
Level Planarity Testing in Linear Time?

Michael Jünger1, Sebastian Leipert2, and Petra Mutzel3

1 Institut für Informatik, Universität zu Köln, 50969 Köln, Germany,
mjuenger@informatik.uni-koeln.de

2 Institut für Informatik, Universität zu Köln, 50969 Köln, Germany,
leipert@informatik.uni-koeln.de

3 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany,
mutzel@mpi-sb.mpg.de

Abstract. In a leveled directed acyclic graph G = (V, E) the vertex set
V is partitioned into k ≤ |V | levels V1, V2, . . . , Vk such that for each edge
(u, v) ∈ E with u ∈ Vi and v ∈ Vj we have i < j. The level planarity
testing problem is to decide if G can be drawn in the plane such that for
each level Vi, all v ∈ Vi are drawn on the line li = {(x, k−i) | x ∈ R}, the
edges are drawn monotone with respect to the vertical direction, and no
edges intersect except at their end vertices. If G has a single source, the
test can be performed in O(|V |) time by an algorithm of Di Battista and
Nardelli (1988) that uses the PQ-tree data structure introduced by Booth
and Lueker (1976). PQ-trees have also been proposed by Heath and
Pemmaraju (1996a,b) to test level planarity of leveled directed acyclic
graphs with several sources and sinks. It has been shown in Jünger,
Leipert, and Mutzel (1997) that this algorithm is not correct in the
sense that it does not state correctly level planarity of every level planar
graph. In this paper, we present a correct linear time level planarity
testing algorithm that is based on two main new techniques that replace
the incorrect crucial parts of the algorithm of Heath and Pemmaraju
(1996a,b).

1 Introduction

A fundamental issue in Automatic Graph Drawing is to display hierarchical
network structures as they appear in software engineering, project management
and database design. The network is transformed into a directed acyclic graph
that has to be drawn with edges that are strictly monotone with respect to the
vertical direction. Most applications imply a partition of the vertices into levels
that have to be visualized by placing the vertices belonging to the same level on
a horizontal line. These graphs are called leveled graphs. Testing whether such
a graph is level planar, i.e. can be drawn without edge crossings, was solved by
Di Battista and Nardelli (1988) for leveled graphs with a single source using the
PQ-tree data structure.

? Supported by DFG-Grant Ju204/7-2, Forschungsschwerpunkt “Effiziente Algorith-
men für diskrete Probleme und ihre Anwendungen”

S.H. Whitesides (Ed.): GD’98, LNCS 1547, pp. 224–237, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

Level Planarity Testing in Linear Time 225

PQ-trees have also been proposed by Heath and Pemmaraju (1996a,b) to test
level planarity of leveled directed acyclic graphs with several sources and sinks.
It has been shown in Jünger, Leipert, and Mutzel (1997) that this algorithm is
not correct in the sense that it does not state correctly level planarity of every
level planar graph. In this paper, we present a correct linear time level planarity
testing algorithm that is based on two main new techniques that replace the
incorrect crucial parts of the algorithm of Heath and Pemmaraju (1996a,b).

This paper is organized as follows. In the next section we give a short intro-
duction to the PQ-tree data structure and the level planarity test presented by
Heath and Pemmaraju (1996a,b) and we summarize the incorrect crucial parts
of this algorithm. In the third section we present a correct algorithm and show
how to obtain linear running time. In the last section we make some remarks on
the construction of a level planar embedding based on our algorithm.

2 Preliminaries

Let G = (V, E) be a directed acyclic graph (dag). A leveling of G is a function
lev : V → Zmapping the nodes of G to integers such that lev(v) > lev(u) for all
(u, v) ∈ E. A leveling of G is called proper if lev(v) = lev(u)+1 for all (u, v) ∈ E.
G is called a leveled dag if a leveling has been assigned to it. If lev(v) = j, then
v is a level-j vertex. Let Vj = lev−1(j) denote the set of level-j vertices. Each Vj

is a level of G.
For the rest of this paper, we assume w.l.o.g. that G is a proper leveled dag

with k ∈ N levels. We will show in the last section, that our algorithm can be
adapted to non proper leveled dags without any modification, preserving the
linear running time. However, the algorithm is easier to understand for proper
hierarchies.

