numbers of the atoms/particles #1 & 2 forming the molecule. If

both are positive and ≤ 109 , atomic masses from the tabulation in subroutine MASSES will

generate the reduced mass of the system. If either is ≤ 0 or > 109 the mass of that particle

will be input via Read #2.

IMN1 & IMN2 : integer mass numbers of the atoms/particles #1 & 2 forming the molecule. For

a normal stable atomic isotope, its mass is taken from the tabulation in subroutine MASSES; if

outside the range for the normal stable isotopes of that atom, the abundance-averaged atomic

mass will be used.

CHARGE : ± integer for the total charge on the molecule. Used to generate Watson’s charge-

modified reduced mass for molecular ions [6]: µ = MAMB/(MA +MB −me × CHARGE) , where

me is the electron mass.
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NUMPOT : the number of potentials considered: = 1 for calculations involving only a single

potential function; = 2 to input and generate two different potentials and calculate matrix

elements coupling their levels.

In the special case when IAN1 and/or IAN2 is either ≤ 0 or > 109 , read in a two-character alphanumeric

name for that particle and its mass (in amu). This facilitates the treatment of model systems or exotic

species such as muonium or positronium “molecules”.

#2.a IF(IAN1.LE.0) READ(5,*) NAME1, MASS1
#2.b IF(IAN2.LE.0) READ(5,*) NAME2, MASS2

NAME1 & NAME2 : a two-character alphanumeric name for the (1 or 2) particle(s) whose mass

is being read, enclosed in single quotes, as in ′mu′.

MASS1 & MASS2 : the masses of particles 1 and 2, in amu.

Read a text title or description for the calculation.

#3. READ(5,510) (TITL(I),I= 1,20)

TITL : a title or output header for the calculation, consisting of up to 78 characters on a single line,

enclosed between single quotes: e.g., ′title of problem′.

Read real numbers defining the mesh and range of the numerical integration (all in Å), and the eigenvalue

convergence criterion to be used (in cm−1).

#4 READ(5,*) RH, RMIN, RMAX, EPS

RH : the numerical integration mesh size; see discussion associated with Eq. (2) in § 2.1.

RMIN & RMAX : the inner and outer limits, respectively, of the range of numerical integration

(see § 2). Plausible zeroth order estimates would be RMIN≈ 0.6×(potential inner wall posi-

tion) and RMAX fairly large (say 40 Å). Internally RMAX is set to the smaller of this read-in value

and the largest distance allowed by RMIN, RH and the array dimension NDIMR (see § 3).

EPS : the eigenvalue convergence parameter used by SCHRQ (in cm−1). To ensure that appropri-

ately accurate expectation values or matrix elements are generated, it should usually be set ca. 2

orders of magnitude smaller than the eigenvalue precision actually required.

Some combination of the next 12 Read statements defines the potential energy function. A particular

case always starts with Read #5, but then uses either Reads #6–8 for numerical interpolation over a set

of input turning points, or (some of) Read s #9–16 for the case of an analytic potential function.

#5. READ(5,*) NTP, LPPOT, OMEGA, VLIM

NTP : An integer which is set ≤ 0 to generate an analytic potential using POTGEN, in which case

the program skips Read s #6–8 and goes directly to Read #9. If NTP> 0 , it is the number of

turning point pairs to be input via Read #8.

LPPOT : controls printing of the potential array (usually set = 0 to have no printing). If LPPOT > 0

write to standard output (channel–6) the potential and its first 2 derivatives-by-differences at

every LPPOTth mesh point; it is sometimes useful to do this when troubleshooting. Setting

LPPOT < 0 writes the resulting potential in condensed format to channel–8 at every |LPPOT|th

mesh point; this is useful if one wants to input this potential into a plotting routine.

OMEGA : is the (integer) projection of the electronic orbital angular momentum on the molecular

axis for this state, so that the reduced centrifugal potential becomes [J(J+1)−OMEGA2]~2/2µr2 .

For rotation constrained to a plane setting OMEGA ≥ 99 will cause the centrifugal potential to

have the appropriate form: [J2 − 1/4]~2/2µr2 .
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VLIM : The absolute energy (in cm−1) of the potential asymptote. This sets the absolute energy

scale seen in the output. For power series (GPEF- or Dunham-type) potentials (IPOTL= 4), it

is the energy at the potential function minimum r = re .

For a pointwise potential (if NTP > 0 ), we must specify how the interpolation is to be done, and since

RMAX often lies outside the range of the input turning points, we also must specify how the potential is to

be extrapolated at large r. Skip down to Read #9 if NTP ≤ 0 .
#6. READ(5,*) NUSE, IR2, ILR, NCN, CNN

NUSE : Specifies how the interpolation is to be done. If NUSE > 0 use NUSE–point piecewise

polynomials; if NUSE ≤ 0 perform cubic spline interpolation. For highly precise and smooth

input points, such as those generated from an RKR calculation, NUSE= 8, 10 or 12 is usually

most appropriate; for less precise or less dense points, such as those from ab initio calculations,

low order piecewise polynomials (NUSE= 4) or splines (NUSE≤ 0) are usually best.

IR2 : For very steep repulsive potential walls, better interpolation is often attained by actually

interpolating over r2×V (r) ; setting the integer IR2 > 0 causes this to be done (normally

recommended). A comparison between results obtained with this option turned on vs. off

(setting IR2 ≤ 0 causes interpolation to be performed over V (r) itself) provides an indication

of the magnitude of “interpolation noise” uncertainties in the final results.

ILR : Specifies how to extrapolate from the outermost read-in turning points to RMAX. For a long

extrapolation, one of ILR = −1, 0 or 1 is often most appropriate; however, if the outer turning

points extend moderately close to the dissociation limit (at VLIM), one should set ILR ≥ 2 and

specify the theoretically appropriate value of NCN (≥ 1 ), and if it is available, also input an

estimate of CNN (see below).

For ILR < 0 , fit the last 3 points to: V (r) = VLIM−A× exp[−b(r − ro)2]
For ILR = 0 , fit the last 3 points to: V (r) = VLIM−A× rp × exp[−b r] .

For ILR = 1 , fit the last 2 points to: V (r) = VLIM−A/rB .

For ILR = 2 or 3 , respectively, fit the outermost 2 or 3 points to a sum of 2 or 3 inverse-power

terms, with powers differing by 2: V (r) = VLIM−
∑ILR−1

m=0 CNCN+2m/r
NCN+2m .

For ILR ≥ 4 , fit outermost ILR turning points to a sum of ILR inverse-power terms, with

powers differing by 1: V (r) = VLIM−
∑ILR−1

m=0 CNCN+m/r
NCN+m .

NCN : For inverse-power potential extrapolation with ILR ≥ 2 , NCN (> 0) specifies the limiting

inverse-power behaviour: V (r) ∝ VLIM − CNN/rNCN . Otherwise (for ILR ≤ 1 ) it is a dummy

input variable.

CNN : For inverse-power potential extrapolation with ILR ≥ 2 , setting CNN 6= 0 causes the leading

inverse-power coefficient to be fixed at the read-in value CNN = CNCN [cm−1 ÅNCN] rather than

be determined from a fit to the outermost turning points.

The input turning points may come from ab initio or RKR calculations, and may need to be converted to

the units (Å and cm−1) used inside the program.
#7. READ(5,*) RFACT, EFACT, VSHIFT

RFACT & EFACT : are multiplicative factors required to convert units of the NTP input turning

point distances XI(i) and energies YI(i) to Å and cm−1, respectively. If no conversion is required,

read in factors of 1.0D+00.

VSHIFT : An energy shift (in cm−1) to be added to the input potential point energies to make

them consistent with VLIM. It addresses the fact that ab initio or RKR turning points may be

expressed relative to an energy zero inconsistent with the user-specified asymptote energy VLIM.
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Read in the actual turning points.
#8. READ(5,*) (XI(I), YI(I), I= 1,NTP)

XI(i) & YI(i) : are the (distance, energy) input turning points defining the potential function.

If the input potential is defined by an analytic function (the NTP ≤ 0 case) using subroutine POTGEN,

the parameters characterizing it are input via some or all of Read statements #9–16. For a user-supplied

POTGEN function, the input parameters (if any) are up to them, but the calling sequence must match

that expected by PREPOT (see discussion at the end of § 2.5).
#9. READ(5,*) IPOTL, MPAR, NSR, NCMM, NVARB, IBOB, DSCM, REQ
#10. IF(IPOTL.GE.4) READ(5,*) (MMLR(I), CMM(I), I= 1,NCMM)
#11. IF(NVARB.GT.0) READ(5,*) (PARM(I), I=1,NVARB)

IPOTL : an integer specifying the type of analytic function used for the potential.

IPOTL = 1 generates a Lennard-Jones(m= NSR,n= MPAR) function using Eq. (9). In this case

NCMM and NVARB are dummy variables.

IPOTL = 2 generates the power series potential of Eq. (10) using Seto’s [25] rearranged form

of Šurkus’ [26] expansion variable z = z(r) = (rMPAR − reMPAR)/(aS rMPAR + bS re
MPAR) , with c0

input as c0 = DSCM , PARM(i) = ci for i= 1 to (NVARB−2) , aS = PARM(NVARB−1) and bS =

PARM(NVARB) . Note that Šurkus’ case of MPAR < 0 is accommodated by Seto’s identity [25]:

z(−MPAR, aS , bS) = z(MPAR,−bS ,−aS) . Here NSR and NCMM are dummy variables.

• Dunham expansions are generated by setting MPAR= 1 , αS = 0.0 & bS = 1.0 .

• SPF expansions are generated by setting MPAR= 1 , αS = 1.0 & bS = 0.0 .

• Ogilvie–Tipping expansions are generated by setting MPAR= 1 , αS = bS = 0.5 .

• A simple harmonic oscillator potential is generated by setting MPAR = 1 , NVARB = 2 ,

aS = 0.0 and bS = 1.0 , while the harmonic force constant k= 2 DSCM/REQ2 .

• All of these polynomial-type potentials have an undefined (or at best, indirectly-defined)

asymptote, so parameter VLIM defines the potential energy minimum.

• If MPAR = 0 , the potential is generated as an NVARB–order polynomial in r whose

constant coefficient is set by the input VLIM value.

IPOTL = 3 normally generates the EMO potential of Eq. (11), where the expansion-variable

power p= MPAR ≥ 1 and the expansion coefficients are PARM(i) = φi−1 for i= 1 to NVARB.

The order of the exponent polynomial φ(r) =
∑N

i=0 φi [yp(r)]
i is N = NL = (NVARB− 1)

for r ≥ re , and N =NS = NSR for r < re , where necessarily 0 < NSR ≤ (NVARB−1) . For

this case NCMM is a dummy variable.

If MPAR=−2 , generate original Coxon-Hajigeorgiou “GMO” potential [48, 49], in which

the exponent coefficient φ(r) is a simple power series in (r − re) of order (NVARB− 1)

with coefficients PARM(i) = φi−1 for i= 1 to NVARB.

If MPAR=−1 , generate Hua Wei’s [33] 4–parameter Morse-like potential

V (r) = De

(
[1− e−b (r−re)]/[1− C e−b (r−re)]

)2
where b = PARM(1) and C = PARM(2) .

In this case NVARB= 2 and NCMM & NSR are dummy variables.

IPOTL = 4 generates an MLR or MLJ potential from Eqs. (14–16) [35, 50, 32, 34], where

DSCM = De , REQ = re , and the potential tail of Eq. (16) is a sum of of NCMM inverse-power

terms Cm/r
m , with m= MMLR(j) and Cm = CMM(j) [cm−1 Å

m
] for j = 1 to NCMM. Positive

Cm values are attractive and negative values repulsive. If uLR(r) consists of more than one

inverse-power term, necessarily p > (MMLR(NCMM)− MMLR(1)) [34].
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For MPAR > 0 and NSR > 0 , integer MPAR = p defines the power p in the radial variable

of Eq. (12), and the exponent coefficient in Eq. (14) is given by Eq. (15). The upper

bound on the summation defining φ(r) is defined as N =NL = (NVARB−1) for r ≥ re
and as N = NS = NSR for r < re , where necessarily NS ≤ NL , and the exponent

expansion coefficients are PARM(i) = φi−1 for i= 1 to NVARB = (NL+1) . This case can

yield either an MLJ ( NCMM= 1 ) or an MRL ( NCMM > 1 ) form.

Setting MPAR < 0 yields an MLJ potential ( NCMM = 1 ) with the power p defining the

radial variable of Eq. (12) being p = |MPAR| and the exponent coefficient having the

form [35] φ(r) = fS(r)
∑NL

i=0 φi[y1(r)]
i + [1 − fS(r)]φ∞ , where the switching function

fS(r) = 1/[eαS(r−rS) + 1] is defined by parameters αS = PARM(NVARB− 2) and rS =

PARM(NVARB− 1), and at distances r < rinn = PARM(NVARB) the short-range repulsive

potential is extrapolated linearly with the slope of the MLJ function at r = rinn . For

this model, NSR is a dummy variable, and the coefficients of the exponent expansion are

PARM(i) = φi−1 for i= 1 to (NVARB-3) = (NL +1) .

Setting MPAR = 0 yields a special version of the preceding (MPAR < 0) case in which the

expansion variable power p = 1 and the expansion variable has the extra factor of 2

associated with the original Ogilvie-Tipping variable [29]: y1(r) = 2(r − re)/(r + re) .

For MPAR > 0 and NSR ≤ 0 , the power p= MPAR and φ(r) is a simple polynomial in yp of

order (NVARB−1) with the NVARB coefficients φ= PARM(i) for i= 0 to (NVARB−1) .

[This is a legacy case, and not a recommended model.]

IPOTL = 5 generates the DELR potential of Eqs. (17 – 20) [12], where DSCM = De , REQ = re ,

the power defining the expansion variable yp(r) is read in as MPAR = p and NCMM is the

number of terms in the inverse-power sum of Eq. (18). The exponent coefficient φ(r) has

the same simple power-series form as that for an EMO potential ( IPOTL = 3 , above),

with expansion coefficients PARM(i) = φi−1 for i = 1 to (NVARB − 2) = (NL + 1) , and

as for most MLR and EMO cases, the exponent polynomial order for r < re is set by

NSR ≤ NL . The damping function scaling parameters is input as ρd = PARM(NVARB− 1) ,

while setting PARM(NVARB) > 0 selects the Tang-Toennies damping function of Eq. (21)

and setting PARM(NVARB) < 0 selects the Douketis et al. function of Eq. (22). The powers

m = MMLR(i) and coefficients Cm = CMM(i) cm−1 Å
m

] of Eq. (18) are input through Read
#10, and in this model, positive values of Cm yield repulsive terms and negative values

attractive ones.

