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It is shown that the continuum level density (CLD) at unbound energies can be calculated
with the complex scaling method (CSM), in which the energy spectra of bound states,
resonances and continuum states are obtained in terms of L2 basis functions. In this method,
the extended completeness relation is applied to the calculation of the Green functions, and
the continuum-state part is approximately expressed in terms of discretized complex scaled
continuum solutions. The obtained result is compared with the CLD calculated exactly
from the scattering phase shift. The discretization in the CSM is shown to give a very good
description of continuum states. We discuss how the scattering phase shifts can inversely be
calculated from the discretized CLD using a basis function technique in the CSM.

§1. Introduction

Recently, there has been much interest in nuclear structures of unstable nuclei,
in which exotic nuclear structures have been revealed through the development of
radioactive nuclear beam experiments.1) It has been shown that for such nuclei, for
example the so-called neutron halo nuclei, there are extremely weak binding ground
states, and most of the excited states are in the continuum energy region. Therefore,
to understand the exotic structures and excitations of these nuclei, it is necessary to
study continuum and resonant states in unbound energy regions.

The continuum level density (CLD) is expected to play an important role in
relating experimental data and theoretical models for unbound states. Recently,
Kruppa and Arai2)–4) proposed an interesting method to calculate the CLD and
argued that resonance parameters can be determined from the CLD. They start
their investigation from the definition of the CLD,5)

∆(E) = − 1
π

Im [Tr [G(E) −G0(E)]] , (1.1)

where the full and free Green functions are given by G(E) = (E − H)−1 and
G0(E) = (E−H0)−1, respectively. Because the Hamiltonian H includes finite range
interactions in addition to the asymptotic Hamiltonian H0, the CLD expresses the
effect from the interactions. When the eigenvalues (εi and εj0, respectively) of H and
H0 are obtained approximately within a framework including a finite number (N)
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of basis functions, the following discrete level density is defined:

∆N (E) =
N∑
i

δ(E − εi) −
N∑
j

δ(E − εj0). (1.2)

Kruppa2) employed a smoothing technique defined by the Strutinsky procedure6) to
calculate the continuous CLD, ∆(E), from its discrete form, ∆N (E). However, as
discussed in Ref. 4) their results for the CLD exhibit a strong dependence on the
smoothing parameters. We desire a more effective method to smooth the discrete
quantities, or to discretize the continuum states.

In this paper, we study a more direct method to calculate the CLD with no
smoothing technique in the framework of complex scaling,7) in which a basis function
method is used to obtain not only bound states but also resonance and continuum
states. The idea for the present method is taken from the extended completeness
relation,8) originally proposed by Berggren,9) for bound, resonance and continuum
states in the complex scaling method (CSM). Exact proofs of this extended com-
pleteness relation for the CSM were recently given for a coupled channel system10)

and a single channel system.11) Green functions can be expressed by using the ex-
tended completeness relation in terms of discrete eigenvalues of the CSM with a finite
number of basis functions. Because the complex scaled Hamiltonians Hθ and Hθ

0

have complex eigenvalues, singularities, like the δ-function contained in Eq. (1.2),
are avoided and replaced by Lorentzian functions. Therefore, no smoothing pro-
cess is needed. Furthermore, it is shown that ∆(E) for the CLD can be calculated
independently of the scaling parameters in the CSM.

Kruppa and Arai2)–4) applied the CLD to search for resonance parameters. How-
ever, although parameter values for narrow resonances can be obtained using any
method of CSM and CLD, it is not easy to extract parameter values for broad reso-
nances with the CLD. Rather than obtaining such resonance parameters, it is more
important to calculate the phase shift and/or S-matrix for the scattering states from
the CLD. The CLD ∆(E) is related to the scattering phase shift δ(E) as5),12)

∆(E) =
1
π

dδ(E)
dE

. (1.3)

Therefore, once we confirm that the CLD calculated in the present method is con-
sistent with ∆(E) obtained from the phase shift of the scattering solution, we can
inversely calculate the phase shift by integrating the CLD obtained as a function of
the energy from the eigenvalues of the complex scaled Hamiltonians. This implies
that the phase shift can be calculated from discrete eigenvalues using a basis function
method.

