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Abstract __ The level crossing rate (LCR) of a random process conveys useful information about the 

underlying process, and is of interest in diverse engineering fields. In wireless communications, it is 

related to the system characteristics such as handoff, outage probability, fading rate, average duration 

of fades, velocity (or maximum Doppler shift) of the mobile, and the effect of diversity on fading. The 

LCR formula was originally derived by Rice in terms of the joint probability density function (PDF) of 

the underlying process and its time derivative. In this paper we express the LCR in terms of the joint 

characteristic function (CF). This new formula is useful for many cases where the joint CF is simpler 

to derive than the associated joint PDF. As an application and for a DS-CDMA system, the fading rate 

at the output of a RAKE receiver with either maximal ratio combiner or postdetection equal gain 

combiner, operating over a frequency-selective fading channel with different path statistics, is easily 

calculated using the new CF-based LCR formula. 
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I. INTRODUCTION 

Wireless communications systems are subject to the fading, and diversity-based techniques are 

powerful tools for mitigating the impact of fading [1]. The basic idea of all diversity methods is to 

combine several independent copies of the signal at the receiver. Application of multiple antennas at 

the receiver is an efficient and common diversity reception. Utilization of the RAKE receiver for 

wideband systems (which are impaired by frequency-selective fading) is another type of diversity 

reception [1]. In the real world, the paths over which the signal has propagated are not independent and 

identically distributed (i.i.d.) [2] [3] [4] [5]. So, the replicas of the transmitted signal at the receiver 

have different fading distributions, and are mutually correlated. Direct sequence-code division multiple 

access (DS-CDMA) systems operating over frequency-selective fading channels, are typical examples 

where we encounter non-i.i.d. fading among the paths. 

Fading rate in a diversity system, defined as the level crossing rate (LCR) of the total 

instantaneous signal-to-noise ratio (SNR) per symbol at the output of the diversity combiner, is a 

useful measure for evaluating the dynamic performance of that diversity system. The common 

approach for calculating the LCR of a random process is to employ Rice’s formula, which expresses 

the LCR in terms of the joint probability density function (PDF) of the process and its derivative. 

However, for diversity systems operating over non-i.i.d. fading channels, it is very hard, if not 

impossible, to derive an expression for the joint PDF of instantaneous SNR and its derivative at the 

output of the diversity combiner. On the other hand, for cases of interest such as Rayleigh and Rice 

fading channels, the associated joint characteristic function (CF) can be derived in closed form. 

Therefore, Rice’s LCR formula for a random process should be rewritten in terms of the joint CF of the 

process and its derivative. In what follows, such a formula has been derived for an arbitrary random 

process and its utility has been demonstrated by calculating the fading rate at the output of a DS-

CDMA RAKE receiver with either maximal ratio combining (MRC) or postdetection equal gain 

combining (EGC), operating over a Rice-Rayleigh frequency-selective fading channel. 

II. THE LCR FORMULA IN TERMS OF THE CHARACTERISTIC FUNCTION 

For a given level � , and according to the celebrated Rice’s formula, the LCR of a stationary 

random process )(tY  is given by [6]: 

{ } ydypytYNE YY ′′′= ′

∞

∞−� ),(])([ �
�

, (1) 

where E is the mathematical expectation, { })(tYN
�

 represents the number of times, per unit time, 
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where �=)(tY , prime denotes differentiation with respect to time t, and ),( yyp YY ′′  is the joint PDF of 

the random variables )( 0tYY =  and )( 0tYY ′=′ , with 0t  as an arbitrary instant of time. Now we want 

to express { }])([ tYNE
�

 in terms of )][exp(),( 2121 YjYjEYY ′ω+ω=ωωΦ ′ , the joint CF of Y  and Y′ , 

rather than ),( yyp YY ′′  (note that 12 −=j ). Using the generalized Parseval’s theorem for the right-hand 

side of (1), noting that )sgn( yyy ′′=′  with sgn(.)  as the signum function, we obtain: 

{ } ��
∞

∞−

∗
′

∞

∞−

∗
′ ω′ℑ′′ℑ

π
=ω′′ℑ′ℑ

π
= 22 )]},([)]{sgn([

2

1
)]},([)]{[sgn(

2

1
])([ dypyydypyytYNE YYYY ��

�
, 

where [.]ℑ  is the Fourier transform and ∗  is the complex conjugate operator. Based on: 

11
2 1 2 1[sgn( )] 2 ( ), [ ( , )] (2 ) ( , ) j

YY YYy j p y e d
∞ ω−

′ ′−∞
′ ′ℑ = ω ℑ = π Φ −ω −ω ω�

�
� , 

and the properties of the Fourier transform we finally obtain: 

{ } 1 11 2 1 2 1
1 2 1 22 2 2

2 2 2

( , ) ( , ) ( )1 1 1
[ ( ) ] .