IPOTL = 6 generates the generalized HFD(m= MMLR(j) for j = 1 to NCMM) type potentials of

Eq. (23), where A and β1 are defined (internally) by the input values of De = DSCM and

re = REQ , the damping function parameters are read in as PARM(i) = αi for i = 1 − 3 ,

the other exponent coefficients are β2 = PARM(4) and γ = PARM(5) , and the inverse-power

coefficients Cm are input as dimensionless parameters (positive if attractive)

CMM(j) = Cm = Cm/[De re
m] for j = 1 to NCMM. For this case, NVARB = 5 , while MPAR and

NSR are dummy parameters.

IPOTL = 7 generates the Tiemann-type potential [41] of Eq. (24), which consists of a power

series of order IORD = (NVARB− 4) in the variable ξ = (r− rm)/(r+ b rm) , where b =

PARM(NVARB−2), with expansion coefficients PARM(i) = ai−1 for i= 1 to (NVARB−3). The

true overall well depth is De = DSCM , and the reference distance rm (which for a1 6= 0

is not identical to re ) is read in as REQ. For r < rinn = PARM(NVARB− 1) the potential is

extrapolated inward by smoothly attaching the function A+C12/r
12 to the power series
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at the distance rinn, while for r > rout = PARM(NVARB) it is extrapolated as a sum of

NCMM inverse-power terms with powers m = MMLR(j) and coefficients Cm = CMM(j) for

j = 1 to NCMM, with the (internal) addition of one further inverse-power term CmL/r
mL

with mL = [MMLR(NCMM) + 2] , whose coefficient CmL is defined (internally) to attach this

long-range tail to the polynomial at r = rout . For this model, MPAR and NSR are dummy

parameters.

MPAR & NSR : Integers used to characterize particular potential forms (see above).

NCMM: Integer specifying how many inverse-power terms will be used to define the long-range

part of the potential for cases IPOTL ≥ 4 .

NVARB : Integer specifying the number of (real) parameters PARM(i) read in to define the potential.

IBOB : An integer to specify whether (for IBOB>0 ) or not (for IBOB≤0 ) atomic-mass-dependent

Born-Oppenheimer breakdown correction terms are to be included in the rotationless (electronic)

and/or centrifugal ([J(J +1)−Ω2]~2/2µr2) potential functions (see § 2.6).

DSCM : Normally (except for the IPOTL= 2 case, above), the potential well depth De in cm−1.

REQ : Normally (except for the IPOTL= 7 case, see above) the equilibrium distance re in Å.

If atomic-mass-dependent Born-Oppenheimer breakdown (BOB) terms are to be incorporated into the

potential energy and/or centrifugal potential functions ( IBOB > 0 ), use Reads #12 and one or more (as

needed) of #13–16. These BOB functions normally have the forms defined by Eqs. (25) and (26). If a given

type of correction function is to be omitted, the associated expansion order (e.g., NU1, NU2, NT1 or NT2)

should be set < 0 , in which case the associated parameter Read statement (of #13–16) is omitted, while

if no BOB corrections are considered (IBOB ≤ 0), omit all of Reads #12–16.

#12. READ(5,*) MN1R, MN2R, PAD, MAD, NU1, NU2, PNA, NT1, NT2

MN1R & MN2R : The integer mass numbers of the reference isotopes of atoms 1 & 2, respectively

(or atoms A & B, respectively) whose masses M ref
a appear in Eqs. (25) & (26) [51]).

NU1 & NU2 : For atoms a = 1 & 2 (or A & B), the orders Na
ad of the polynomial expansions of

Eq. (25). Set them < 0 to neglect Reads # 13 and/or 14 and omit such corrections.

NT1 & NT2 : For atoms a= 1 & 2, the orders Na
na of the polynomial expansions of Eq. (26). Set

them < 0 to neglect Reads # 15 and/or 16 and omit such corrections.

PAD & PNA : For PAD > 0 , the (positive) integer p defining the polynomial expansion variable

yp(r) for the adiabatic potential energy BOB function of Eq. (25) is p= PAD, and that for the

non-adiabatic centrifugal BOB function of Eq. (26) is p= PNA.

For PAD ≤ 0 , use the BOB radial forms of Coxon & Hajigeorgiou [52] which utilize an explicit

switching function fS(r) = 1/[eAada(r−Rada) + 1]. In place of Eq. (25), the adiabatic correction

to the potential is: me[1/Ma−1/M ref
a ]
{
fS(r)

∑NUa
j=0 Ua(j)(z)j + [1− fS(r)/fS(re)] UaINF

}
for

a = 1 or 2, where z = 2(r − re)/r + re) . In place of Eq. (26), the non-adiabatic centrifugal

correction function has the form: ga(r) = [me/Ma]
{∑NTa

j=0 Ta(j)[(r − re)/re]j
}

for a = 1 or

2. For PAD ≤ 0 , use Reads #13a–16a, as appropriate, rather than Reads #13–16.

MAD : For the normal PAD > 0 case, MAD is the (positive) integer (m = MAD ) in Eq. (25) which

defines the limiting long-range inverse-power behaviour of the adiabatic potential correction

function. This should normally be set equal to the power of the leading inverse-power term

contributing to the long-range potential MAD = MMLR(1) . If MAD = 0 and UaINF = 0 the

adiabatic potential correction function is collapsed to a simple power series in yp(r).
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For cases in which IBOB > 0 and PAD > 0 , use Reads #13 – 16.

#13. IF(NU1.GE.0) READ(5,*) U1INF, (U1(I),I= 0,NU1)
#14. IF(NU2.GE.0) READ(5,*) U2INF, (U2(I),I= 0,NU2)
#15. IF(NT1.GE.0) READ(5,*) T1INF, (T1(I),I= 0,NT1)
#16. IF(NT2.GE.0) READ(5,*) T2INF, (T2(I),I= 0,NT2)

UaINF & Ua(i) : for a = 1 or 2, are the (real*8) expansion parameters defining the ‘adiabatic’

potential correction functions of Eq. (25): Ua(j) = uaj and UaINF= ua∞ in units cm−1.

TaINF & Ta(i) : for a = 1 or 2, are the (real*8) expansion parameters defining the centrifugal

potential correction functions of Eq. (26): Ta(j) = taj and TaINF = ta∞ are dimensionless pa-

rameters.

For the Coxon-Hajigeorgiou BOB functions [52] invoked by setting PAD ≤ 0 , use Reads #13a – 16a in

place of #13 – 16. For this case, always set T1INF= T2INF= 0 .

#13a. IF(NU1.GE.0) READ(5,*) U1INF, (U1(I),I= 0,NU1)
#14a. IF(NU2.GE.0) READ(5,*) U2INF, (U2(I),I= 0,NU2)
#15a. IF(NT1.GE.0) READ(5,*) T1INF, (T1(I),I= 0,NT1)
#16a. IF(NT2.GE.0) READ(5,*) T2INF, (T2(I),I= 0,NT2)

For a calculation involving only a single potential energy curve ( NUMPOT = 1 in Read #1), now proceed

directly to Read #17. However, if NUMPOT = 2 first repeat Reads #5–16 to input the second potential

function.

Now read the parameters controlling which levels are to be calculated, and what expectation values and

or matrix elements are to be calculated (if any).

#17. READ(5,*) NLEV1, AUTO1, LCDC, LXPCT, NJM, JDJR, IWR, LPRWF

NLEV1 : If > 0 , integer NLEV1 is the number of levels to be calculated, for each of which the

quantum number specifications will be input via Read #18.

If ≤ 0 , the program automatically finds all vibrational levels from v = 0 − |NLEV1| associated

with the rotational quantum number read in as IJ(1) (see below). If the input value of NLEV

is very large and negative, the program will (attempt to) find all possible vibrational levels

associated with the specified J = IJ(1).

AUTO1 : Integer AUTO1 > 0 (normal option) causes the program to (attempt to) automatically

generate realistic trial eigenvalues for all desired levels, so only their quantum number labels

need be input via (Read #18a). If this fails, setting AUTO1 ≤ 0 will allow/require a trial energy

GV(i) to be input (via Read #18b) for each specified level (using the NLEV1 > 0 option).

LCDC : If LCDC > 0 , calculate the inertial rotational constant Bv and the first 6 centrifugal distor-

tion constants {−Dv, Hv, Lv, ... etc.} for all of the levels specified by NLEV1. If LCDC ≥ 2 also

write them in a compact format to channel–9.

LXPCT : An integer controlling what expectation values/matrix elements are to be calculated. For

LXPCT= 0 , no expectation values or matrix elements are calculated (and hence Read s #19–24

are omitted). Even values of |LXPCT| 6= 0 cause the results to be written in compact form to

channels–7 or 8 (as appropriate, see below), as well as to channel-6; Odd values of LXPCT yield

only channel–6 output, and negative values of LXPCT cause most of the (relatively wordy) print

to channel–6 to be suppressed.
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LXPCT = −1 causes the eigenvalues and (if appropriate) quasibound level widths to be written

compactly to channel–7, and no expectation values or matrix elements are calculated (so

Read s #19–24 are omitted).

LXPCT = 1, 2 or −2 causes calculation of expectation values of the kinetic energy and of

positive powers of the distance variable specified by Read #19 plus either #20 or #21–24

(as appropriate, see below). Write results to channel–6 if LXPCT = 1 or 2; also write them

(compactly) to channel–7 if LXPCT = 2 , and write them only (compactly) to channel–7 if

LXPCT=−2.

|LXPCT| ≥ 3 invokes the calculation of matrix elements coupling levels of Potential-1 to each

other (if NUMPOT= 1) or to levels of Potential-2 (if NUMPOT= 2), as specified by Reads #25

& 26. Write results to channel–6 if LXPCT> 0 and (compactly) to channel–8 if LXPCT=±4 .

|LXPCT| ≥ 5 also causes the component radial moments comprising the overall matrix elements

to be written to channel–7, while still writing the overall matrix elements for selection-

rule allowed transitions to channel–8. For LXPCT = ±6 write only the radial moment

components, and omit the output to channel–8.

NJM & JDJR : If (integer) NJM > 0 , for each (vibrational) level generated by the NLEV1 specifi-

cation, automatically calculate eigenvalues (and if appropriate, expectation values and matrix

elements) for all rotational sublevels J ranging from the input-specified (see below) J = IJ(i) to

a maximum of J = NJM (or until that vibrational level energy predissociates above the potential

barrier), with J increasing in steps of JDJR. To automatically generate all possible rotational

levels, set JDJR= 1 , IJ(i) = 0 and NJM very large (e.g., set NJM= 999).

IWR : An integer controlling the printout of diagnostics and calculation details inside SCHRQ.

If IWR 6= 0 print warning and error messages inside subroutine SCHRQ, as appropriate. Unless

one is troubleshooting, normally set IWR=−1.

If IWR ≥ 1 also print final eigenvalue and node count for every level determined.

If IWR ≥ 2 also print end-of-range wave function amplitudes.

If IWR ≥ 3 also print intermediate trial eigenvalues as the iterative convergence proceeds.

LPRWF : If LPRWF > 0 write to channel–6 the wavefunction at every {LPRWF}th mesh point.

If LPRWF < 0 write wavefunction compactly to channel–10 at every |LPRWF|th mesh point.

If LPRWF= 0 , no wavefunction printout.

Read quantum numbers specifying which vibration-rotation levels (of Potential-1) are to be determined.

#18 a. IF(AUTO1.GT.0) READ(5,*) (IV(I),IJ(I),I= 1,max{ 1, NLEV1})
#18 b. IF(AUTO1.LE.0) READ(5,*) (IV(I),IJ(I),GV(I),I= 1,max{1, NLEV1})

IV(i) & IJ(i) : For NLEV1 > 0 these are the vibrational [ v = IV(i) ] and rotational [ J = IJ(i) ]

quantum numbers of the levels to be determined; if NJM>IJ(i) the program also automatically

calculates rotational levels for that v= IV(i) for J = IJ(i) to NJM in steps of JDJR.

For NLEV1 ≤ 0 , read one {IV(i), IJ(i)} pair. The value of IV(1) is ignored, but J = IJ(1)

is the rotational quantum number for which all vibrational levels up to v = |NLEV1| are to be

determined.

GV(i) : If AUTO1 ≤ 0 , Read #18b is used in place of #18a, and GV(i) is the trial energy read in for

each level v= IV(i), J = IJ(i) . This option presumes NLEV1 > 0 .

If expectation values or matrix elements are to be calculated (i.e., if LXPCT 6= 0 or −1), Reads #19–24

specify the desired arguments. However, if LXPCT = 0 or −1 the data input is now finished.

#19. READ(5,*) MORDR, IRFN, RREF
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MORDR : is an integer specifying the highest power of the chosen radial function or distance

coordinate RFN(r) whose expectation values or matrix elements are to be calculated (see Eq. (7)).

The current program version is dimensioned for MORDR ≤ 20 . To calculate only Franck-Condon

factors (when |LXPCT| ≥ 3), input MORDR=−1 .

IRFN & RREF : are integer and real variables, respectively, specifying the definition of the radial

function or distance coordinate RFN(r).

If IRFN ≤ −10 , RFN is generated by user-supplied code inserted at line #498 of the main

program. In this case MORDR and RREF are dummy variables, and Reads #20-24 are ignored.

If IRFN = −4 , RFN(r) = r and the matrix element operator is a polynomial in r of order

MORDR, with coefficients DM(i), premultiplying the derivative operator d
dr which acts on the

wavefunction for ‘Potential–2’.

If IRFN = −3 , RFN(r) = 1/r3 .

If IRFN = −2 , RFN(r) = 1/r2 .

If IRFN = −1 , use a Dunham-type expansion coordinate RFN(r) = (r − rref)/rref .

If IRFN = 0 , the function RFN(r) = r , the distance coordinate itself.

If IRFN = 1− 9 , use the Šurkus-type variable RFN(r) = yp(r) = (rp − rrefp)/(rp + rref
p) , with

p= IRFN .

For IRFN = −1 or 1 − 9 , a positive input value of RREF specifies it as the reference distance

rref for these cases (usually set = re ). However, if the input value of RREF ≤ 0.0 , the

program internally (iteratively) determines a value of rref such that the expectation value

of RFN(r) is identically zero for the first vibration-rotation level considered.

If IRFN ≥ 10 , RFN(r) is a function defined by reading in and interpolating over (and extrap-

olating beyond) input values of some known radial (e.g., a dipole or transition moment)

function. This reading and interpolation/extrapolation is performed by the same subrou-

tine package PREPOT used for treating a numerical input potential (see Reads #5–8). In

this case MORDR and RREF are dummy variables, and Read #20 is ignored.

#20. IF(DABS(IRFN).LE.9) READ(5,*) (DM(J), J= 0,MORDR)

DM(j) : Coefficients of the power series in RFN(r) defining the argument of the overall expectation

values or matrix elements: M(r) =
∑MORDR

j=0 DM(j)× RFN(r)j .