We here demonstrate the reliability of this method by applying it to several
two-body systems, including 4He+n and α+α, which were studied by Arai and
Kruppa.4) Comparing the calculated continuum level density and the phase shifts
in the CSM with the results obtained from the exactly calculated phase shifts and
their derivatives (the CLD), we show that the extended completeness relation in the
CSM is effective, and also that the phase shift is satisfactorily reproduced by the
discretized solutions for continuum states.
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In §2, we explain the formalism for treating the level density in the complex
scaling method. We study the reliability of this method by applying it to a simple
potential model in §3, and we investigate 4He+n and α+α systems in §4. In §5, a
summary and conclusions are given.

§2. Continuum level density in the complex scaling method

Here we briefly explain the complex scaling method (CSM). In the CSM, the
spatial coordinate r and the wave number k transform as

U(θ) : r → r exp(iθ), k → k exp(−iθ), (2.1)

where U(θ) is a scaling operator and θ is a real number called a scaling parameter.
Under this transformation, the asymptotic divergent behavior, ∼ exp(ikrr), of a res-
onant state with a complex wave number kr = κ−iγ is changed into a damping form,
exp {i(κ− iγ)(r cos θ + ir sin θ)} = exp {(γ cos θ − κ sin θ)r}·exp {i(κ cos θ + γ sin θ)r}
for θ > tan−1 γ/κ. Therefore, resonant states and bound states are obtained as dis-
crete solutions of the complex scaled Schrödinger equation

H(θ)Φθ = EΦθ, (2.2)

where H(θ) = U(θ)HU−1(θ). Because we require the complex scaled Hamiltonian
to have no singularity, the scaling parameter θ has an upper limit, θC . For the
Gaussian potential, θC = π/4. For θ < θC , the solutions of bound states and
resonances with γ/κ < tan θ are square-integrable, because of their damping forms
in the asymptotic region. Therefore, employing an appropriate scaling parameter θ,
we can derive resonant states in addition to bound states using a square-integrable
basis expansion, for example, in terms of harmonic oscillator or Gaussian functions
{φn}:

Φθ =
N∑

n=1

cn(θ)φn. (2.3)

In Fig. 1, we present a schematic eigenvalue distribution for the complex scaled
Schrödinger equation. It is seen that the energies of bound states are not changed
from the spectral positions of the original Hamiltonian. The eigenvalues of the res-
onant states, which are particularly noteworthy, are obtained as E = Er − iΓr/2,
where Er and Γr are the energy and width of a resonance, respectively. By contrast,
the continuum spectra of the Hamiltonian H(θ) are distributed on the 2θ-lines orig-
inating from every threshold. If we do not apply the complex scaling, the original
Schrödinger equation gives the continuum spectra, including resonances on the pos-
itive energy axis. Under complex scaling, the resonances for which γ/κ < tan θ are
separated from the continuum, and the rotated continuum spectra starting from dif-
ferent threshold energies are separately obtained on different 2θ-lines. Furthermore,
when we apply a basis function method to solve the complex scaled Schrödinger
equation, these continuum spectra are discretized on different 2θ-lines, as shown in
Fig. 1.
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Fig. 1. Schematic energy eigenvalue distribution for a complex scaled Hamiltonian.