An embedding of G in the plane is called leveled if the vertices of every Vj ,
1 ≤ j ≤ k, are placed on a horizontal line lj = {(x, k − j) | x ∈ R}, and every
edge (u, v) ∈ E, u ∈ Vj , v ∈ Vj+1 is drawn as a straight line segment between the
lines lj and lj+1. A leveled embedding of G is called level planar if no two edges
cross except at common endpoints. A leveled dag is level planar, if it has a level
planar embedding. The dag G is obviously level planar, if all its components are
level planar. We therefore assume that G is connected.

A leveled embedding of G determines for every Vj , 1 ≤ j ≤ k, a total order
≤j of the vertices of Vj , given by the left to right order of the nodes on lj . In
order to test whether a leveled embedding of G is level planar, it is sufficient to
find an ordering of the vertices of every set Vj , 1 ≤ j < k, such that for every
pair of edges (u1, v1), (u2, v2) ∈ E with lev(u1) = lev(u2) = j and u1 ≤j u2 it
follows that v1 ≤j+1 v2. Apparently, the ordering ≤j , 1 ≤ j ≤ k, describes a
permutation of the vertices of Vj . Let Gj denote the subgraph of G, induced by
V1 ∪ V2 ∪ . . . ∪ Vj . Unlike G, Gj is not necessarily connected.

The basic idea of the level planarity testing algorithm presented by Heath
and Pemmaraju (1996a,b) is to perform a top-down sweep, processing the levels
in the order V1, V2, . . . , Vk and computing for every level Vj , 1 ≤ j ≤ k, a set of

226 Michael Jünger, Sebastian Leipert, and Petra Mutzel

permutations of the vertices of Vj that appear in some level planar embedding of
Gj . In case that the set of permutations of Gk is not empty, the graph G = Gk

is obviously level planar.
A PQ-tree is a data structure that represents the permutations of a finite

set U in which the members of specified subsets occur consecutively. This data
structure has been introduced by Booth and Lueker (1976) to solve the problem
of testing for the consecutive ones property. A PQ-tree contains three types of
nodes: leaves, P -nodes, and Q-nodes. The leaves are in one to one correspondence
with the elements of U . The P - and Q-nodes are internal nodes. A P -node is
allowed to permute its children arbitrarily, while the order of the children of a
Q-node is fixed and only may be reversed. In subsequent figures, P -nodes are
drawn as circles while Q-nodes are drawn as rectangles.

The set of leaves of a PQ-tree T read from left to right is denoted by
frontier(T) and yields a permutation on the elements of the set U . The frontier
of a node X , denoted by frontier(X), is the sequence of its descendant leaves.
Given a PQ-tree T over the set U and given a subset S ⊆ U , Booth and Lueker
(1976) developed a pattern matching algorithm called reduction and denoted by
REDUCE(T, S) that computes a PQ-tree T ′ representing all permutations of T
in which the elements of S form a consecutive sequence.

If Gj is a hierarchy, the set of permutations of the vertices of Vj that appear in
some level planar embedding of Gj can be represented by a PQ-tree Tj according
to Di Battista and Nardelli (1988) as follows:

1. identify with every vertex of Vj exactly one leaf,
2. identify with every cut vertex in Gj a P -node,
3. identify with every maximal biconnected components in Gj a Q-node,

In order to test whether the hierarchy Gj+1 is level planar, Di Battista and
Nardelli (1988) add for every edge (vi, w), w ∈ Vj+1, vi ∈ Vj , i = 1, 2, . . . , µ,
µ ≥ 1 a virtual vertex wvi labeled w and virtual edges (vi, wvi) to the graph
Gj . The authors then try to compute for every vertex w ∈ Vj+1 a sequence
of permutations of components around cutvertices and swappings of maximal
biconnected components such that all virtual vertices labeled w form a consec-
utive sequence on the horizontal line lj+1. If such a sequence can be found, it is
obvious that the vertex w can be added to Gj without destroying level planarity.
The process of computing the prescribed sequence can be efficiently done using
the PQ-tree Tj , yielding a linear time algorithm.