If the expectation value or matrix element radial function argument is to be defined by interpolating over

and extrapolating beyond a set of read-in points (IRFN ≥ 10), use the same read sequence, options and

procedures employed for treating a numerical input potential. Most input parameters here have definitions

essentially equivalent to those associated with Read #5–8.

#21. READ(5,*) NRFN, RFLIM
#22. READ(5,*) NUSEF, ILRF, NCNF, CNNF
#23. READ(5,*) RFACTF, MFACTF
#24. READ(5,*) (XIF(I), YIF(I), I= 1,NRFN)

NRFN is the number of known function values {XIF(i), YIF(i)} to be read in,

RFLIM is the limiting asymptotic value imposed when extrapolating beyond the range of the input

values, and

NUSEF specifies how the interpolation is to be performed, while ILRF, NCNF and CNNF define

the manner in which it extrapolates to large r (as in Read #6).
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RFACTF & MFACTF convert units of input distances XIF(i) and ordinates YIF(i), respectively,

to Å and whatever units are required for the expectation value/matrix element argument M(r)

(debye, for a dipole or transition moment function).

For matrix element calculations, couple each level of Potential-1, generated as specified by Read s #17 &

18, to all rotation levels of the NLEV2 vibrational levels v= IV2(i) allowed by the rotational selection rules

∆J = J2DL to J2DU in steps of J2DD (e.g., for P & R transitions: J2DL=−1 , J2DU= +1 & J2DD= +2 ).

If NUMPOT= 2 these are levels of Potential-2 and no constraints are imposed, but if NUMPOT= 1 the matrix

elements couple levels of Potential-1, and to avoid redundancy the program considers only emission from

(rotational sublevels of) these NLEV2 vibrational levels into lower (v′′, J ′′) levels generated as per Read s
#17 & 18. Integer AUTO2 > 0 causes LEVEL to automatically generate trial eigenvalues for all desired

levels (preferred option), so only their vibrational quantum number labels need be input (Read #26a). If

this fails, setting AUTO2 ≤ 0 will require a trial pure vibrational energy GV(i) to be read in (Read #26b)

for each specified level.

#25. READ(5,*) NLEV2, AUTO2, J2DL, J2DU, J2DD
#26 a. IF(AUTO2.GT.0) READ(5,*) (IV2(I), I= 1,NLEV2)
#26 b. IF(AUTO2.GT.0) READ(5,*) (IV2(I), GV(I), I= 1,NLEV2)

5 Program Updates
This section briefly describes changes in the program’s capabilities since Version 7.0 (January 2000). I am grateful
to users for bringing a number of the program malfunctions corrected here to my attention.

Major Updates in Versions 7.1 to 7.6

• The ability to search for the very highest bound level of a potential (e.g., for the one bound level of ground state
He2) may now be explicitly selected by the user. This option is invoked by setting the following parameters
in the input data file: the number of bound levels to be searched for should be set at NLEV1 = 1 and the
vibrational index read in for that level should be set at IV(1) = 999. This extension was required because
the extreme case of a very weakly-bound level in a shallow potential was sometimes by missed by the general
purpose ‘level-finder’ subroutine ALF.

• The variety of analytic potentials which can be generated by subroutine POTGEN in the PREPOT package has
been further extended and generalized.

• The ability to calculate matrix elements of a function incorporating a radial first derivative operator may now
be invoked by setting input parameter (Read #19) IRFN = −4 . The matrix elements will then be of the
operator f(r) d

dr where f(r) is a polynomial in r of order MORDR, with coefficients DM(i).

• Parameter VSHIFT is now input through Read #7 (rather that Read #5).

• The expansion variable used in the MLJ (now MLR) and EMO analytic potential functions was generalized to the
form yp(r) = [(r)p − (re)

p]/[(r)p + (re)
p] , where p is a small integer whose value is input as the parameter

p= MPAR.

Updates New to Version 7.7 (1 June 2005)

• Experience showed that for potentials with unusual shapes or levels very near dissociation the code was not always
sufficiently robust to generate eigenvalues for any specified quantum number, so parameters AUTO1 and AUTO2

(see Read s #17 & 25) now give the user a choice of whether or not to rely on the code to automatically find
all specified levels, or (if that fails) to read in a trial energy for each desired level.

• The choice of radial expansion variable used to define the argument in calculating expectation values or matrix
elements has been expanded to include the generalized Šurkus-type variable yp(r) = (rp − rep)/(rp + re

p) .

• The Hönl-London factors used in the calculation of absolute Einstein emission coefficients for ∆Λ =±1 transitions
(see Eq. (8)) has been corrected, following Hansson and Watson [24].

• The atomic masses stored in data subroutine MASSES have been updated to the 2003 values of Ref. [47] and the
physical constants have been updated to the 2005 values of Ref. [46].
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• The analytic EMO and MLJ potential functions were generalized to allow different exponent expansion powers
NL and NS = NSR for r > re and r < re , respectively, and the structure of the input data file was changed
slightly by the addition of parameter NSR to Read #9. The ability to generate the Tiemann-type analytic
potential of Eq. (24) was also added.

• The electronic angular momentum projection quantum number OMEGA is now input through Read #5 (rather than
#17 and 25), as it is a property of that state, and is more logically read in when the potential is being specified.

Updates New to Version 8.0 (2 April 2007)

• Coding errors affecting the calculation of tunneling level widths, which had crept into LEVEL 7.5

(June 2002!) and persisted in distributed version of the code till March 11, 2007, have been corrected.

The errors made the results a factor of 2-3 too small for very small widths, a factor of 2 too big for

very large widths, and (fortunately!) accidentally became only a few % for widths in the range 10−3

to 5 cm−1.

• The ability to generate MLR and DELR analytic potential functions was added, the ordering and

‘IPOTL’ labeling of the various forms is changed, and the parameters used to define the nature of a

particular analytic potential function (Read #9) was modified by addition of parameter NCMM and

removal of NCN.

• The formulation of the IPOTL= 4 option to generate an MLJp(NS , NL) potential has been extended

to allow use of the Ogilvie-Tipping expansion variable yOT(r) = 2(r − re)/(r + re) in the exponent

expansion for φ(r). This option is invoked by setting parameter MPAR= 0 .

• Illustrative sample data files for the various allowed types of analytic potential are included in the

manual and in the distributed sample data file.

• The description of the calling sequence for a user-generate potential energy function subroutine on

p. 8 is corrected.

• The description of the introduction of a user-implemented analytic matrix element argument, invoked

by setting IRFN ≤ −10 , has been clarified.

• For the cases of a user-supplied or pointwise matrix element argument function, ( |IRFN| ≥ 10 ), MORDR

and RREF are now dummy variables, and the expansion coefficients DM(i) are no longer read in.

• An error in the definition of the Dunham or generalized Surkus variable used in matrix element

calculations, which was introduced with version 7.7, has been corrected.
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Appendix: Program Structure, Illustrative Cases,
Sample data and output files, and timing

A. Program Structure

The present section lists the names and outlines the functions of the various subroutines used by LEVEL,

and indicates their hierarchy. In particular, the level of indentation in this list indicates which subroutines

call which others; unless stated otherwise, each subroutine is called exclusively by the immediately preceding

routine having one lower level of indentation.

LEVEL : The main program which reads most input data, and calls the potential preparation, eigenfunc-

tion determination, and overlap integral routines.

MASSES : A data subroutine containing accurate atomic masses and other properties of all stable

atomic isotopes. For normal cases, its presence obviates the need for a user to look up and type

precise particle masses into the input data file.

ALF : For any smooth single-minimum, shelf-state or double-minimum potential, ALF (Automatic

Level Finder) uses multiple calls to subroutine SCHRQ (see below) to determine the vibrational

energies of all levels from v = 0 up to some maximum v specified by its input parameter KVMAX.

If fewer than the specified number of levels can be found, appropriate warnings are printed.

SCHRQ : Solves the Schrödinger equation to determine the eigenvalue and (unit normalized) eigen-

function of the vibrational level lying closest to the input trial energy.

QBOUND : For quasibound levels (those lying above the potential asymptote, but behind a

potential barrier), applies the Airy function boundary condition at the third turning point

to initiate the inward inward integration of the wave function for such levels [9, 10].

WIDTH : Calculates the tunneling predissociation lifetime or width of a quasibound level [10,

11, 12].

LEVQAD : Called by WIDTH to evaluate the near-turning-point contributions to the

semiclassical quadratures over the potential well and the barrier to tunneling which are

required for calculating the predissociation rate.

CDJOEL : Calculates the diatomic molecule centrifugal distortion constants of Eq. (6). The re-

quired input is the effective (centrifugally-distorted, if appropriate) radial potential, and the

eigenvalue and eigenfunction of the level in question (as calculated by SCHRQ).

LEVXPC : Calculates the desired diagonal expectation values of powers of the specified distance

coordinate or (interpolated) radial function RFN(r) (see Read #16 in Section 4).

MATXEL : Calculates the desired off-diagonal matrix elements of powers of the specified radial

function or distance coordinate, and the radiative lifetime or Einstein emission coefficient A s−1.

PREPOT : The subroutine which oversees reading of the parameters defining the potential and

generating the required potential array at the N distances specified by the input distance array.

GENINT : Uses piecewise polynomial or cubic spline functions to interpolate over a set of read-

in turning points to yield the potential array at the equally-spaced radial mesh required

by SCHRQ . If necessary it extrapolates beyond range of the given points with analytic

functions (see options for parameter ILR of Read #6).

PLYINTRP : Performs piecewise polynomial interpolation on a given array of points and

returns the function value and (if desired) its derivatives at a specified point. It is used

by GENINT to interpolate for the potential for cases with NUSE > 0 . This routine is

also used by SPLINT to defining the first derivatives at the inner and outer ends of the

interpolation region, R= XI(1) and XI(NTP), respectively.
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SPLINT : Calls subroutine SPLINE to generate the 4× (NTP− 1) coefficients required to

define the cubic spline through the NTP given turning points, and then uses these coef-

ficients to generate the desired interpolated function values at the specified integration

mesh points.

SPLINE : Generates the coefficients defining the cubic spline function through the

given NTP turning points.

POTGEN : For the analytic potential function specified by input parameter IPOTL (see Read
#9), generates the required array of potential function values on the specified radial grid.

DAMPF : Generates the damping functions of Eqs. (21) and (22) utilized in defining the

DELR potential function of Eq. (17).

B. Illustrative Cases

The running time for this program will depend entirely on the complexity of the calculation being performed

and the type of computer being used; CPU requirements may range from a fraction of a second to a few

minutes. This Appendix presents sample data files and the resulting output for representative cases which

illustrate some of the types of problems to which the program may be applied.

Case 1 : This data file (see Appendix C) consists of five separate data sets which illustrate a variety of

the capabilities of the program, including the fact that it can treat several independent problems

in a single run by simply putting the input data for several cases into the same file. Parts of the

resulting output are listed in Appendix D. The total CPU time required for these 5 cases on an old

(circa 1999) workstation was 1.2 sec.

a) Determine eigenvalues for vibrational levels v= 56−75 of an ab initio potential for the 3Πg state

of Cl2 which has asymmetric double minima [53], and calculate expectation values of various

powers of r. The output expectation values show that the wave function amplitude hops back

and forth between the two wells with increasing energy. This case illustrates the ability of the

program to automatically find arbitrary levels of a double minimum potential. The “ALF ERROR”

warning messages seen in the output merely indicate that the automatic level-finder subroutine

“ALF” encounters some internal challenges (which it overcomes!) in climbing a ladder of levels

which hop from one well to the other.

b) For a Lennard-Jones(12,6) potential, find all the vibrational levels and calculate the associated

values of the centrifugal distortion constants. This is a model system with fictitious particle

masses, so those masses and the chosen particle names ′L1′ and ′J2′ are input by Read #2.

c) For the same simple model Lennard-Jones(12,6) potential of Case 1.b), calculate all possible

infrared matrix elements involving levels with v ≤ 2 and J(upper) ≤ 1 .

d) For the same model Lennard-Jones(12,6) potential of Case 1.b), locate all (four) vibrational

levels of the centrifugally-distorted potential associated with J = 18 . This demonstrates that

the procedure for automatically finding all vibrational levels works for a potential with a barrier

(here, centrifugal in origin) protruding above its dissociation limit. This example invokes the

highest print level inside SCHRQ (by setting IWR= 3 , see Read #17) in order to illustrate the

progress of the iterative eigenvalue convergence procedure. In this case convergence details for

each level are presented twice (though only one iteration is required the second time) because

of the internal program logic.

e) To illustrate use of one of the more sophisticated analytic potential forms and incorporation

of Born-Oppenheimer breakdown (BOB) contributions to the radial and centrifugal potentials,

this case calculates properties of levels of the ground state of 109AgD using the analytic EMOp
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potential and BOB correction functions determined from a combined isotopologue analysis of

data for the AgH system in which 107AgH was the “reference isotopologue” (see Ref. [54]). Note

that in such cases, calculation of the rotational constants is based on a centrifugal potential

which includes the BOB correction function of Eq. (26).

Case 2 . Illustrative input data files are provided for eigenvalue calculations using each of the IPOTL ≥ 4

analytic potential energy functions described in §2.6 (Appendix E). The total CPU time required for

these 6 cases on an old (circa 1999) workstation was 5.2 sec.

Case 3 . This is an illustrative “production run” which generates the predicted frequencies and Einstein

emission coefficients for some 156 135 lines in the B(3Π+
0u)−X(1Σ+

g ) spectrum of Br2 . This case again

exploits the capability of the NLEV1<0 option for automatically finding the first |NLEV1|+ 1 levels

of a given potential. It also illustrates a use of the NJM>0 option for finding many (or all) rotational

sublevels for each v , and of the application of rotational selection rules in calculating transitions

between two different electronic states. The input data file is listed in Appendix F, parts of the

channel–6 output in Appendix G and a portion of the associated channel–8 output is in Appendix H.

The CPU time required for this case on an old (circa 1999) workstation was 77 sec.

The largest piece of output for this case consists of a listing of transition frequencies and Einstein A–

coefficients for some 156 135 transitions (yielding that number of lines of text) written to channel–8.