Let us return to the problem of the level density. The level density ρ(E) of the
Hamiltonian H is defined as

ρ(E) =
∫∑

δ(E −Ei), (2.4)

where the quantities Ei are the eigenvalues of H, and the summation and integration
are taken for discrete and continuous eigenvalues, respectively. This definition of the
level density can also be expressed using the Green function:

ρ(E) = − 1
π

Im
{

Tr
[

1
E −H

]}

= − 1
π

Im
∫
dr

〈
r

∣∣∣∣ 1
E −H

∣∣∣∣ r
〉
. (2.5)

Here, applying the CSM and the extended completeness relation (ECR)8),9) to the
expression of the Green function, we obtain

ρ(E) = − 1
π

Im
∫
dr

〈
r

∣∣∣∣U(θ)−1U(θ)
1

E −H
U(θ)−1U(θ)

∣∣∣∣ r
〉

= − 1
π

Im
∫
dr

〈
rθ

∣∣∣∣ 1
E −H(θ)

∣∣∣∣ rθ

〉

= − 1
π

Im
∫
dr


NB∑

B

Φθ
B(r)Φ̃θ∗

B (r)
E − EB

+
Nθ

R∑
R

Φθ
R(r)Φ̃θ∗

R (r)
E − ER

+
∫

Lθ

dkθ

Φθ
kθ

(r)Φ̃θ∗
kθ

(r)
E − Ekθ


 ,

(2.6)

where NB and N θ
R are the numbers of bound states and resonances in the wedge

region between the real energy axis and the 2θ-lines, respectively. A detailed expla-
nation of the extended completeness relation is given in Ref. 8).
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In the integration over r in Eq. (2.6), the bound state and resonance parts
are easily found to be unity, because of the normalization of the wave functions,
but the continuum part cannot be calculated, due to the singular nature of the
integration. This singularity is eliminated when we discretize the continuum spectra
using the basis function method with a finite number N of basis functions. Then,
the approximate density of states ρN

θ (E) for the basis number N is expressed as

ρN
θ (E) =

NB∑
B

δ(E − EB) − 1
π

Im
Nθ

R∑
R

1
E − ER

− 1
π

Im
N−NB−Nθ

R∑
k

1
E − Ek(θ)

.

(2.7)

As explained above, the energy of the resonance is obtained as ER = Er − iΓr/2,
and thus each resonance term has the Breit-Wigner form

Im
1

E − ER
=

−Γr/2
(E − Er)2 + Γ 2

r /4
. (2.8)

For the continuum part, discretized continuum states are obtained on the 2θ-line
in the complex energy plane, Ek(θ) = ER

k − iEI
k , where EI

k/ER
k = tan 2θ. Therefore,

the continuum part in the level density can be expressed in terms of a Lorentzian
function whose form is similar to the Breit-Wigner form:

Im
1

E − Ek(θ)
=

−EI
k

(E − ER
k )2 + EI

k
2 . (2.9)

Inserting Eqs. (2.8) and (2.9) into Eq. (2.7), we obtain the level density in the basis
function method as

ρN
θ (E) =

NB∑
B

δ(E −EB) +
1
π

Nθ
R∑

R

Γr/2
(E − Er)2 + Γ 2

r /4
+

1
π

N−NB−Nθ
R∑

k

EI
k

(E − ER
k )2 + EI

k
2 .

(2.10)

Here, it is noted that ρN
θ (E) has a θ dependence, but ρ(E) does not. This θ

dependence problem of ρN
θ (E) is due to the fact that we employ a finite number of

basis functions, and it can be solved by introducing ∆(E) defined in Eq. (1.1). The
continuum level density (CLD) ∆(E) is expressed as a balance between the density
of states ρ(E) obtained from the HamiltonianH and the density of continuum states,
ρ0(E), obtained from the asymptotic Hamiltonian H0 in the form

∆(E) = ρ̄(E) − ρ0(E), (2.11)

where ρ̄(E) is defined through subtraction of the bound state term from ρ(E). Phys-
ically, ∆(E) represents the density of unbound levels, which result from the inter-
action with a finite range. This can also be understood from the fact that ∆(E) is
related to the phase shift caused by the interaction.
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1278 R. Suzuki, T. Myo and K. Katō

In the basis function method with a finite number N of basis states, we have

∆N
θ (E) = ρ̄N

θ (E) − ρN
0(θ)(E). (2.12)