2 2
YY YY Yj jd

E N Y t e d d e d d
d
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′ ′− ω − ω

−∞ −∞ −∞ −∞

Φ ω ω Φ ω ω − Φ ω− −= ω ω = ω ω
π ω ω π ω� � � �� �

�

 (2) 

For cases where the derivation of ),( 21 ωωΦ ′YY  is easier than ),( yyp YY ′′ , (2) plays an important 

role. An example of such a case is reported in [7], where an exact and simple solution for the expected 

number of maxima of the envelope of a spherically invariant random process is derived. Based on that 

simple solution, which could not be obtained using Rice’s LCR formula in (1), a new velocity 

estimator for cellular systems, which is robust against the variations of SNR and channel 

characteristics, is proposed in [8]. In the sequel, we will see how equation (2) allows us to solve an 

LCR problem which seems to be intractable using Rice’s formula given in (1). 

III. FADING RATE AT THE OUTPUT OF MRC AND POSTDETECTION EGC 

Assume that the diversity combiner has Q branches (Q fingers in the RAKE receiver). In the 

presence of additive white Gaussian noise, which is independent of fading, the instantaneous SNR per 

symbol of the qth branch is given by 2
0( ) ( ) ( )q qt R t N Bγ = . In this formula ( )qR t  is the signal 

envelope of the qth branch with the average power 2[ ( )]q qE R tΩ = , 0N  is the one-sided power spectral 

density of the noise, and B is the bandwidth of the receive filter in each branch. Clearly, the average 

SNR per symbol of the qth branch can be written as 0( )q q N Bγ = Ω . The total instantaneous SNR per 

symbol at the output of both MRC and postdetection EGC is given by [1]: 

� =
γ=γ Q

q q tt
1

)()( . (3) 

The total average SNR per symbol at the output of the combiners can be written as 
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01 1 ( )Q Q
q qq q N Bγ γ= == = Ω� � . From now on, let us assume 0 1N B = , to simplify the notation without 

loss of generality. We define 
th

FRγ , the fading rate with respect to the given threshold thγ  at the output 

of the diversity combiner, as the thγ -crossing rate of )(tγ , i.e. { }])([ tNEFR
thth

γγγ = . 

In this paper we assume that separate resolvable propagation paths are independent. However, the 

paths can be distributed according to a common fading distribution with different parameter values [9], 

or even different families of fading distributions [10]. Note that such a general setting is not just of 

theoretical interest, because wideband measurements of frequency-selective fading channels have 

shown non-identically distributed paths [2] [3] [4] [5]. In this paper, we consider a diversity combiner, 

with the first 1Q  branches having a Rice-distributed envelope and the second 12 QQQ −=  branches 

having a Rayleigh-distributed envelope. This model corresponds to a typical frequency-selective 

fading channel in a mixed urban-suburban region [3]. 

In order to calculate { }[ ( ) ]
th

E N tγ γ  using (2), we first derive an expression for ),( 21 ωωΦ γ′γ qq
, 

assuming ( ) ( )q qR t tγ=  has a Rice distribution [1]: 
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where (.)0I  is the modified Bessel function of order zero, and qa  and 0,qb  are nonnegative numbers 

described in the sequel. Based on the inphase and quadrature representation for )(tRq  we have 

)()()( 22 tVtUtR qqq += , where )(tU q  is a Gaussian process with mean qa  and variance 0,qb , while 

)(tVq  is a zero-mean Gaussian process with the same variance 0,qb , independent of )(tU q . Therefore: 

2 2
1 2 1 2 1 2( , ) [exp( )] [exp{ ( ) 2 ( )} ]

q q q q q q q q q qE j j E j U V j U U V Vγ γ ω ω ω γ ω γ ω ω′ ′ ′ ′Φ = + = + + + . (5) 

Let us define the following vectors and matrices: 

T
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T
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, (6) 

with T as the transpose operator. Since differentiation is a linear operation, the processes ( )qU t′  and 