A small segment of this output file is shown in Appendix H. Since the associated “standard” output

to channel–6 is also moderately lengthy (some 1655 lines), the listing of it presented in Appendix G is

also considerably truncated. However, this output illustrates some of the (often not serious) warning

messages which may be generated by the program. In particular, beginning at v′ = 28 , J ′ = 127

(and seen in the truncated listing of Appendix G for v = 34 ) warnings occur for quasibound levels

for which RMAX is smaller than the outermost turning point at which the program was attempting to

apply the Airy function boundary condition (see Section 2.B). The first of these warnings is printed

once each iteration as SCHRQ converges on the associated eigenvalue; as it indicates, in this case

the Airy function boundary condition is replaced by use of the WKB wave function initialization of

Eq. (3). The second type of warning seen here describes the approximation used to estimate that

portion of the exponent integral determining the semiclassical tunneling probability (Eq. (4) with rend
replaced by r3 ) which is due to the potential barrier at distances beyond RMAX. When this situation

arises the associated tunneling level widths are usually extremely small, and although the resulting

predicted width may be slightly in error the calculated eigenvalue is usually extremely accurate.

A different type of problem gives rise to the lines beginning “SCHRQ has a ...” and “CAUTION for

...” seen here for v= 34 , J = 127 . This is the highest quasibound level for this v; it lies very close

to the centrifugal barrier maximum and the Airy function boundary condition was unable to achieve

full convergence to EPS for this particular level. In spite of this problem, however, the last eigenvalue

change of “ DE= 1.63D-03 ” cm−1 is considerably smaller than the width (FWHM = 0.90 cm−1) of this

tunneling predissociation level, so the lack of full convergence has negligible effect on the real accuracy

of the resulting eigenvalue.

Another type of warning message is that seen at v= 34 for J = 128 , and for v= 40 for J ≥ 92 (“...

find onee turn point: ...”). It appears when the automatic search for ever higher rotational sublevels

goes past the top of the (centrifugal) barrier maximum. In this case the code tries one more time

to place a level marginally below that barrier, a step which sometimes fails (as it did for v = 34 ,

J = 128 ) and sometimes succeeds (as it did for v= 40 , J = 92 ).
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C. Input data file for Case 1

Note that entries after the “ % ” sign on each line of the input data file are comments identifying the

variables, and are ignored by the program.

17 35 17 35 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 1.a: Levels of double minimum potential for 3(PI)g Cl2’
0.001 1.6 99. 1.d-06 % RH RMIN RMAX EPS
29 0 0 95440.D0 % NTP LPPOT IOMEG VLIM
0 0 2 1 0.D5 % NUSE IR2 ILR NCN CNN
0.5291772108D0 8065.5444D0 0.d0 % RFACT EFACT VSHIFT
3.34 10.608 3.40 9.683 3.43 9.221 3.49 8.758
3.57 8.295 3.66 8.132 3.76 8.051 3.86 8.132 3.94 8.268
4.03 8.350 4.17 8.595 4.26 8.704 4.31 8.758 4.46 8.432
4.56 8.134 4.66 7.887 4.80 7.615 4.91 7.425 5.00 7.343
5.17 7.125 5.37 6.962 5.51 6.908 5.66 6.880 5.80 6.908
5.94 6.989 6.00 7.044 6.20 7.125 6.40 7.261 6.60 7.425
15 1 0 1 0 1 -0 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
56 0 57 0 58 0 59 0 60 0 61 0 62 0 63 0 64 0 65 0 66 0
67 0 68 0 69 0 70 0 % IV(i) IJ(i)
3 0 0.D0 % MORDR IRFN RREF
1.d0 -2.d-1 3.d-2 -4.d-3 % {DM(j)}

0 30 0 30 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’L1’ 30.34373256D0 % NAME1 MASS1
’J2’ 30.34373256D0 % NAME2 MASS2

’Case 1.b: For a model L.J.(12,6) get all vib. levels and their CDCs’
0.0020 0.6 99. 1.d-6 % RH RMIN RMAX EPS
0 0 0 0.D0 % NTP LPPOT IOMEG VLIM
1 6 12 0 0 0 1.D3 1.D0 % IPOTL MPAR NSR NVARB NCMM IBOB DSCM REQ

-998 1 2 -1 0 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(1) IJ(1)

0 30 0 30 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’L1’ 30.34373256D0 % NAME1 MASS1
’J2’ 30.34373256D0 % NAME2 MASS2

’Case 1.c: For same model L.J.(12,6) get radial matrix elements for v < 3’
0.0020 0.6 99. 1.d-6 % RH RMIN RMAX EPS
0 0 0 0.D0 % NTP LPPOT IOMEG VLIM
1 6 12 0 0 0 1.D3 1.D0 % IPOTL MPAR NSR NVARB NCMM IBOB DSCM REQ

-2 1 0 5 1 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(1) IJ(1)
4 -1 1.D0 % MORDR IRFN RREF
1.d0 -0.2d0 0.03d0 -0.004d0 0.0005d0 % {DM(j)}
3 1 -1 +1 2 % NLEV2 AUTO2 J2DL J2DU J2DD
0 1 2 % IV2(1) IV2(2) IV2(3)

-1 0 -1 0 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’L1’ 30.34373256D0 % NAME1 MASS1
’J2’ 30.34373256D0 % NAME2 MASS2

’Case 1.d: For the same L.J.(12,6), find levels of potential with a barrier’
0.0020 0.6 99. 1.d-6 % RH RMIN RMAX EPS
0 0 0 0.D0 % NTP LPPOT IOMEG VLIM
1 6 12 0 0 0 1.D3 1.D0 % IPOTL MPAR NSR NVARB NCMM IBOB DSCM REQ

-999 1 0 -1 0 1 5 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 18 % IV(1) IJ(1)

47 109 1 2 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 1.e: X-state {109}AgD using EMO3(7,7) potential [JCP 123, 204304(2005)]’
0.0010 0.8 9.0 1.d-6 % RH RMIN RMAX EPS
0 0 0 19250.0d0 % NTP LPPOT IOMEG VLIM
3 3 7 0 8 1 19250.d0 1.6179162d0 % IPOTL MPAR NSR NCMM NVARB IBOB DSCM REQ
1.54358095D+00 3.73860D-02 1.66424D-01 9.8030D-02 1.7089D-01 6.0200D-02
1.4000D-01 2.2400D-01
107 1 3 3 -1 3 3 -1 2 % MN1R MN2R PAD MAD NU1 NU2 PNA NT1 NT2
0.0D+0 0.0D+0 1.175D+01 1.756D+01 -1.270D+01 % U2INF CA2(0) CA2(1) ...
0.0D+0 0.0D+0 1.5D-04 9.3D-04 % G2INF GA2(0) GA2(1) ...

-15 1 2 -1 0 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(1) IJ(1)
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D. Channel–6 Output file for Case 1

Case 1.a: Levels of double minimum potential for 3(PI)g Cl2
================================================================================
Generate ZMU= 17.48442634000(u) & BZ= 1.037181808D+00((1/cm-1)(1/Ang**2))

from atomic masses: 34.96885268000 & 34.96885268000(u)
Integrate from RMIN= 1.600 to RMAX= 81.60 with mesh RH= 0.001000(Angst)

Potential #1 for Cl( 35)-Cl( 35)
================================
State has OMEGA= 0 and energy asymptote: Y(lim)= 95440.0000(cm-1)
Perform cubic spline interpolation over the 29 input points
To make input points Y(i) consistent with Y(lim), add Y(shift)= 0.0000
Scale input points: (distance)* 5.291772108D-01 & (energy)* 8.065544400D+03

to get required internal units [Angstroms & cm-1 for potentials]
R(i) Y(i) R(i) Y(i) R(i) Y(i)

---------------------- ---------------------- ----------------------
3.340000 10.60800000 4.170000 8.59500000 5.370000 6.96200000
3.400000 9.68300000 4.260000 8.70400000 5.510000 6.90800000
3.430000 9.22100000 4.310000 8.75800000 5.660000 6.88000000
3.490000 8.75800000 4.460000 8.43200000 5.800000 6.90800000
3.570000 8.29500000 4.560000 8.13400000 5.940000 6.98900000
3.660000 8.13200000 4.660000 7.88700000 6.000000 7.04400000
3.760000 8.05100000 4.800000 7.61500000 6.200000 7.12500000
3.860000 8.13200000 4.910000 7.42500000 6.400000 7.26100000
3.940000 8.26800000 5.000000 7.34300000 6.600000 7.42500000
4.030000 8.35000000 5.170000 7.12500000

----------------------------------------------------------------------------
Extrapolate to X .le. 1.7992 with

Y= -5091495.587 +5.609801D+06 * exp(-4.542065D-02*X)
Extrapolate to X .GE. 3.3867 using

Y= 95440.0000 - [ 1.128770D+05/X**1 +1.377826D+05/X**3]
----------------------------------------------------------------------------

Calculate properties of the single potential described above
Potential-1 uses inner boundary condition of zero value at RMIN

Eigenvalue convergence criterion is EPS= 1.0D-06(cm-1)
Airy function at 3-rd turning point is quasibound outer boundary condition

State-1 electronic angular momentum OMEGA= 0
yields centrifugal potential [J*(J+1) - 0.00]/r**2

Solve for the 15 vibration-rotation levels of Potential-1:
(v,J) = ( 56, 0) ( 57, 0) ( 58, 0) ( 59, 0) ( 60, 0) ( 61, 0)

( 62, 0) ( 63, 0) ( 64, 0) ( 65, 0) ( 66, 0) ( 67, 0)
( 68, 0) ( 69, 0) ( 70, 0)

Matrix element arguments are powers of the distance r (in Angstroms)
Coefficients of expansion for radial matrix element/expectation value argument:

1.000000D+00 -2.000000D-01 3.000000D-02 -4.000000D-03

*** ALF ERROR ***
Attempt to find next higher vibrational level fails!
Use of differences to estimate the energy for the next
vibrational level (v= 38) failed after 1 attempt.

*** ALF ERROR ***
Attempt to find next higher vibrational level fails!
Use of differences to estimate the energy for the next
vibrational level (v= 48) failed after 1 attempt.

*** ALF ERROR ***
Attempt to find next higher vibrational level fails!
Use of differences to estimate the energy for the next
vibrational level (v= 53) failed after 1 attempt.

*** ALF ERROR ***
Attempt to find next higher vibrational level fails!
Use of differences to estimate the energy for the next
vibrational level (v= 63) failed after 1 attempt.

*** ALF WARNING ***
Potential found to have a second minimum.
The highest calculated level is E(v= 70) = 70022.038

E(v= 56, J= 0)= 68214.438 <M(r)>= 0.4721236994 <KE>= 4580.196
<X** 1>= 3.63045127 <X** 2>= 13.66002892 <X** 3>= 52.89672851

-------------------------------------------------------------------------------
E(v= 57, J= 0)= 68387.998 <M(r)>= 0.4695211055 <KE>= 4617.063

<X** 1>= 3.64732349 <X** 2>= 13.79516352 <X** 3>= 53.71727532
-------------------------------------------------------------------------------
E(v= 58, J= 0)= 68476.426 <M(r)>= 0.6824612177 <KE>= 1651.393

<X** 1>= 2.04384519 <X** 2>= 4.18845602 <X** 3>= 8.60585634
-------------------------------------------------------------------------------
E(v= 59, J= 0)= 68559.695 <M(r)>= 0.4669189762 <KE>= 4652.829

<X** 1>= 3.66408683 <X** 2>= 13.93033264 <X** 3>= 54.54340916
-------------------------------------------------------------------------------
E(v= 60, J= 0)= 68729.539 <M(r)>= 0.4643045293 <KE>= 4686.656

<X** 1>= 3.68083020 <X** 2>= 14.06617695 <X** 3>= 55.37868484
-------------------------------------------------------------------------------
E(v= 61, J= 0)= 68897.547 <M(r)>= 0.4617011736 <KE>= 4718.810

<X** 1>= 3.69738156 <X** 2>= 14.20154715 <X** 3>= 56.21723206
-------------------------------------------------------------------------------
E(v= 62, J= 0)= 69063.700 <M(r)>= 0.4591313915 <KE>= 4749.186

<X** 1>= 3.71357576 <X** 2>= 14.33535705 <X** 3>= 57.05354179
-------------------------------------------------------------------------------
E(v= 63, J= 0)= 69214.948 <M(r)>= 0.6781183394 <KE>= 1985.878

<X** 1>= 2.07712475 <X** 2>= 4.36259569 <X** 3>= 9.33364518
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-------------------------------------------------------------------------------
E(v= 64, J= 0)= 69228.156 <M(r)>= 0.4588457946 <KE>= 4751.128

<X** 1>= 3.71260667 <X** 2>= 14.36531491 <X** 3>= 57.39807953
-------------------------------------------------------------------------------
E(v= 65, J= 0)= 69390.488 <M(r)>= 0.4540380380 <KE>= 4803.188

<X** 1>= 3.74528392 <X** 2>= 14.60094614 <X** 3>= 58.73339038
-------------------------------------------------------------------------------
E(v= 66, J= 0)= 69551.030 <M(r)>= 0.4516314964 <KE>= 4825.287

<X** 1>= 3.75994565 <X** 2>= 14.72704336 <X** 3>= 59.54766856
-------------------------------------------------------------------------------
E(v= 67, J= 0)= 69709.530 <M(r)>= 0.4496202586 <KE>= 4837.877

<X** 1>= 3.77158473 <X** 2>= 14.83463802 <X** 3>= 60.27548393
-------------------------------------------------------------------------------
E(v= 68, J= 0)= 69864.123 <M(r)>= 0.4631813280 <KE>= 4633.896

<X** 1>= 3.66813652 <X** 2>= 14.22170340 <X** 3>= 57.46061757
-------------------------------------------------------------------------------
E(v= 69, J= 0)= 69900.180 <M(r)>= 0.6579325797 <KE>= 2352.457

<X** 1>= 2.22764739 <X** 2>= 5.25807534 <X** 3>= 13.57005040
-------------------------------------------------------------------------------
E(v= 70, J= 0)= 70022.038 <M(r)>= 0.4464976857 <KE>= 4867.346

<X** 1>= 3.78784877 <X** 2>= 15.00980662 <X** 3>= 61.55668996
-------------------------------------------------------------------------------

Find the 15 vibration-rotation levels:
v J E(v) v J E(v) v J E(v)

--------------------- --------------------- ---------------------
56 0 68214.43842 61 0 68897.54686 66 0 69551.03001
57 0 68387.99804 62 0 69063.70032 67 0 69709.52996
58 0 68476.42603 63 0 69214.94841 68 0 69864.12275
59 0 68559.69491 64 0 69228.15645 69 0 69900.18008
60 0 68729.53947 65 0 69390.48802 70 0 70022.03777

===============================================================================

Case 1.b: For a model L.J.(12,6) get all vib. levels and their CDCs
================================================================================
Generate ZMU= 15.17186628000(u) & BZ= 9.000000000D-01((1/cm-1)(1/Ang**2))

from atomic masses: 30.34373256000 & 30.34373256000(u)
Integrate from RMIN= 0.600 to RMAX= 99.00 with mesh RH= 0.002000(Angst)