The first term on the right-hand side represents the level density in which the bound
state term is subtracted from Eq. (2.7), and the second term is expressed in terms
of the eigenvalues E0

k (θ) = E0R
k − iE0I

k of the asymptotic Hamiltonian H0(θ), which
has only continuum spectra on the 2θ-lines:

ρN
0(θ)(E) =

1
π

N∑
k

E0I
k

(E − E0R
k )2 + E0I

k
2 . (2.13)

Thus, we have

π∆N
θ (E) =

Nθ
R∑

R

Γr/2
(E − Er)2 + Γ 2

r /4
+

N−NB−Nθ
R∑

k

EI
k

(E − ER
k )2 + EI

k
2

−
N∑
k

E0I
k

(E − E0R
k )2 + E0I

k
2 . (2.14)

As shown by the numerical results presented in the next section, the θ dependence
of ∆N

θ (E) disappears through the cancellation of the θ dependence in the second
and third terms of Eq. (2.14). When we consider a small value of θ, and therefore
no resonance exists in the wedge region, the CLD can be expressed in terms of only
the second and third terms.

§3. Simple potential model

We now examine the reliability of the present method for a simple potential
model. As a schematic potential, we employ the CGKPM potential,13) whose res-
onance structure has been studied in detail. The Hamiltonian in this case is given
by

H = T + V, T = − �
2

2µ
∇2, V (r) = −8.0e−0.16r2

+ 4.0e−0.04r2
, (3.1)

where we set �
2/µ = 1 (MeV/fm2) for simplicity. The Schrödinger equation for this

Hamiltonian is solved by applying the basis function method, and thus we write

ψ(r) =
∑
lm

R�(r)Y�m(r̂), R�(r) =
N∑
i

c�iφ�(r, bi). (3.2)

For each partial wave, we use Gaussian functions14) with different size parameters
as basis functions:

φ�(r, bi) = N�(bi) · r� exp
[
− 1

2b2i
r2
]
, N�(bi) = b

−3/2−�
i

{
2�+2

(2�+ 1)!!
√
π

}1/2

, (3.3)
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Fig. 2. Energy eigenvalue distribution of the

1− states for the complex scaled Hamilto-

nian of the simple potential model given by

Eq. (3.1). The circles represent eigenvalues

and dashed lines are 2θ-lines.

Fig. 3. The level density ρN
θ (E) calculated for

different values of θ.

where the parameters {bi : i = 1, 2, · · · , N} are given by a geometrical progression14)

of the form

bi = b0γ
i−1. (3.4)

Here, b0 and γ are the first term and the common ratio, respectively. We employ
N = 30, b0 = 0.2 fm and γ = 1.2 in the following calculations. Of course, the same
results are obtained even if other kinds of basis functions (for example, harmonic
oscillator functions) are used.

In Fig. 2, we plot the energy eigenvalue distribution of the 1− states. One bound
state (−0.67 MeV) and many resonant states exist: The three lowest resonances are
1.1710 − i0.0049 (MeV), 2.0175 − i0.4863 (MeV) and 2.5588 − i1.7378 (MeV).15)

The lowest resonance is obtained with the CSM for θ = 5◦, but the second lowest
resonance is not obtained for this scaling parameter value. The second resonance
appears clearly when θ > 10◦. The continuum solutions vary slightly from the 2θ-
line, and the dispersion increases for large values of θ. However, this distribution of
continuum eigenvalues depends on the choice of the basis functions, and it creates
no difficulty in the CLD calculations.