In case that Gj , 1 ≤ j < k, consists of more than one connected compo-
nent, Heath and Pemmaraju suggest to use a PQ-tree for every component and
formulate a set of rules of how to merge components F1 and F2, respectively
their corresponding PQ-trees T1 and T2, if F1 and F2 both are adjacent to some
vertex v ∈ Vj+1.

Heath and Pemmaraju (1996a,b) reduce during a First Merge Phase the
leaves of T1 and T2 corresponding to the vertex v, called the pertinent leaves.
After successfully performing the reduction, the consecutive sequence of perti-
nent leaves is replaced by a single pertinent representative in both T1 and T2.
Going up one of the trees Ti, i ∈ {1, 2}, from its pertinent representative, an

Level Planarity Testing in Linear Time 227

appropriate position is searched, allowing the tree Tj, j 6= i, to be placed into Ti.
After successfully performing this step the resulting tree T ′ has two pertinent
leaves corresponding to the vertex v, which again are reduced and replaced by a
single representative. If any of the steps fails, Heath and Pemmaraju state that
the graph G is not level planar.

Merging two PQ-trees T1 and T2 corresponds to merging the two components
F1 and F2 and is accomplished using certain information that is stored at the
nodes of the PQ-trees. For any subset S of the set of vertices in Vj , 1 ≤ j ≤ m,
that belongs to a component F , define ML(S) to be the greatest d ≤ j such
that Vd, Vd+1, . . . , Vj induces a dag in which all nodes of S occur in the same
connected component. For a Q-node q in the corresponding PQ-tree TF with
ordered children r1, r2, . . . , rt integers denoted by ML(ri, ri+1), 1 ≤ i < t, are
maintained satisfying ML(ri, ri+1) = ML(frontier(ri) ∪ frontier(ri+1)). For a P -
node p a single integer denoted by ML(p) that satisfies ML(p) = ML(frontier(p))
is maintained. Furthermore, define LL(F) to be the smallest d such that F
contains a vertex in Vd and maintain this integer at the root of the corresponding
PQ-tree. The height of a component F in the subgraph Gj is j − LL(F). Using
these LL- and ML-values, Heath and Pemmaraju (1996a,b) describe a set of rules
how to connect two PQ-trees claiming that the pertinent leaves of the new tree
T ′ are reducible if and only if the corresponding component F ′ is level planar.

In Jünger, Leipert, and Mutzel (1997) we have shown that the order of merg-
ing the components is important for testing a leveled dag. Moreover, it is easy
to see that using different orderings while merging three or more components
results in different PQ-trees. So even if every order of merging PQ-trees with
pertinent leaves labeled v, lev(v) = j, 1 ≤ j < k, results in a reducible PQ-tree,
a PQ-tree may be constructed such that the leaves of some vertex l, lev(l) > j
are not reducible, although the graph G is level planar. Hence the algorithm
presented by Heath and Pemmaraju (1996a,b) may state incorrectly the non
level planarity of a level planar graph.

Furthermore, components of Gj , that have just one level-j vertex are not
treated properly. In fact, they may be inserted at wrong positions in other PQ-
trees. This is due to the fact that during the first merge phase the algorithm
reduces for every PQ-tree all leaves with the same label and replaces them by a
single representative. Clearly, this replacement corresponds to the construction
of new interior faces in the corresponding subgraph. However, PQ-trees are not
designed to carry information about interior faces, hence the information about
the “space” within these interior faces gets lost. It is easy to see that situations
may occur where components being adjacent to just one level-j vertex have to
be embedded within one of these interior faces. The approach of Heath and
Pemmaraju (1996a,b) does not detect this fact, which is another reason that it
may incorrectly state the non level planarity of a level planar graph.