Potential #1 for L1( 30)-J2( 30)
================================
State has OMEGA= 0 and energy asymptote: Y(lim)= 0.0000(cm-1)

Lennard-Jones(12, 6) potential with De= 1000.000(cm-1) Re = 1.000000(A)
----------------------------------------------------------------------------

Calculate properties of the single potential described above
Potential-1 uses inner boundary condition of zero value at RMIN

Eigenvalue convergence criterion is EPS= 1.0D-06(cm-1)
Airy function at 3-rd turning point is quasibound outer boundary condition

State-1 electronic angular momentum OMEGA= 0
yields centrifugal potential [J*(J+1) - 0.00]/r**2

For J= 0, try to find the first 400 vibrational levels of Potential-1

ALF finds all J= 0 vib. levels below vD= 6.631 estimated by N-D theory
The highest calculated level is E(v= 6) =-0.77249285

E(v= 0, J= 0)= -811.519 Bv= 1.0540426 -Dv= -4.1381D-05 Hv= -6.5120D-09
Lv= -1.9007D-12 Mv= -7.2230D-16 Nv= -3.1926D-19 Ov= -1.5585D-22

E(v= 1, J= 0)= -507.170 Bv= 0.9332450 -Dv= -6.0794D-05 Hv= -1.4820D-08
Lv= -6.5533D-12 Mv= -3.7208D-15 Nv= -2.4359D-18 Ov= -1.7523D-21

E(v= 2, J= 0)= -287.838 Bv= 0.8013476 -Dv= -9.2177D-05 Hv= -3.5187D-08
Lv= -2.3947D-11 Mv= -2.0879D-14 Nv= -2.1041D-17 Ov= -2.3384D-20

E(v= 3, J= 0)= -141.503 Bv= 0.6566553 -Dv= -1.4627D-04 Hv= -9.2303D-08
Lv= -1.0432D-10 Mv= -1.5291D-13 Nv= -2.6179D-16 Ov= -4.9802D-19

E(v= 4, J= 0)= -54.890 Bv= 0.4974391 -Dv= -2.4978D-04 Hv= -2.9569D-07
Lv= -6.5212D-10 Mv= -1.9135D-12 Nv= -6.6507D-15 Ov= -2.5885D-17

E(v= 5, J= 0)= -13.337 Bv= 0.3221808 -Dv= -4.9470D-04 Hv= -1.4933D-06
Lv= -9.1824D-09 Mv= -7.7465D-11 Nv= -7.8195D-13 Ov= -8.8619D-15

E(v= 6, J= 0)= -0.772 Bv= 0.1290036 -Dv= -1.6478D-03 Hv= -3.8715D-05
Lv= -2.0424D-06 Mv= -1.4479D-07 Nv= -1.1986D-08 Ov= -1.0942D-09

Find 7 Potential-1 vibrational levels with J= 0
v E(v) v E(v) v E(v) v E(v)

-------------- -------------- -------------- --------------
0 -811.5192 2 -287.8379 4 -54.8902 6 -0.7725
1 -507.1696 3 -141.5034 5 -13.3368

An n= 6 N-D theory extrapolation from last 2 levels implies vD = 6.631
===============================================================================

Case 1.c: For same model L.J.(12,6) get radial matrix elements for v < 3
================================================================================
Generate ZMU= 15.17186628000(u) & BZ= 9.000000000D-01((1/cm-1)(1/Ang**2))

from atomic masses: 30.34373256000 & 30.34373256000(u)
Integrate from RMIN= 0.600 to RMAX= 99.00 with mesh RH= 0.002000(Angst)

Potential #1 for L1( 30)-J2( 30)
================================
State has OMEGA= 0 and energy asymptote: Y(lim)= 0.0000(cm-1)

Lennard-Jones(12, 6) potential with De= 1000.000(cm-1) Re = 1.000000(A)
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----------------------------------------------------------------------------

Calculate properties of the single potential described above
Potential-1 uses inner boundary condition of zero value at RMIN

Eigenvalue convergence criterion is EPS= 1.0D-06(cm-1)
Airy function at 3-rd turning point is quasibound outer boundary condition

State-1 electronic angular momentum OMEGA= 0
yields centrifugal potential [J*(J+1) - 0.00]/r**2

For J= 0, try to find the first 3 vibrational levels of Potential-1
and automatically increment J in steps of 1 to a maximum value of 1

Matrix element argument expansion variable is: X = (r - RREF)/RREF
where reference length is held fixed at RREF = 1.0000000000(Angstroms)

Coefficients of expansion for radial matrix element/expectation value argument:
1.000000D+00 -2.000000D-01 3.000000D-02 -4.000000D-03 5.000000D-04

Using the rotational selection rule: delta(J)= -1 to 1 with increment 2
calculate matrix elements for coupling to the 3 vibrational levels of
Potential-2: v = 0 1 2

-------------------------------------------------------------------------------
Coupling E(v= 0, J= 1)= -809.4112 to E(v= 0, J= 0)= -811.5192

Moment matrix elements: <X** 0>= 0.9999997392 <X** 1>= 0.0315663983
<X** 2>= 0.0043724231 <X** 3>= 0.0004274505 <X** 4>= 0.0000681864

FCF= 1.0000D+00 <M>= 9.93816D-01 d(E)= -2.11 A(Einst)= 9.6706D-07 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

For vibrational level v = 0 of Potential-1
J E J E J E J E J E

-------------- -------------- -------------- -------------- --------------
0 -811.519 1 -809.411

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 1, J= 0)= -507.1696 to E(v= 0, J= 1)= -809.4112

Moment matrix elements: <X** 0>= 0.0007038706 <X** 1>= 0.0555644965
<X** 2>= 0.0061799007 <X** 3>= 0.0011668795 <X** 4>= 0.0002051809

FCF= 4.9543D-07 <M>=-1.02282D-02 d(E)= -302.24 A(Einst)= 9.0586D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 1, J= 1)= -505.3034 to E(v= 0, J= 0)= -811.5192

Moment matrix elements: <X** 0>= -0.0007036644 <X** 1>= 0.0554599642
<X** 2>= 0.0061672593 <X** 3>= 0.0011650604 <X** 4>= 0.0002048749

FCF= 4.9514D-07 <M>=-1.16152D-02 d(E)= -306.22 A(Einst)= 4.0496D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 1, J= 1)= -505.3034 to E(v= 0, J= 2)= -805.1964

Moment matrix elements: <X** 0>= 0.0014096829 <X** 1>= 0.0556429498
<X** 2>= 0.0062065908 <X** 3>= 0.0011721096 <X** 4>= 0.0002064159

FCF= 1.9872D-06 <M>=-9.53729D-03 d(E)= -299.89 A(Einst)= 5.1293D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 1, J= 1)= -505.3034 to E(v= 1, J= 0)= -507.1696

Moment matrix elements: <X** 0>= 0.9999989173 <X** 1>= 0.1072309514
<X** 2>= 0.0227481313 <X** 3>= 0.0044941830 <X** 4>= 0.0010331538

FCF= 1.0000D+00 <M>= 9.79218D-01 d(E)= -1.87 A(Einst)= 6.5155D-07 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

For vibrational level v = 1 of Potential-1
J E J E J E J E J E

-------------- -------------- -------------- -------------- --------------
0 -507.170 1 -505.303

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 2, J= 0)= -287.8379 to E(v= 0, J= 1)= -809.4112

Moment matrix elements: <X** 0>= -0.0001445686 <X** 1>= -0.0146868141
<X** 2>= 0.0021494006 <X** 3>= 0.0006270858 <X** 4>= 0.0002038462

FCF= 2.0900D-08 <M>= 2.85487D-03 d(E)= -521.57 A(Einst)= 3.6268D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 2, J= 0)= -287.8379 to E(v= 1, J= 1)= -505.3034

Moment matrix elements: <X** 0>= 0.0012364336 <X** 1>= 0.0838602021
<X** 2>= 0.0215270661 <X** 3>= 0.0065378301 <X** 4>= 0.0019424342

FCF= 1.5288D-06 <M>=-1.49150D-02 d(E)= -217.47 A(Einst)= 7.1749D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 2, J= 1)= -286.2356 to E(v= 0, J= 0)= -811.5192

Moment matrix elements: <X** 0>= 0.0001452962 <X** 1>= -0.0147714152
<X** 2>= 0.0021295981 <X** 3>= 0.0006226650 <X** 4>= 0.0002028174

FCF= 2.1111D-08 <M>= 3.16108D-03 d(E)= -525.28 A(Einst)= 1.5140D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 2, J= 1)= -286.2356 to E(v= 0, J= 2)= -805.1964

Moment matrix elements: <X** 0>= -0.0002889435 <X** 1>= -0.0146592358
<X** 2>= 0.0021551720 <X** 3>= 0.0006307829 <X** 4>= 0.0002051064

FCF= 8.3488D-08 <M>= 2.70514D-03 d(E)= -518.96 A(Einst)= 2.1384D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 2, J= 1)= -286.2356 to E(v= 1, J= 0)= -507.1696

Moment matrix elements: <X** 0>= -0.0012355622 <X** 1>= 0.0834456953
<X** 2>= 0.0214393061 <X** 3>= 0.0065170119 <X** 4>= 0.0019370216

FCF= 1.5266D-06 <M>=-1.73066D-02 d(E)= -220.93 A(Einst)= 3.3767D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 2, J= 1)= -286.2356 to E(v= 1, J= 2)= -501.5723

Moment matrix elements: <X** 0>= 0.0024778195 <X** 1>= 0.0841137737
<X** 2>= 0.0216303216 <X** 3>= 0.0065743346 <X** 4>= 0.0019558701

FCF= 6.1396D-06 <M>=-1.37213D-02 d(E)= -215.34 A(Einst)= 3.9306D-04 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Coupling E(v= 2, J= 1)= -286.2356 to E(v= 2, J= 0)= -287.8379

Moment matrix elements: <X** 0>= 0.9999970447 <X** 1>= 0.2089561346
<X** 2>= 0.0661950523 <X** 3>= 0.0214010286 <X** 4>= 0.0074711130

FCF= 9.9999D-01 <M>= 9.60110D-01 d(E)= -1.60 A(Einst)= 3.9644D-07 s-1
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

For vibrational level v = 2 of Potential-1
J E J E J E J E J E

-------------- -------------- -------------- -------------- --------------
0 -287.838 1 -286.236

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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Find 3 Potential-1 vibrational levels with J= 0
v E(v) v E(v) v E(v) v E(v)

-------------- -------------- -------------- --------------
0 -811.5192 1 -507.1696 2 -287.8379

An n= 6 N-D theory extrapolation from last 2 levels implies vD = 6.812
===============================================================================

Case 1.d: For the same L.J.(12,6), find levels of potential with a barrier
================================================================================
Generate ZMU= 15.17186628000(u) & BZ= 9.000000000D-01((1/cm-1)(1/Ang**2))

from atomic masses: 30.34373256000 & 30.34373256000(u)
Integrate from RMIN= 0.600 to RMAX= 99.00 with mesh RH= 0.002000(Angst)

Potential #1 for L1( 0)-J2( 0)
================================
State has OMEGA= 0 and energy asymptote: Y(lim)= 0.0000(cm-1)

Lennard-Jones(12, 6) potential with De= 1000.000(cm-1) Re = 1.000000(A)
----------------------------------------------------------------------------

Calculate properties of the single potential described above
Potential-1 uses inner boundary condition of zero value at RMIN

Eigenvalue convergence criterion is EPS= 1.0D-06(cm-1)
Airy function at 3-rd turning point is quasibound outer boundary condition

State-1 electronic angular momentum OMEGA= 0
yields centrifugal potential [J*(J+1) - 0.00]/r**2

For J= 18, try to find the first 400 vibrational levels of Potential-1

Solve for v= 0 J= 18 ETRIAL= -4.7291361D+02 INNER= 0 WF(1st) WF(NEND)
ITER ETRIAL F(E) DF(E) D(E) M R(M) /WF(M) /WF(M) R(NEND) NBEG ITP1
------------------------------------------------------------------------------------------------

1 -4.7291361D+02 7.96D-03 1.18D+02 1.87D+01 256 1.110 7.4D-27 2.9D-11 2.31 1 178
2 -4.5421107D+02 -1.22D-03 1.76D+02 -1.92D+00 260 1.118 1.0D-26 2.7D-11 2.34 1 177
3 -4.5613214D+02 -2.14D-05 1.70D+02 -3.51D-02 260 1.118 9.9D-27 2.5D-11 2.34 1 177
4 -4.5616719D+02 -6.83D-09 1.70D+02 -1.12D-05 260 1.118 9.9D-27 2.5D-11 2.34 1 177
5 -4.5616720D+02 -4.82D-15 1.70D+02 -7.90D-12 260 1.118 9.9D-27 2.5D-11 2.34 1 177

------------------------------------------------------------------------------------------------
E(v= 0,J= 18)= -456.1672 5 Iterations R(M)= 1.118 WF(NBEG)/WF(M)= 9.9D-27

WF(NEND)/WF(M)= 2.5D-11

Solve for v= 1 J= 18 ETRIAL= -1.9055580D+02 INNER= 0 WF(1st) WF(NEND)
ITER ETRIAL F(E) DF(E) D(E) M R(M) /WF(M) /WF(M) R(NEND) NBEG ITP1
------------------------------------------------------------------------------------------------

1 -1.9055580D+02 -4.75D-03 2.74D+02 -4.82D+00 333 1.264 -2.4D-26 4.1D-11 2.94 1 164
2 -1.9537280D+02 -3.48D-04 2.20D+02 -4.40D-01 331 1.260 -2.1D-26 3.1D-11 2.94 1 164
3 -1.9581283D+02 -2.19D-06 2.17D+02 -2.80D-03 331 1.260 -2.1D-26 3.0D-11 2.94 1 164
4 -1.9581563D+02 -8.87D-11 2.17D+02 -1.14D-07 331 1.260 -2.1D-26 3.0D-11 2.94 1 164

------------------------------------------------------------------------------------------------
E(v= 1,J= 18)= -195.8156 4 Iterations R(M)= 1.260 WF(NBEG)/WF(M)=-2.1D-26

WF(NEND)/WF(M)= 3.0D-11

Solve for v= 2 J= 18 ETRIAL= -2.4929311D+01 INNER= 0 WF(1st) WF(NEND)
ITER ETRIAL F(E) DF(E) D(E) M R(M) /WF(M) /WF(M) R(NEND) NBEG ITP1
------------------------------------------------------------------------------------------------