Using these eigenvalues, we calculate the level density ρN
θ (E) given by Eq. (2.7),

and we display the result in Fig. 3. Oscillatory behavior is seen at θ = 5◦, but this
oscillation is smoothed when θ is larger than 10◦. Even at θ = 5◦, the oscillation
may disappear if we employ a large number of basis functions so that the intervals
between the discretized continuum eigenvalues become smaller than their imaginary
parts. However, it is easier to choose a larger value of θ in order to increase the
imaginary parts of the discretized continuum eigenvalues. The intervals between the
discretized continuum eigenvalues depend on the number N of basis functions. The
critical value of θ may be defined as the scaling angle at which the imaginary parts
of the discretized continuum eigenvalues become larger than the intervals between
the eigenvalues. This critical value of θ depends on N , and therefore we express it
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1280 R. Suzuki, T. Myo and K. Katō

Fig. 4. The complex scaled CLD ∆N
θ (E) for θ = 10◦, 15◦ and 20◦ and the exact solution obtained

by solving the scattering problem.

as θN . When θ becomes larger than 10◦ in the present simple potential case, ρN
θ (E)

exhibits the same behavior, and therefore we can set θN ≈ 10◦. For θ > θN , only
the absolute values of ρN

θ (E) depend on θ.
This θ dependence of the absolute values of ρN

θ (E) can be canceled through
subtraction of ρN

0θ(E); that is, we show that the CLD �N
θ (E) defined in Eq. (2.14)

has no θ dependence for θ ≥ θN . In Fig. 4, we plot the CLD �N
θ (E) calculated

for θ = 10◦, 15◦ and 20◦ and compare it with the result of the exact calculation.
Here, “exact” means that we calculate the CLD �(E) from the phase shift using
Eq. (1.3). The phase shift is obtained with the help of the scattering solution without
any approximation. From Fig. 4, we see that it is quite difficult to distinguish the
plots of �N

θ (E) calculated for θ = 10◦, 15◦ and 20◦. They are all consistent with the
exact calculation. This result indicates that the CLD �(E) can be approximated
by �N

θ (E) in the CSM, and the phase shift can be obtained from �N
θ (E) without

solving the scattering problem.

§4. Applications to 4He+n and α + α systems

We now apply the present method to realistic two-body systems of 4He+n and
α+α. The 4He+n system has rather broad resonances but no bound state, and the
α + α system also has no bound state but a sharp resonance due to the Coulomb
barrier. The Coulomb potential is a typical long-range potential and is represented
by the asymptotic term of H0. The antisymmetrization among clusters in both the
systems 4He+n and α + α is carried out with the orthogonality condition model
(OCM).16) We show that the present method is very useful in analyses of continuum
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states of such realistic cluster systems.

4.1. 4He+n system

The wave function of 5He with spin J is expressed in the 4He+n cluster model
as

ΦJ(5He) = A{Φ(4He) · ψJ
rel(r)

}
, (4.1)

where A, Φ(4He) and ψJ
rel(r) are the antisymmetrizer, the internal wave function of

4He assuming a (0s1/2)4 configuration, and the relative wave function between 4He
and the valence neutron, respectively. We solve the relative wave function ψJ

rel(r) by
applying the OCM. This yields

[Trel + Vαn(r) + λ |φPF〉〈φPF| − E]ψJ
rel(r) = 0, (4.2)

where Trel and Vαn(r) are the kinetic energy and potential operators for the 4He-
n relative motion, respectively. In this calculation, we use the so-called KKNN
potential17) for Vαn(r), which provides an accurate description of the low-energy
scattering data for this system. The third term, constituting the non-local potential
in Eq. (4.2) represents the projection operator to remove the Pauli forbidden (PF)
states [which is the (0s1/2) state in this case] from the relative motion,18) and λ is
taken as 106 MeV in this calculation.

Equation (4.2) is solved by using the basis functions, as explained in the previous
section, and we obtain

ψJ
rel(r) =

[
Y�(r̂)χ1/2

]
J
ϕ�(r), ϕ�(r) =

N∑
i

c�iφ�(r, bi), (4.3)

where
[
Y�(r̂)χ1/2

]
J

is a function of the orbital angular momentum and spin coupled
to J , and the radial wave function ϕ�(r) is expanded in the Gaussian basis functions
{φ�(r, bi)}, which are defined in Eq. (3.3).