( )qV t′  are also Gaussian, with zero mean and the same variance ,2qb . So, qW  is a Gaussian vector with 

the mean-vector and the covariance-matrix given in (6). Let us also define the lowpass equivalent 

complex envelope of the qth branch as )](exp[)()( tjtRt qqq Θ=ℜ , where ])()([tan)( 1 tUtVt qqq
−=Θ  is 
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the signal phase of the qth branch. We represent the autocovariance function of )(tqℜ  by )(τφ ℜℜ qq
, 

and the associated power spectrum by the Fourier transform ( ) [ ( )]
q q q q

S f φ τℜ ℜ ℜ ℜ= ℑ . The parameter 

nqb , , 0, 1, 2n =  in (6) is the nth spectral moment of ( )q tℜ , defined by [6]: 

, (2 ) ( )
q q

n n
q nb f S f dfπ

∞

ℜ ℜ−∞
= � . 

Using the properties of the Fourier transform, it is easy to show that: 

,
0

( )
q q

n n n
q nb j d d−

ℜ ℜ τ=
= φ τ τ . (7) 

Based on the definitions in (6), (5) can be written as: 

1 2( , ) [exp( )]
q q

T
q qE jγ γ ω ω′Φ = W DW . (8) 

Since qW  in (6) is a Gaussian vector with the mean-vector q
�  and the covariance-matrix q

�
, the 

scalar random variable q
T

q DWW  is a quadratic form of Gaussian variables, and its characteristic 

function )][exp( q
T

qjE DWWω  can be evaluated according to [11]: 

)2det(

)2])2([exp(
)][exp(

11

D
�

I

�D
�

II
��

DWW
q

qqq
T

q
q

T
q

j

j
jE

ω−
ω−−−

=ω
−−

, (9) 

where I  is the 44×  unit matrix and det(.) denotes determinant. Now ),( 21 ωωΦ γ′γ qq
 in (8) can be easily 

derived by replacing ω  in (9) with 1. After some algebraic manipulations we obtain: 

2 2
,2 2 1

2 2
,0 ,2 ,1 2 ,0 1

1 2 2 2
,0 ,2 ,1 2 ,0 1

(2 )
exp

1 4( ) 2
( , )

1 4( ) 2q q

q q

q q q q

q q q q

a b j

b b b j b

b b b j b
γ γ

ω ω
ω ω

ω ω
ω ω′

� �−
−� �� �+ − −� �Φ =
+ − −

. (10) 

For a Rayleigh distribution, 0=qa , (10) significantly simplifies to: 

2 2 1
1 2 ,0 ,2 ,1 2 ,0 1( , ) [1 4( ) 2 ]

q q q q q qb b b j b −
′Φ = + − −γ γ ω ω ω ω . 

Based on the independence of )(tqγ s and the definition of )(tγ  in (3), we have: 

Φ Φγγ γ γω ω ω ω′ ′=
= ∏( , ) ( , )1 2 1 21 q qq

Q
. (11) 

Substitution of (11) into (2) gives the fading rate { }[ ( ) ]
th

E N tγ γ . 

Now suppose the diversity combiner is mounted on a mobile receiver. If the scattering over the qth 

path to the mobile receiver is nonisotropic, then nqb ,  for all n can be different from zero [12]. However, 

for isotropic scattering we have )2()( 00, τπ=τφ ℜℜ mq fJb
qq

, where (.)0J  is the Bessel function of order 

zero and mf  is the maximum Doppler frequency [1] ( mf  is related to the speed of the mobile v 

according to cmfv λ= , with cλ  as the wavelength of the carrier). So, the spectral moments are: 
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0,
22

2,1, 2,0 qmqq bfbb π== . (12) 

As a result, (10) reduces to: 

2 2 22
,0 2 1

2 2 22
,0 2 ,0 1

1 2 2 2 22
,0 2 ,0 1

(4 )
exp

1 8 2
( , )

1 8 2q q

q m q

m q q

m q q

a f b j

f b j b

f b j b
γ γ

π ω ω
π ω ω

ω ω
π ω ω′

� �−
−� �� �+ −� �Φ =
+ −

. (13) 

It is common to express qa  and 0,qb  in terms of Rice factor qK  and the average power qΩ , defined by 