1 -2.4929311D+01 -1.62D-03 3.08D+02 -1.46D+00 424 1.446 3.0D-26 6.3D-11 4.59 1 158
2 -2.6389747D+01 -5.65D-05 2.74D+02 -5.73D-02 422 1.442 2.8D-26 6.8D-11 4.53 1 158
3 -2.6447084D+01 -7.47D-08 2.73D+02 -7.60D-05 422 1.442 2.8D-26 6.7D-11 4.53 1 158
4 -2.6447160D+01 -1.51D-13 2.73D+02 -1.54D-10 422 1.442 2.8D-26 6.7D-11 4.53 1 158

------------------------------------------------------------------------------------------------
E(v= 2,J= 18)= -26.4472 4 Iterations R(M)= 1.442 WF(NBEG)/WF(M)= 2.8D-26

WF(NEND)/WF(M)= 6.7D-11

Solve for v= 3 J= 18 ETRIAL= 5.5586943D+01 INNER= 0 WF(1st) WF(NEND)
ITER ETRIAL F(E) DF(E) D(E) M R(M) /WF(M) /WF(M) R(NEND) NBEG ITP1
------------------------------------------------------------------------------------------------

1 5.5586943D+01 3.15D-03 2.82D+02 3.11D+00 575 1.748 -1.8D-26 2.4D-01 2.40 1 156
2 5.8698635D+01 -2.80D-04 3.97D+02 -1.96D-01 595 1.788 -2.3D-26 3.8D-01 2.29 1 156
3 5.8502801D+01 -1.00D-05 3.87D+02 -7.20D-03 594 1.786 -2.3D-26 3.7D-01 2.30 1 156
4 5.8495601D+01 -3.37D-07 3.87D+02 -2.42D-04 594 1.786 -2.3D-26 3.7D-01 2.30 1 156
5 5.8495358D+01 -1.12D-08 3.87D+02 -8.06D-06 594 1.786 -2.3D-26 3.7D-01 2.30 1 156
6 5.8495350D+01 -3.74D-10 3.87D+02 -2.68D-07 594 1.786 -2.3D-26 3.7D-01 2.30 1 156

------------------------------------------------------------------------------------------------
E(v= 3,J= 18)= 58.4954 6 Iterations R(M)= 1.786 WF(NBEG)/WF(M)=-2.3D-26

WF(NEND)/WF(M)= 3.7D-01
Lifetime= 5.035D-12(s) Width= 1.054D+00 dG/dv= 41.60 V(max)= 64.01

ALF finds all J= 18 vib. levels below vD= 3.328 estimated by N-D theory
The highest calculated level is E(v= 3) = 58.495350

Solve for v= 0 J= 18 ETRIAL= -4.5616720D+02 INNER= 0 WF(1st) WF(NEND)
ITER ETRIAL F(E) DF(E) D(E) M R(M) /WF(M) /WF(M) R(NEND) NBEG ITP1
------------------------------------------------------------------------------------------------

1 -4.5616720D+02 -4.82D-15 1.70D+02 -7.90D-12 260 1.118 9.9D-27 2.5D-11 2.34 1 177
------------------------------------------------------------------------------------------------

E(v= 0,J= 18)= -456.1672 1 Iterations R(M)= 1.118 WF(NBEG)/WF(M)= 9.9D-27
WF(NEND)/WF(M)= 2.5D-11

Solve for v= 1 J= 18 ETRIAL= -1.9581563D+02 INNER= 0 WF(1st) WF(NEND)
ITER ETRIAL F(E) DF(E) D(E) M R(M) /WF(M) /WF(M) R(NEND) NBEG ITP1
------------------------------------------------------------------------------------------------

1 -1.9581563D+02 -8.87D-11 2.17D+02 -1.14D-07 331 1.260 -2.1D-26 3.0D-11 2.94 1 164
------------------------------------------------------------------------------------------------

E(v= 1,J= 18)= -195.8156 1 Iterations R(M)= 1.260 WF(NBEG)/WF(M)=-2.1D-26



Appendix D: Channel–6 Output File for Case 1 9

WF(NEND)/WF(M)= 3.0D-11

Solve for v= 2 J= 18 ETRIAL= -2.6447160D+01 INNER= 0 WF(1st) WF(NEND)
ITER ETRIAL F(E) DF(E) D(E) M R(M) /WF(M) /WF(M) R(NEND) NBEG ITP1
------------------------------------------------------------------------------------------------

1 -2.6447160D+01 -1.51D-13 2.73D+02 -1.54D-10 422 1.442 2.8D-26 6.7D-11 4.53 1 158
------------------------------------------------------------------------------------------------

E(v= 2,J= 18)= -26.4472 1 Iterations R(M)= 1.442 WF(NBEG)/WF(M)= 2.8D-26
WF(NEND)/WF(M)= 6.7D-11

Solve for v= 3 J= 18 ETRIAL= 5.8495350D+01 INNER= 0 WF(1st) WF(NEND)
ITER ETRIAL F(E) DF(E) D(E) M R(M) /WF(M) /WF(M) R(NEND) NBEG ITP1
------------------------------------------------------------------------------------------------

1 5.8495350D+01 -3.74D-10 3.87D+02 -2.68D-07 594 1.786 -2.3D-26 3.7D-01 2.30 1 156
------------------------------------------------------------------------------------------------

E(v= 3,J= 18)= 58.4954 1 Iterations R(M)= 1.786 WF(NBEG)/WF(M)=-2.3D-26
WF(NEND)/WF(M)= 3.7D-01

Lifetime= 5.035D-12(s) Width= 1.054D+00 dG/dv= 41.60 V(max)= 64.01

Find 4 Potential-1 vibrational levels with J= 18
v E(v) v E(v) v E(v) v E(v)

-------------- -------------- -------------- --------------
0 -456.1672 1 -195.8156 2 -26.4472 3 58.4954

===============================================================================

Case 1.e: X-state {109}AgD using EMO3(7,7) potential [JCP 123, 204304(2005)]
================================================================================
Generate ZMU= 1.97752904167(u) & BZ= 1.173076604D-01((1/cm-1)(1/Ang**2))

from atomic masses: 108.90475200000 & 2.01410177780(u)
Integrate from RMIN= 0.800 to RMAX= 9.00 with mesh RH= 0.001000(Angst)

Potential #1 for Ag(109)- D( 2)
================================
State has OMEGA= 0 and energy asymptote: Y(lim)= 19250.0000(cm-1)

BOB adiabatic potential correction for atom-2 of mass 2.01410177780
consists of mass factor [1- MASS( 1 H)/MASS( 2 H)] multiplying all of:

u2INF= 0.000000 times y3= [(r**3 - Re**3)/(r**3 + Re**3)]
plus [1 - y3] times an order 3 polynomial in

y3=[(r**3 - Re**3)/(r**3 + Re**3)] with the 4 coefficients:
0.000000000E+00 11.7500000 17.5600000 -12.7000000

BOB centrifugal correction for atom-2 of mass 2.01410177780
consists of mass factor [MASS( 1 H)/MASS( 2 H)] multiplying all of:

q2INF= 0.000000 times y3= [(r**3 - Re**3)/(r**3 + Re**3)]
plus [1 - y3] times an order 2 polynomial in y3 with the 3 coefficients:
0.000000000E+00 0.150000000E-03 0.930000000E-03

Potential is an EMO_3 with De= 19250.0000 Re= 1.617916200
Exponent factor is order- 7 power series in y=(r**3 - Re**3)/(r**3 + Re**3)
with 8 coefficients: 1.543580950D+00 3.738600000D-02 1.664240000D-01

9.803000000D-02 1.708900000D-01 6.020000000D-02 1.400000000D-01
2.240000000D-01

----------------------------------------------------------------------------

Calculate properties of the single potential described above
Potential-1 uses inner boundary condition of zero value at RMIN

Eigenvalue convergence criterion is EPS= 1.0D-06(cm-1)
Airy function at 3-rd turning point is quasibound outer boundary condition

State-1 electronic angular momentum OMEGA= 0
yields centrifugal potential [J*(J+1) - 0.00]/r**2

For J= 0, try to find the first 25 vibrational levels of Potential-1
E(v= 0, J= 0)= 621.527 Bv= 3.2205459 -Dv= -8.7936D-05 Hv= 1.3523D-09

Lv= -3.8730D-14 Mv= 2.8933D-19 Nv= -2.8833D-23 Ov= -1.2833D-27
E(v= 1, J= 0)= 1837.802 Bv= 3.1483027 -Dv= -8.7227D-05 Hv= 1.2955D-09

Lv= -3.9617D-14 Mv= 8.9664D-20 Nv= -3.7762D-23 Ov= -1.4750D-27

..... omit results for v= 2-22 ...............................................

E(v= 23, J= 0)= 18975.036 Bv= 1.0378809 -Dv= -2.7179D-04 Hv= -9.5322D-08
Lv= -7.6990D-11 Mv= -8.2964D-14 Nv= -1.0641D-16 Ov= -1.5297D-19

E(v= 24, J= 0)= 19156.482 Bv= 0.7945156 -Dv= -4.1659D-04 Hv= -3.2127D-07
Lv= -5.8062D-10 Mv= -1.4623D-12 Nv= -4.4539D-15 Ov= -1.5359D-17

Find 25 Potential-1 vibrational levels with J= 0
v E(v) v E(v) v E(v) v E(v)

-------------- -------------- -------------- --------------
0 621.5267 7 8412.7004 14 14454.0900 21 18377.7702
1 1837.8022 8 9386.7439 15 15159.4225 22 18712.4681
2 3019.7070 9 10325.0747 16 15820.8804 23 18975.0358
3 4167.2795 10 11227.0834 17 16436.2800 24 19156.4822
4 5280.4968 11 12092.0119 18 17003.0435
5 6359.2672 12 12918.9344 19 17518.1136
6 7403.4212 13 13706.7366 20 17977.8324

An n=99 N-D theory extrapolation from last 2 levels implies vD = 25.437
with the 1 missing level(s) predicted to be:
v E(v) v E(v) v E(v) v E(v)

-------------- -------------- -------------- --------------
25 19241.7789

===============================================================================
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E. Input file for Case 2

Note that entries after the “ % ” sign on each line of the input data file are comments identifying the variables, and
are ignored by the program.

7 14 7 14 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 2.a: MLR4(5,8) potential for {14,14}N2(X) from JCP 125, 164310 (2006)’
0.0002 0.6 99. 1.d-08 % RH RMIN RMAX EPS
-1 00 0 0.d0 % NTP LPPOT IOMEG VLIM
4 4 6 2 9 1 79845.d0 1.097679d0 % IPOTL MPAR NSR NCMM NVARB IBOB DSCM REQ
6 1.160d+05 8 6.38d+05 % MMLR(i) CMM(i) for i=1,2

-2.34414547D+00 -9.724690D-01 -1.561777D+00 -1.1360D+00 -1.3963D+00
-8.19D-01 -4.5D-01 -3.36D+00 2.1D+00 % PARM(i)
14 14 6 6 1 1 6 -1 -1 % MN1R MN2R PAD MAD NU1 NU2 PNA NT1 NT2
0.d0 0.d0 -14.1d0 % U1INF U1(i)
0.d0 0.d0 -14.1d0 % U2INF U2(i)
-20 1 2 0 0 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(i) IJ(i)

37 85 37 85 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 2.b: Seto et al. [JCP 113, 3067 (2000)] MLJ3(14,14) potential for Rb2(X)’
0.0010 2.6 99. 1.d-8 % RH RMIN RMAX EPS
-1 00 0 3993.53d0 % NTP LPPOT IOMEG VLIM

4 -1 14 1 18 0 3993.53d0 4.209951249d0 % IPOTL MPAR NSR NCMM NVARB IBOB DSCM REQ
6 2.261d+07 % MMLR(1) CMM(1)

-5.8905396d0 1.2123488d1 1.4375360d1 3.2361700d1 7.3117000d1 -4.0307000d2
1.6591600d3 -9.6104000d3 -7.3975000d4 4.5020000d5 3.1900000d5 -7.0460000d6
1.9519000d7 -2.2980000d7 1.0300000d7
1.4d0 13.7d0 0.d0 % \phi(i){i=0,14} & Asw Rsw Rinn

-999 1 2 0 0 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(i) IJ(i)

1 1 9 19 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 2.c: Coxon-Hajigeorgiou MLJ1(15,15) potl for HF(X) [JPC A110, 6261(2006)]’
0.0010 0.3 10. 1.d-8 % RH RMIN RMAX EPS
-1 00 0 0.0 49361.6d0 % NTP LPPOT IOMEG VLIM
4 0 15 1 19 1 49361.6d0

0.916838964172d0 % IPOTL MPAR NSR NCMM NVARB IBOB DSCM REQ
6 37425.d+0 % MMLR(i) CMM(i) for i=1

-3.96723772059d0 0.7963341064d0 0.161009057d0 0.55528385d0 0.3846146d0
0.6309591d0 0.050499d0 -3.689526d0 9.18380d0 16.05901d0
-79.79459d0 53.5575d0 165.63607d0 -354.0128d0 262.6046d0 -70.11957d0
3.7d0 3.0d0 0.58d0 % \phi(i)’s Asw Rsw R{inner}

1 19 0 0 9 -1 1 6 3 % MN1R MN2R PAD MAD NU1 NU2 PNA NT1 NT2
49996.03436d0 0.d0 1.1840711d5 -2.870925d5 3.68864d5 -1.20288d5 -0.50663d5
-12.8253d5 55.5406d5 -73.7058d5 31.2377d5 8.0d0 2.5d0 % u{H}
0.d0 0.d0 -0.111718d0 -0.718557d0 0.064555d0 -0.24251d0

-0.080841d0 -0.145375d0 3.0d0 4.5d0 % q{H}
0.d0 0.d0 -4.01777d0 9.33428d0 -5.46394d0 3.0d0 4.5d0 % q{F}

-99 1 2 0 0 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(i) IJ(i)

3 7 3 7 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 2.d: Huang/Le Roy [JCP 119, 7398 (2003)] DELR potential for Li2(B)’
0.0025 1.5 70. 1.d-8 % RH RMIN RMAX EPS

-1 00 1 0.d0 14903.983468d0 2984.444d0 % NTP LPPOT IOMEG VLIM
5 3 5 4 12 1 2984.444d0 2.93617142d0 % IPOTL MPAR NSR NCMM NVARB IBOB DSCM REQ
3 1.788d5 6 -6.97586d6 8 -1.378d8 10 -3.445d9 % MMCM(j) CMM(j)
0.970911966d0 0.2075358d0 0.1751542d0 0.188843d0 0.15648d0 0.252d0

-2.185d0 6.91598d0 -9.6903477d0 4.7186d0
0.4647d0 -1.d0 % \phi(i)’s , RHOd & PARM_4_IDF

7 7 3 3 1 1 3 -1 -1 % MN1R MN2R PAD MAD NU1 NU2 PNA NT1 NT2
1.05578d0 0.7478d0 -0.472d0 % U1INF U1(0) U1(1)
1.05578d0 0.7478d0 -0.472d0 % U1INF U1(0) U1(1)