Fig. 5. Energy eigenvalue distributions of the 4He-n system for the Jπ = 3/2−, 1/2− and 1/2+

states, where θ is taken as 35◦.
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Fig. 6. Continuum level densities of the 4He-n system for the Jπ = 3/2−, 1/2− and 1/2+ states.

Using the same basis set as in the case of the simple model, we calculate the
energy eigenvalues of the complex scaled Hamiltonian with θ = 35◦, and the results
for the three states 3/2−, 1/2− and 1/2+ are shown in Fig. 5. We can see that each
of the states 3/2− and 1/2− has one resonance pole, corresponding to the observed
resonances of 5He. The 1/2+ state has no resonance. Resonant structures of 5He
have been investigated in detail with the complex scaling method by Aoyama et al.19)

In addition to resonances, the discretized continuum solutions have been obtained
along the 2θ-line. Several continuum solutions are off the 2θ-line. It is believed that
the reason for this is that the couplings between the continuum and resonance are
not correctly described because the number of basis functions is not large enough.
However, the resonant solutions are obtained with appropriate accuracy, and the
CLD is obtained from these continuum solutions satisfactorily, although the positions

Fig. 7. Scattering phase shifts of the 4He-n system for the Jπ = 3/2−, 1/2− and 1/2+ states.
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of some continuum solutions are slightly off the 2θ-line.
Applying Eq. (2.14) to the obtained eigenvalue distribution of the complex scaled

Hamiltonian for the 3/2−, 1/2− and 1/2+ states, we calculate the CLD of the 4He-
n system. The results are shown in Fig. 6. It is seen that each of the 3/2− and
1/2− states has a peak, but the 1/2+ state has no peak. The position and width of
the peaks in the CLD for the 3/2− and 1/2− states correspond to their resonance
energy and width. These results are very similar to those for the CLD distributions
calculated by Arai and Kruppa,4) except for the absolute strengths. In the calculation
of the CLD carried out by Arai and Kruppa, the result depends on the smoothing
parameter.

To see the reliability of the CLD obtained here, we calculate the phase shift from
the obtained CLD. In Fig. 7, we show the scattering phase shifts of the 3/2−, 1/2−

and 1/2+ states. We compare these results with the exact phase shifts, and we find
very good quantitative agreement between them for every state.

4.2. α+ α system

Similarly to the above, we now calculate the CLD and the scattering phase shifts
of the α + α system. The important point in the calculation of the α + α system
is the treatment of the Coulomb interaction. Because the Coulomb interaction has
a long-range nature, we must include the Coulomb interaction in the asymptotic
Hamiltonian H0.

The relative motion between two α clusters is described within the OCM as

[
Trel + V C

αα(r) + V N
αα(r) + λ

∑
PF

|φPF〉〈φPF| − E

]
ψJ

rel(r) = 0, (4.4)

where V C
αα and V N

αα are the folding Coulomb and nuclear potentials obtained by
assuming a (0s1/2)4 harmonic oscillator wave function with oscillator constant να(=
Mω
2~

) = 0.2675 fm−2 for an α cluster, respectively. When we employ the Schmid-

Fig. 8. Continuum level densities of the α-α system for the Jπ = 0+, 2+ and 4+ states.
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Fig. 9. Scattering phase shifts of the α-α system for the Jπ = 0+, 2+ and 4+ states.

Wildermuth force20) as the two-nucleon force, they are expressed as

V C
αα(r) =

(
4e2

r

)
erf

(
r

√
4
3
να

)
, (4.5)

V N
αα(r) = 2XD

[
2να

2να + 3µ/2

]3/2

V0 exp
[
− ναµ

να + 3µ/4
r2
]
, (4.6)

where erf(x) is the error function, and XD = 2.445, V0 = −72.98 MeV and µ =
0.46 fm−2 are the folding parameter, the strength, and the range parameter of the
Schmid-Wildermuth force, respectively. The fourth term in Eq. (4.4) is the projection
operator to remove the Pauli forbidden states (the 0S, 1S and 0D states in this case)
from the relative motion,18) and λ is taken as 106 MeV as well. We solve the complex
scaled Schrödinger equation Eq. (4.4) in the same way as we solved the Schrödinger
equation for the simple potential and 4He-n systems. Using the obtained eigenvalues
for Jπ = 0+, 2+ and 4+, we calculate the CLD. In the α-α system, however, the
eigenvalues of the asymptotic Hamiltonian H0 must be solved with the Coulomb
potential:

H0 = Trel +
4e2

r
. (4.7)

The results of the CLD are shown in Fig. 8. They have a sharp peak corresponding
to the resonance in each state. This result is quite similar to the results by Arai and
Kruppa,4) in which case the smoothing was performed in terms of several smoothing
parameters. Better agreement is obtained for a narrower smoothing parameter.

Integrating the obtained CLD, we obtain the scattering phase shifts. The results
are shown in Fig. 9. The scattering phase shifts are nearly identical to those obtained
from the scattering solutions. The resonance width of the 0+ state is very small in
comparison to the resonance energy. For such a case, it is necessary to carefully
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integrate the CLD to obtain accurate phase shifts. These results indicate that the
present method to calculate the CLD is also very powerful even for a long-range
interaction, such as the Coulomb potential.

§5. Summary and conclusion

We have shown that the level density is properly described in the CSM with a
basis function method. In the expression we obtained for the level density, the ex-
tended completeness relation of the CSM plays an important role, and it divides the
level density into three terms, i.e., bound states, resonances and continuum states.
We investigated the approximate description of the continuum states in terms of dis-
cretized eigenstates that are obtained through diagonalization with a finite number
of basis functions. Furthermore, it is not necessary to use a smoothing technique,
such as the Strutinsky procedure employed by Kruppa and Arai for the singular
level density arising from the discretization of continuum states. In the CSM, con-
tinuum states are expressed in terms of eigenstates of complex eigenvalues along the
rotated branch cut with the angle 2θ, and the Green function of the continuum part
is expressed as a sum of Lorentzian functions rather than delta functions. There-
fore, no singularity appears. This result indicates that the CSM provides a very
powerful method for discretizing continuum states. The discretization of a contin-
uous function using Lorentzian functions would be understood through comparison
to the wavelets21) that have recently been developed as a powerful tool facilitating
transformations between analogue and digital data in information science.

The level density smoothed in the CSM, however, has a dependence on the
scaling angle θ, because a finite number of basis functions is used in the approximate
description of the continuum states. We showed that the continuum level density
(CLD) in the CSM, obtaining by subtracting the level density for the asymptotic
Hamiltonian, is independent of the scaling angle and consistent with the exact CLD.
These results indicate that we can calculate scattering phase shifts or S-matrices from
the CLD obtained by solving an eigenvalue problem in the CSM with a finite number
of basis functions. We found that this method is quite effective in the treatment of
4He+n and α + α systems without and with the Coulomb interaction, respectively,
which were previously studied by Arai and Kruppa.4)

Considering the successful results of this method for simple two-body systems,
it would be interesting to apply it to coupled-channel systems and three-body sys-
tems. For coupled-channel problems, the extended completeness relation providing
the foundation of this method has been proven in the framework of the CSM.10)

Therefore, it is conjectured that the present method will be effective here too. How-
ever, the three-body problem is still open.
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13) A. Csótó, B. Gyarmati, A. T. Kruppa, K. F. Pál and N. Moiseyev, Phys. Rev. A 41 (1990),

3469.
14) M. Kamimura, Phys. Rev. A 38 (1988), 621.

H. Kameyama, M. Kamimura and Y. Fukushima, Phys. Rev. C 40 (1989), 974.
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19) S. Aoyama, S. Mukai, K. Katō and K. Ikeda, Prog. Theor. Phys. 93 (1995), 99.
20) E. W. Schmid and K. Wildermuth, Nucl. Phys. 26 (1961), 463.
21) I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics,

Philadelphia, PA, 1992).

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/113/6/1273/1868913 by guest on 21 August 2022