Heath and Pemmaraju (1996a,b) claim that their algorithm can be imple-
mented using only O(|V |) time. This is true for the merge and reduce operations.
However, considering two PQ-trees T1, T2 both having a leaf labeled v and a leaf
labeled w, Heath and Pemmaraju (1996b) suggest to merge the trees T1 and T2

228 Michael Jünger, Sebastian Leipert, and Petra Mutzel

at the leaves labeled v constructing a new PQ-tree T and then reduce T with
respect to the leaves labeled v as well as with respect to the leaves labeled w.
It is not clear how the update operations that are necessary for detecting both
pairs of leaves can be done in O(|V |) time, Heath and Pemmaraju (1996a,b) do
not discuss this matter.

We will combine two new strategies to eliminate the problems we encountered
in the algorithm of Heath and Pemmaraju (1996a,b).

3 A Correct Linear Time Level Planarity Test

In this section we discuss how to construct a correct algorithm LEVEL-PLANAR-
TEST that tests a leveled dag G = (V1, V2, . . . , Vk; E) for level planarity. Since
Gj is not necessarily connected, let mj denote the number of components of Gj

and let F j
i , i = 1, 2, . . . , mj , denote the components of Gj . Number the vertices

of level j+1 arbitrarily from 1 to |Vj+1|. We refer to the vertices of Vj+1 by their
numbers. Let Hj

i be the component formed by adding to F j
i all edges with one

end in F j
i and the other end in Vj+1, keeping the ends in Vj+1 separate. These

edges are called virtual edges and their ends in Vj+1 are called virtual vertices.
The virtual vertices are labeled as their counterparts in Vj+1, but they are kept
separate. Thus there may be several virtual vertices with the same label, adja-
cent to different components of Gj and each with exactly one entering edge. The
component Hj

i is called the extended form of F j
i and the set of virtual vertices of

Hj
i is called frontier(Hj

i). Let Bj
i be a level planar embedding of Hj

i . Obviously,
all virtual vertices of Hj

i are placed on the same horizontal line on the outer face.
The set of virtual vertices of Hj

i that are labeled v ∈ Vj+1 is denoted by Sv
i .

Figure 1 shows an example of an extended form Hj
i and its corresponding PQ-

tree, representing all permutations of the virtual vertices that appear in some
level planar embedding of Hj

i . The form Hj
i has two virtual vertices labeled v.

v w u xv

j

j + 1

j − 1

v w v u x

j − 2

Fig. 1. An extended form Hj
i and its PQ-tree.

The component that is created from an extended form Hj
i by identifying

for various v ∈ Vj+1 all virtual vertices with the label v to a single vertex vi

with label v is called reduced extended form and denoted by Rj
i . The form Rj

i is

Level Planarity Testing in Linear Time 229

called proper if for all v ∈ Vj+1 the virtual vertices with the same label v have
been identified, otherwise Rj

i is called sloppy. The set of virtual vertices of Rj
i is

denoted by frontier(Rj
i). If the virtual vertices labeled v have been identified in

Rj
i to a vertex vi, we denote by Sv

i = {vi} the set of vertices with label v of Rj
i .

Figure 2 shows an example of a reduced extended form Rj
i and its corresponding

PQ-tree. The form Rj
i has been constructed from the extended form Hj

i shown
in Fig. 1 by identifying the two virtual vertices labeled v. The corresponding
PQ-tree has been constructed by reducing the two leaves labeled v applying the
pattern matching algorithm of Booth and Lueker (1976).

j − 2

j

j + 1

j − 1

xvw u

w xuv

Fig. 2. A proper reduced extended form Rj
i and its PQ-tree.