-99 1 2 0 0 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(i) IJ(i)

10 20 36 84 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 2.e: Aziz HFD-B(6,8,10,12) for {20}Ne{84}Kr [JCP 91, 6348 (1989)]’
0.010 2.0 99. 1.d-08 % RH RMIN RMAX EPS
-1 00 0 49.75d0 % NTP LPPOT IOMEG VLIM
6 0 0 4 5 0 49.75d0 3.621d0 % IPOTL MPAR NSR NCMM NVARB IBOB DSCM REQ
6 1.16162375d0 8 0.39191564d0

10 0.35284381d0 12 0.29724436d0 % MMLR(i) CMM(i) for i=1,2
1.d0 0.9365d0 2.d0 0.71720676d0 0.d0 % alpha_i (i=1-3) beta2 gamma
-99 1 2 0 0 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(i) IJ(i)

20 40 20 40 0 1 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 2.f: "Tiemann-type" potential for Ca2(X) [Phys.Rev. A66, 042503(2002)’
0.0005 3.0 99. 1.d-08 % RH RMIN RMAX EPS
-1 0 0 1102.096077d0 % NTP LPPOT IOMEG VLIM
7 0 0 2 24 0 1102.096077d0 4.277277d0 % IPOTL MPAR NSR NCMM NVARB IBOB DSCM REQ
6 -1.074d7 8 -2.4505d8 % MMLR(j) CMM(j) j=1,NCMM
0.00042747d0

-0.254083092764773077d01 0.379611002601149221d04 0.382070302022495241d03
-0.274390396954679318d04 -0.322736334190800926d04 0.363113805693018548d03
0.634370542189755270d04 -0.740151835960846893d04 -0.190738913003729067d05
0.542347392433017594d05 0.440392304373011066d05 -0.155387944954526116d06

-0.836628381353236182d05 0.213831067083156871d06 0.155922449222826835d06
-0.156260872999483137d06 -0.146711120959219668d06 0.277542999772230869d05
0.712908015579339117d05 -0.126115550408998979d04

-0.5929d0 3.66d0 10.d0 % b R{inn} R{out}
-99 1 2 0 0 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(i) IJ(i)
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F. Input file for Case 3

Note that entries after the “ % ” sign on each line of the input data file are comments identifying the variables, and
are ignored by the program.

35 79 35 79 0 2 % IAN1 IMN1 IAN2 IMN2 CHARGE NUMPOT
’Case 3: Predict emission for B-X Br2 based on Gerstenkorn (1987) constants’
0.0015 1.85 15.0 1.d-4 % RH RMIN RMAX EPS
123 0 0 19742.072d0 % NTP LPPOT OMEGA VLIM
10 0 4 5 1.8D+05 % NUSE IR2 ILR NCN CNN
1.D0 1.D0 15902.4802d0 % RFACT EFACT VSHIFT & B-state turning points
2.32483352887883 3834.348717 2.32492725139916 3831.646866
2.32505070817846 3828.090070 2.32520875281731 3823.540508
2.32540641247184 3817.856430 2.32564885907544 3810.893306
.................................................................
.......... skip 56 lines listing 112 more turning points ........
.................................................................
6.87678817820732 3817.856430 7.25492791418183 3823.540508
7.69918940093639 3828.090070 8.22965127226713 3831.646866
8.87579778305112 3834.348717

47 0 0 16056.926D0 % NTP2 LPPOT2 OMEGA2 VLIM2
10 0 0 6 0.D0 % NUSE2 IR22 ILR2 NCN2 CNN2
1.D0 1.D0 0.d0 % RFACT EFACT VSHIFT2
2.05649830399176 4483.356304 2.06283295581950 4189.629584
2.06951602200031 3893.539190 2.07659093472317 3595.104297
2.08411094486653 3294.343327 2.09214251282019 2991.273984
.................................................................
.......... skip 18 lines listing 36 more turning points .........
.................................................................
2.56851940726203 3294.343327 2.58514008764203 3595.104297
2.60140908192717 3893.539190 2.61738272682198 4189.629584
2.63310768612594 4483.356304

-40 1 0 -4 130 1 -1 0 % NLEV1 AUTO1 LCDC LXPCT NJM JDJR IWR LPRWF
0 0 % IV(1) IJ(1)
1 0 1.D0 % MORDR IRFN RREF

-0.219 0.265 % DM(0) DM(1)
15 1 -1 +1 2 % NLEV2 AUTO2 J2DL J2DU J2DD
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 % {IV2(i)}

G. Channel–6 Output file for Case 3

Case 3: Predict emission for B-X Br2 based on Gerstenkorn (1987) constants
================================================================================
Generate ZMU= 39.45916855000(u) & BZ= 2.340730602D+00((1/cm-1)(1/Ang**2))

from atomic masses: 78.91833710000 & 78.91833710000(u)
Integrate from RMIN= 1.850 to RMAX= 15.00 with mesh RH= 0.001500(Angst)

Potential #1 for Br( 79)-Br( 79)
================================
State has OMEGA= 0 and energy asymptote: Y(lim)= 19742.0720(cm-1)
Perform 10-point piecewise polynomial interpolation over 123 input points
Beyond read-in points extrapolate to limiting asymptotic behaviour:

Y(r) = Y(lim) - ( 0.1800000D+06)/r** 5
To make input points Y(i) consistent with Y(lim), add Y(shift)= 15902.4802
Scale input points: (distance)* 1.000000000D+00 & (energy)* 1.000000000D+00

to get required internal units [Angstroms & cm-1 for potentials]
R(i) Y(i) R(i) Y(i) R(i) Y(i)

---------------------- ---------------------- ----------------------
2.32483353 3834.3487 2.42191370 1696.7527 3.22507343 1821.0440
2.32492725 3831.6469 2.43001839 1568.5519 3.26089292 1941.3789

..........................................................................

.................. skip 37 lines of the turning point listing ............

..........................................................................
2.40751394 1941.3789 3.15509529 1568.5519 8.22965127 3831.6469
2.41443578 1821.0440 3.18985642 1696.7527 8.87579778 3834.3487

----------------------------------------------------------------------------
Extrapolate to X .le. 2.3249 with

Y= 14763.263 +3.552602D+09 * exp(-5.797858D+00*X)
Function for X .GE. 8.230 generated by 4-point inverse-power interpolation

with leading term 1/r**5 relative to dissociation limit YLIM= 19742.072
and (dimensionless) leading coefficient fixed as C5= 180000.00

----------------------------------------------------------------------------

Get matrix elements between levels of Potential-1 (above) & Potential-2 (below)
------------------------------------------------------------------------------
For Potential #2:
=================
State has OMEGA= 0 and energy asymptote: Y(lim)= 16056.9260(cm-1)
Perform 10-point piecewise polynomial interpolation over 47 input points
To make input points Y(i) consistent with Y(lim), add Y(shift)= 0.0000
Scale input points: (distance)* 1.000000000D+00 & (energy)* 1.000000000D+00

to get required internal units [Angstroms & cm-1 for potentials]
R(i) Y(i) R(i) Y(i) R(i) Y(i)

---------------------- ---------------------- ----------------------
2.05649830 4483.3563 2.18626063 646.2909 2.42013527 966.1727
2.06283296 4189.6296 2.19810575 485.5309 2.43259119 1125.2912
2.06951602 3893.5392 2.21248391 324.2269 2.44438269 1283.8592
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2.07659093 3595.1043 2.22316187 227.1840 2.45563605 1441.8751
2.08411094 3294.3433 2.23177061 162.3804 2.46644318 1599.3372
2.09214251 2991.2740 2.24253421 97.4903 2.47687343 1756.2436
2.10077036 2685.9133 2.25851483 32.5137 2.49680783 2068.3827
2.11010533 2378.2776 2.28102606 0.0000 2.51575473 2378.2776
2.12029713 2068.3827 2.30436129 32.5137 2.53392724 2685.9133
2.13155647 1756.2436 2.32199230 97.4903 2.55147764 2991.2740
2.13767849 1599.3372 2.33440900 162.3804 2.56851941 3294.3433
2.14419655 1441.8751 2.34467357 227.1840 2.58514009 3595.1043
2.15117974 1283.8592 2.35784040 324.2269 2.60140908 3893.5392
2.15871971 1125.2912 2.37638051 485.5309 2.61738273 4189.6296
2.16694249 966.1727 2.39240504 646.2909 2.63310769 4483.3563
2.17602973 806.5054 2.40683303 806.5054

----------------------------------------------------------------------------
Extrapolate to X .le. 2.0628 with

Y= -2292.367 +1.200354D+10 * exp(-6.996051D+00*X)
Function for X .GE. 2.6174 generated as

Y= 16056.9260 - ( 1.657906D+06) * r** 22.046446 * exp{-( 9.991684*r)}
----------------------------------------------------------------------------
Potential-1 uses inner boundary condition of zero value at RMIN

Eigenvalue convergence criterion is EPS= 1.0D-04(cm-1)
Airy function at 3-rd turning point is quasibound outer boundary condition

State-1 electronic angular momentum OMEGA= 0
yields centrifugal potential [J*(J+1) - 0.00]/r**2

For J= 0, try to find the first 41 vibrational levels of Potential-1
and automatically increment J in steps of 1 to a maximum value of 130

Matrix element arguments are powers of the distance r (in Angstroms)
Coefficients of expansion for radial matrix element/expectation value argument:

-2.190000D-01 2.650000D-01
Potential-2 uses inner boundary condition of zero value at RMIN

Using the rotational selection rule: delta(J)= -1 to 1 with increment 2
calculate matrix elements for coupling to the 15 vibrational levels of
Potential-2: v = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

14

State-2 electronic angular momentum OMEGA= 0
yields centrifugal potential [J*(J+1) - 0.00]/r**2

-------------------------------------------------------------------------------

For vibrational level v = 0 of Potential-1
J E J E J E J E J E

-------------- -------------- -------------- -------------- --------------
0 15985.810 27 16030.648 54 16161.756 81 16378.536 108 16679.981
1 15985.929 28 16033.967 55 16168.262 82 16388.199 109 16692.754
2 15986.166 29 16037.406 56 16174.885 83 16397.977 110 16705.642
3 15986.522 30 16040.962 57 16181.627 84 16407.872 111 16718.643
4 15986.997 31 16044.637 58 16188.485 85 16417.882 112 16731.758
5 15987.590 32 16048.430 59 16195.461 86 16428.009 113 16744.987
6 15988.302 33 16052.342 60 16202.554 87 16438.251 114 16758.330
7 15989.132 34 16056.372 61 16209.765 88 16448.609 115 16771.787
8 15990.082 35 16060.520 62 16217.093 89 16459.083 116 16785.357
9 15991.150 36 16064.786 63 16224.538 90 16469.673 117 16799.041

10 15992.336 37 16069.170 64 16232.100 91 16480.378 118 16812.838
11 15993.641 38 16073.673 65 16239.780 92 16491.198 119 16826.749
12 15995.065 39 16078.293 66 16247.576 93 16502.135 120 16840.772
13 15996.607 40 16083.032 67 16255.489 94 16513.186 121 16854.909
14 15998.268 41 16087.889 68 16263.520 95 16524.353 122 16869.159
15 16000.048 42 16092.864 69 16271.667 96 16535.635 123 16883.522
16 16001.946 43 16097.957 70 16279.932 97 16547.032 124 16897.998
17 16003.963 44 16103.167 71 16288.313 98 16558.545 125 16912.586
18 16006.098 45 16108.496 72 16296.810 99 16570.172 126 16927.287
19 16008.352 46 16113.943 73 16305.425 100 16581.914 127 16942.101
20 16010.724 47 16119.507 74 16314.156 101 16593.771 128 16957.027
21 16013.215 48 16125.189 75 16323.004 102 16605.743 129 16972.065
22 16015.824 49 16130.990 76 16331.968 103 16617.830 130 16987.216
23 16018.552 50 16136.907 77 16341.049 104 16630.031
24 16021.398 51 16142.943 78 16350.246 105 16642.347
25 16024.363 52 16149.096 79 16359.560 106 16654.777
26 16027.446 53 16155.367 80 16368.990 107 16667.322

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

..............................................................................

.... skip analogous eigenvalue summaries for vibrational levels v’= 1-33 .....

..............................................................................

*** For J=100 E= 19743.24 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J=100 E= 19743.22 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J=100 E= 19743.22 R(3-rd) beyond range so tunneling calculation uses

pure centrifugal potential with J(app)= 99.17 for R > R(max)= 15.00
*** For J=101 E= 19748.69 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J=101 E= 19748.67 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J=101 E= 19748.67 R(3-rd) beyond range so tunneling calculation uses

pure centrifugal potential with J(app)= 100.17 for R > R(max)= 15.00
*** For J=102 E= 19754.16 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J=102 E= 19754.15 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J=102 E= 19754.15 R(3-rd) beyond range so tunneling calculation uses

pure centrifugal potential with J(app)= 101.18 for R > R(max)= 15.00
*** For J=103 E= 19759.66 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J=103 E= 19759.65 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J=103 E= 19759.65 R(3-rd) beyond range so tunneling calculation uses

pure centrifugal potential with J(app)= 102.19 for R > R(max)= 15.00
For J=127 ETRY= 19891.7867 > VMAX= 19891.7746 find onee turn point: R= 2.37
*** SCHRQ has a convergence problem, so for IT= 7 cut DE= -3.22D-03 in HALF
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*** SCHRQ has a convergence problem, so for IT= 8 cut DE= 1.80D-03 in HALF
*** SCHRQ has a convergence problem, so for IT=10 cut DE= -3.51D-03 in HALF
*** SCHRQ has a convergence problem, so for IT=12 cut DE= -3.40D-03 in HALF
*** SCHRQ has a convergence problem, so for IT=14 cut DE= -3.39D-03 in HALF
*** CAUTION for v= 34 J=127 SCHRQ doesn’t converge by ITER=15 DE= 1.69D-03
*** SCHRQ has a convergence problem, so for IT= 6 cut DE= -3.22D-03 in HALF
*** SCHRQ has a convergence problem, so for IT= 7 cut DE= 1.80D-03 in HALF
*** SCHRQ has a convergence problem, so for IT= 9 cut DE= -3.51D-03 in HALF
*** SCHRQ has a convergence problem, so for IT=11 cut DE= -3.40D-03 in HALF
*** SCHRQ has a convergence problem, so for IT=13 cut DE= -3.39D-03 in HALF
*** SCHRQ has a convergence problem, so for IT=15 cut DE= -3.39D-03 in HALF
*** CAUTION for v= -1 J=127 SCHRQ doesn’t converge by ITER=15 DE=-1.70D-03