)2( 0,
2

qqq baK =  and 2
,02q q qa bΩ = +  [1]. By substituting )1(2 +Ω= qqqq KKa  and 

)1(2 0, +Ω= qqq Kb  into (13) we obtain: 

2 22
2 12

2 22 2 2
2 1

1 2 2 22 2 2
2 1

[2 ( 1) ]
( 1) exp

( 1) 2 ( 1)
( , )

( 1) 2 ( 1)q q

q q m q q
q

q m q q q

q m q q q

K f j K
K

K f j K

K f j K
γ γ

π ω ω
π ω ω

ω ω
π ω ω′

� �Ω Ω − +
+ −� �� �+ + Ω − Ω +� �Φ =

+ + Ω − Ω +
. (14) 

For the Rayleigh distribution, 0=qK , (14) drastically simplifies to: 

2 22 2 1
1 2 2 1( , ) (1 2 )

q q m q qf j −
′Φ = + Ω − Ωγ γ ω ω π ω ω . 

To see the difference between the fading rates of combiners with non-i.i.d. and i.i.d. branches, we 

consider two numerical examples: a non-i.i.d. case and an i.i.d. case. In the non-i.i.d. scenario we have 

3=Q  and 11 =Q . This means Rice-distributed envelope in the first branch and Rayleigh-distributed 

envelopes in the second and third branches. Therefore, 032 == KK . Among the proposed models for 

the power delay profile we consider the common equally-spaced exponential profile [13]: 

Qqe q
q ...,,2,1,0,)1(

1 =≥ρΩ=Ω −ρ− , (15) 

where the parameter ρ  reflects the rate at which the average power decays. By substituting (14) into 

(11) and then into (2), 
th

FRγ  for the non-i.i.d. case is plotted in Fig. 1, using the Mathematica© 

software for these parameter values: )dB10(101 =K , dB)45.8(71 =Ω , 0.2ρ = , and Hz5=mf , 

which corresponds to the mobile speed m/s5.1=v , if the carrier frequency cf  is 1 GHz. Notice that 

dB)41.12(43.17)]2exp()exp(1[ 11
)( ≈Ω−+−+=Ω=Ω � =

− ρρQ

q q
iidnon . For the i.i.d. scenario 3=Q  and 

01 =Q . This implies Rayleigh-distributed envelope for all the branches. Hence, 0321 === KKK . 

We also assume 0ρ = , so 321 Ω=Ω=Ω . For this case we take dB)64.7(81.51 =Ω , which yields 
)(

11
)( dB)41.12(43.173 iidnonQ

q q
iid −

= Ω==Ω=Ω=Ω � . The corresponding 
th

FRγ  for the i.i.d. case is also 

plotted in Fig. 1. Visual comparison of these two plots exhibits the significant difference between the 

non-i.i.d. and i.i.d. cases, about which a system designer should always be aware. 

For the case of i.i.d. branches described above, )(tγ  in (3) is a chi-square process with 6 degrees 
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of freedom, where the variance of all the six underlying Gaussian components is 21Ω . Based on the 

LCR of a chi process derived in [14], 
th

FRγ  for the above i.i.d.-branches example can be written as: 

( ) ( )5 2

1 12 exp
th m th thFR f= Ω − Ωγ π γ γ . (16) 

The numerical results obtained by our approach comply very accurately with (16) as a special case. 

IV. CONCLUSION 

In this paper we have introduced a characteristic function (CF)-based approach for calculating the 

level crossing rate (LCR) of a random process, as a new alternative to the traditional probability 

density function (PDF)-based method, first proposed by Rice. As an application, we have considered a 

DS-CDMA system, and calculated the fading rate at the output of a RAKE receiver, operating over a 

frequency-selective fading channel with different path statistics. Such a problem defies even a 

numerically tractable solution using Rice’s LCR formula [15]. As the last word, the LCR of an equal 

gain combiner is calculated in [16], where the joint CF is first derived, then its Fourier transform, the 

joint PDF, is computed and plugged into Rice’s LCR expression. However, as we have shown here, the 

LCR can be directly expressed in terms of the CF and there is no need to calculate the associated PDF. 
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Fig. 1. Fading rate versus the SNR threshold thγ  (dB) at the output of a three-branch MRC or 

postdetection EGC RAKE receiver. 

                                non-i.i.d. branches, Rice distribution for the first branch and Rayleigh distributions 

                                with different powers for the second and the third branches 

            - - - - -     i.i.d. branches with Rayleigh distribution 
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