For vibrational level v = 34 of Potential-1
J E J E J E J E J E

-------------- -------------- -------------- -------------- --------------
0 19443.803 26 19466.021 52 19529.969 78 19632.179 104 19765.173
1 19443.867 27 19467.723 53 19533.224 79 19636.793 105 19770.719
2 19443.994 28 19469.486 54 19536.537 80 19641.452 106 19776.284
3 19444.185 29 19471.312 55 19539.905 81 19646.158 107 19781.868
4 19444.439 30 19473.198 56 19543.330 82 19650.908 108 19787.469
5 19444.756 31 19475.147 57 19546.811 83 19655.702 109 19793.083
6 19445.138 32 19477.157 58 19550.347 84 19660.539 110 19798.709
7 19445.582 33 19479.228 59 19553.939 85 19665.420 111 19804.345
8 19446.090 34 19481.360 60 19557.585 86 19670.343 112 19809.988
9 19446.662 35 19483.553 61 19561.286 87 19675.307 113 19815.634

10 19447.297 36 19485.806 62 19565.042 88 19680.311 114 19821.282
11 19447.995 37 19488.120 63 19568.851 89 19685.356 115 19826.927
12 19448.756 38 19490.495 64 19572.714 90 19690.440 116 19832.565
13 19449.581 39 19492.930 65 19576.629 91 19695.561 117 19838.191
14 19450.468 40 19495.425 66 19580.598 92 19700.721 118 19843.802
15 19451.419 41 19497.979 67 19584.619 93 19705.916 119 19849.390
16 19452.433 42 19500.594 68 19588.692 94 19711.148 120 19854.948
17 19453.510 43 19503.267 69 19592.816 95 19716.413 121 19860.467
18 19454.650 44 19506.000 70 19596.992 96 19721.713 122 19865.936
19 19455.852 45 19508.792 71 19601.218 97 19727.044 123 19871.337
20 19457.117 46 19511.643 72 19605.494 98 19732.407 124 19876.643
21 19458.445 47 19514.552 73 19609.820 99 19737.800 125 19881.820
22 19459.836 48 19517.520 74 19614.196 100 19743.222 126 19886.844
23 19461.289 49 19520.546 75 19618.620 101 19748.672
24 19462.804 50 19523.629 76 19623.092 102 19754.148
25 19464.381 51 19526.770 77 19627.612 103 19759.649

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

..............................................................................

.... skip analogous eigenvalue summaries for vibrational levels v’= 35-39 ....

..............................................................................

*** For J= 74 E= 19742.97 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J= 74 E= 19742.96 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J= 74 E= 19742.96 R(3-rd) beyond range so tunneling calculation uses

pure centrifugal potential with J(app)= 72.87 for R > R(max)= 15.00
*** For J= 75 E= 19746.03 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J= 75 E= 19746.02 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J= 75 E= 19746.02 R(3-rd) beyond range so tunneling calculation uses

pure centrifugal potential with J(app)= 73.89 for R > R(max)= 15.00
*** For J= 76 E= 19749.10 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J= 76 E= 19749.09 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J= 76 E= 19749.09 R(3-rd) beyond range so tunneling calculation uses

pure centrifugal potential with J(app)= 74.90 for R > R(max)= 15.00
*** For J= 77 E= 19752.19 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J= 77 E= 19752.18 R(3-rd) > RMAX & E < V(N) so try WKB B.C. @ RMAX
*** For J= 77 E= 19752.18 R(3-rd) beyond range so tunneling calculation uses

pure centrifugal potential with J(app)= 75.92 for R > R(max)= 15.00
For J= 93 ETRY= 19800.6818 > VMAX= 19800.4705 find onee turn point: R= 2.35
For J= 93 ETRY= 19800.6892 > VMAX= 19800.4705 find onee turn point: R= 2.35
For J= 93 ETRY= 19800.6892 > VMAX= 19800.4705 find onee turn point: R= 2.35
For J= 93 ETRY= 19800.6892 > VMAX= 19800.4705 find onee turn point: R= 2.35

For vibrational level v = 40 of Potential-1
J E J E J E J E J E

-------------- -------------- -------------- -------------- --------------
0 19616.873 19 19626.163 38 19652.625 57 19694.708 76 19749.092
1 19616.922 20 19627.136 39 19654.470 58 19697.304 77 19752.181
2 19617.020 21 19628.157 40 19656.358 59 19699.935 78 19755.283
3 19617.168 22 19629.225 41 19658.289 60 19702.600 79 19758.395
4 19617.364 23 19630.341 42 19660.263 61 19705.297 80 19761.516
5 19617.609 24 19631.503 43 19662.279 62 19708.027 81 19764.642
6 19617.904 25 19632.713 44 19664.337 63 19710.788 82 19767.771
7 19618.247 26 19633.970 45 19666.437 64 19713.579 83 19770.899
8 19618.639 27 19635.273 46 19668.577 65 19716.401 84 19774.022
9 19619.081 28 19636.623 47 19670.759 66 19719.250 85 19777.138

10 19619.571 29 19638.019 48 19672.980 67 19722.128 86 19780.239
11 19620.109 30 19639.461 49 19675.242 68 19725.033 87 19783.320
12 19620.697 31 19640.949 50 19677.543 69 19727.963 88 19786.373
13 19621.333 32 19642.482 51 19679.882 70 19730.918 89 19789.385
14 19622.017 33 19644.061 52 19682.260 71 19733.896 90 19792.337
15 19622.750 34 19645.685 53 19684.676 72 19736.896 91 19795.203
16 19623.531 35 19647.353 54 19687.130 73 19739.918 92 19797.968
17 19624.360 36 19649.067 55 19689.620 74 19742.958
18 19625.238 37 19650.824 56 19692.146 75 19746.017

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Find 41 Potential-1 vibrational levels with J= 0
v E(v) v E(v) v E(v) v E(v)

-------------- -------------- -------------- --------------
0 15985.8099 11 17599.2328 22 18743.5516 33 19404.8742
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1 16150.1164 12 17723.5256 23 18822.9413 34 19443.8033
2 16311.0671 13 17843.8623 24 18898.2751 35 19479.6567
3 16468.6043 14 17960.1999 25 18969.6005 36 19512.5503
4 16622.6712 15 18072.4993 26 19036.9760 37 19542.6009
5 16773.2113 16 18180.7267 27 19100.4706 38 19569.9259
6 16920.1678 17 18284.8542 28 19160.1627 39 19594.6434
7 17063.4841 18 18384.8610 29 19216.1394 40 19616.8729
8 17203.1035 19 18480.7338 30 19268.4954
9 17338.9707 20 18572.4682 31 19317.3318

10 17471.0312 21 18660.0691 32 19362.7547

An n= 5 N-D theory extrapolation from last 2 levels implies vD = 59.899
===============================================================================

G. Channel–3 Output file for Case 3

Case 3: Predict emission for B-X Br2 based on Gerstenkorn (1987) constants
============================================================
Note that (v’,J’) & (v",J") strictly label the upper and lower levels, resp.,

and E(lower)=E"
but E(2)-E(1) is: (energy of State-2 level) - (energy of State-1 level)

Band
dJ(J") v’ v" E(lower) E(2)-E(1) A(Einstein) F-C Factor <v’j’|M|v"j">
------ ------- -------- -------- ----------- ----------- -----------
P( 1) 0 - 0 162.54 -15823.27 7.51655D-05 3.26301D-10 7.77793D-06
P( 1) 0 - 1 485.69 -15500.12 1.98479D-03 9.03473D-09 4.12243D-05
P( 1) 0 - 2 806.67 -15179.14 2.56290D-02 1.22429D-07 1.52860D-04
P( 1) 0 - 3 1125.45 -14860.36 2.15688D-01 1.08216D-06 4.57791D-04
P( 1) 0 - 4 1442.03 -14543.78 1.33029D+00 7.01608D-06 1.17424D-03
P( 1) 0 - 5 1756.40 -14229.41 6.41088D+00 3.55737D-05 2.66365D-03
P( 1) 0 - 6 2068.54 -13917.27 2.51331D+01 1.46863D-04 5.45244D-03
P( 1) 0 - 7 2378.43 -13607.38 8.24025D+01 5.07536D-04 1.02119D-02
P( 1) 0 - 8 2686.06 -13299.75 2.30522D+02 1.49801D-03 1.76763D-02
P( 1) 0 - 9 2991.42 -12994.39 5.58667D+02 3.83405D-03 2.84932D-02
P( 1) 0 - 10 3294.49 -12691.32 1.18684D+03 8.61073D-03 4.30264D-02
P( 1) 0 - 11 3595.25 -12390.56 2.23108D+03 1.71302D-02 6.11533D-02
P( 1) 0 - 12 3893.69 -12092.12 3.73965D+03 3.04191D-02 8.21222D-02
P( 1) 0 - 13 4189.78 -11796.03 5.62413D+03 4.85201D-02 1.04526D-01
P( 1) 0 - 14 4483.52 -11502.29 7.62833D+03 6.98793D-02 1.26426D-01
R( 0) 0 - 0 162.38 -15823.55 2.50467D-05 3.26174D-10 7.77641D-06
P( 2) 0 - 0 162.87 -15823.06 5.01114D-05 3.26320D-10 7.77817D-06
R( 0) 0 - 1 485.53 -15500.40 6.61386D-04 9.03137D-09 4.12166D-05
P( 2) 0 - 1 486.02 -15499.91 1.32322D-03 9.03524D-09 4.12255D-05
R( 0) 0 - 2 806.50 -15179.43 8.54047D-03 1.22386D-07 1.52833D-04
P( 2) 0 - 2 806.99 -15178.94 1.70863D-02 1.22436D-07 1.52864D-04
R( 0) 0 - 3 1125.29 -14860.64 7.18760D-02 1.08180D-06 4.57715D-04
P( 2) 0 - 3 1125.77 -14860.15 1.43794D-01 1.08221D-06 4.57804D-04
R( 0) 0 - 4 1441.87 -14544.06 4.43318D-01 7.01388D-06 1.17406D-03
P( 2) 0 - 4 1442.36 -14543.57 8.86871D-01 7.01642D-06 1.17427D-03
R( 0) 0 - 5 1756.24 -14229.69 2.13646D+00 3.55633D-05 2.66326D-03
P( 2) 0 - 5 1756.72 -14229.21 4.27395D+00 3.55753D-05 2.66372D-03
R( 0) 0 - 6 2068.38 -13917.55 8.37592D+00 1.46823D-04 5.45170D-03
P( 2) 0 - 6 2068.86 -13917.07 1.67555D+01 1.46870D-04 5.45257D-03
R( 0) 0 - 7 2378.27 -13607.66 2.74622D+01 5.07408D-04 1.02106D-02
..............................................................................
............. Omit 156070 intermediate lines froim this listing ..............
..............................................................................
P( 92) 40 - 12 4558.90 -15236.31 6.64841D+01 6.27579D-04 1.09187D-02
R( 90) 40 - 13 4823.74 -14971.46 6.84556D+00 6.84007D-05 3.61670D-03
P( 92) 40 - 13 4852.01 -14943.19 6.11369D+00 6.07875D-05 3.40892D-03
R( 90) 40 - 14 5114.60 -14680.60 3.70554D+01 3.84150D-04 -8.66590D-03
P( 92) 40 - 14 5142.74 -14652.46 3.84472D+01 3.96498D-04 -8.80435D-03
R( 91) 40 - 0 846.98 -18950.99 8.39767D+01 4.87753D-04 8.89452D-03
P( 93) 40 - 0 877.16 -18920.80 8.52871D+01 4.92358D-04 8.93667D-03
R( 91) 40 - 1 1167.42 -18630.54 2.10874D+02 1.27296D-03 1.44598D-02
P( 93) 40 - 1 1197.49 -18600.48 2.12678D+02 1.27614D-03 1.44783D-02
R( 91) 40 - 2 1485.68 -18312.29 1.08096D+02 6.78836D-04 1.06238D-02
P( 93) 40 - 2 1515.63 -18282.34 1.07380D+02 6.70336D-04 1.05574D-02
R( 91) 40 - 3 1801.73 -17996.24 2.39523D+00 1.54965D-05 -1.62327D-03
P( 93) 40 - 3 1831.56 -17966.41 2.76649D+00 1.78031D-05 -1.73947D-03
R( 91) 40 - 4 2115.57 -17682.40 1.03528D+02 7.02541D-04 -1.09574D-02
P( 93) 40 - 4 2145.27 -17652.70 1.04870D+02 7.07512D-04 -1.09965D-02
R( 91) 40 - 5 2427.17 -17370.80 4.55941D+01 3.22713D-04 -7.46819D-03
P( 93) 40 - 5 2456.75 -17341.21 4.45962D+01 3.13842D-04 -7.36500D-03
R( 91) 40 - 6 2736.53 -17061.44 1.63941D+01 1.20264D-04 4.60057D-03
P( 93) 40 - 6 2765.99 -17031.98 1.74563D+01 1.27340D-04 4.73392D-03
R( 91) 40 - 7 3043.63 -16754.34 8.11570D+01 6.22525D-04 1.05187D-02
P( 93) 40 - 7 3072.96 -16725.00 8.14359D+01 6.21159D-04 1.05076D-02
R( 91) 40 - 8 3348.45 -16449.52 6.05804D+00 4.87387D-05 2.95411D-03
P( 93) 40 - 8 3377.66 -16420.31 5.45703D+00 4.36755D-05 2.79608D-03
R( 91) 40 - 9 3650.98 -16146.99 4.46439D+01 3.71936D-04 -8.24583D-03
P( 93) 40 - 9 3680.06 -16117.91 4.60071D+01 3.81203D-04 -8.34820D-03
R( 91) 40 - 10 3951.19 -15846.78 4.35551D+01 3.79843D-04 -8.37720D-03
P( 93) 40 - 10 3980.15 -15817.82 4.27258D+01 3.70610D-04 -8.27501D-03
R( 91) 40 - 11 4249.08 -15548.89 4.25959D+00 3.84497D-05 2.69541D-03
P( 93) 40 - 11 4277.91 -15520.06 4.87948D+00 4.38321D-05 2.87733D-03
R( 91) 40 - 12 4544.62 -15253.35 5.56357D+01 5.28869D-04 1.00258D-02
P( 93) 40 - 12 4573.32 -15224.64 5.60365D+01 5.29892D-04 1.00359D-02
R( 91) 40 - 13 4837.80 -14960.17 6.82654D+00 6.82839D-05 3.61565D-03
P( 93) 40 - 13 4866.37 -14931.60 6.15591D+00 6.12800D-05 3.42476D-03
R( 91) 40 - 14 5128.60 -14669.37 2.97279D+01 3.08674D-04 -7.77062D-03
P( 93) 40 - 14 5157.04 -14640.93 3.09159D+01 3.19393D-04 -7.90463D-03