Identifying the sets Sv
i 6= ∅ and Sv

l 6= ∅ of two reduced extended forms Rj
i and

Rj
l , i 6= l, i, l ∈ {1, 2, . . . , mj}, to a single vertex v{i,l} with label v is denoted by

Rj
i ∪v Rj

l . We call Rj
i ∪v Rj

l a merged reduced component . If LL(Rj
i) ≤ LL(Rj

l) we
say Rj

l is v-merged into Rj
i . The component that is created by v-merging Rj

l into
Rj

i is again a reduced extended component and denoted by Rj
i (thus renaming

Rj
i ∪v Rj

l with the name of the “higher” component). If Rj
i , i ∈ {1, 2, . . . , mj} is

a reduced extended component, such that Sv
i 6= ∅ for some v ∈ Vj+1 and Sw

i = ∅
for all w ∈ Vj+1 − {v}, then Rj

i is called v-singular.
A collection C(Gj), 1 ≤ j ≤ k, denotes the set of level planar embeddings of

all components of Gj . One of our results is that in case that Gj is level planar,
a PQ-tree T (F j

i) can be associated with every F j
i of Gj describing the set of

level planar embeddings of F j
i . As has been shown in Booth and Lueker (1976),

it is straightforward to construct from T (F j
i) a PQ-tree T (Hj

i) associated with
Hj

i . Thus the leaves of T (Hj
i) correspond to the virtual vertices of Hj

i and we
label the leaves of T (Hj

i) as their counterparts in Hj
i . By construction, C(Gj)

is a set of PQ-trees. Considering a function CHECK-LEVEL that computes for
every level j, j = 2, 3, . . . , k the set C(Gj) of level planar embeddings of the
components Gj , the algorithm LEVEL-PLANAR-TEST can be formulated as
follows.

Bool LEVEL-PLANAR-TEST(G = (V1, V2, . . . , Vk; E))
begin

Initialize C(G1);

230 Michael Jünger, Sebastian Leipert, and Petra Mutzel

for j := 1 to k − 1 do
C(Gj+1) = CHECK-LEVEL(C(Gj), Vj+1);
if C(Gj+1) = ∅ then

return “G is not level planar.”;
return “G is level planar.”;

end.

We introduce two new strategies that lead to a correct algorithm as well as
new techniques for obtaining linear running time. One strategy is to sort all
PQ-trees with a leaf labeled v in their frontier according to their LL-values
and merge them according to this ordering. We show that the new PQ-tree
constructed by the application of this ordering represents all possible level planar
embeddings of the corresponding new component. Our second strategy for a
correct treatment of v-singular components consists of keeping at every single
representative the size of the largest interior face that has been constructed by
identifying the corresponding virtual vertices. When merging a PQ-tree of a v-
singular component into another PQ-tree with lower LL-value, this information
is checked first. When merging two non singular components, this information
has to be updated when introducing a new single representative. Here we have to
take in account that merging two components results into something that we call
a cavity. Considering the intersection C of the halfspace {x ∈ R2 | x2 ≥ k−j−1}
and the outer face of the current embedding, a v-cavity is defined to be a region
of C such that v is adjacent to the region. Obviously v can be adjacent to several
such regions. Moreover, these regions are not unique, since they depend on the
current embedding. This is no drawback, since we only need to maintain the size
of the largest v-cavity which can be easily implemented using the PQ-trees and
the LL- and ML-values of Heath and Pemmaraju (1996a,b). Figure 3 shows such
a v-cavity. The arrow on the right side of the figure depicts the height of the
cavity. A v-singular component can only be level planar embedded within this
cavity, if it is smaller than the height of the cavity.

v-cavity

v

height
v-cavity

Fig. 3. A v-cavity.

Level Planarity Testing in Linear Time 231

As we have mentioned in the previous section, merging two PQ-trees at
leaves labeled v may result in a PQ-tree T with several leaves labeled w 6= v.
Linearity of the algorithm is achieved by not applying the strategy of reducing
the leaves labeled w, since it is not clear if the detection of these leaves reveals
linear running time. We reduce these leaves labeled w only when considering their
PQ-tree T for a merge operation at w. Thus we first merge all leaves labeled
w in every tree and then merge these trees at w. We show that the modified
algorithm works correctly. When merging PQ-trees, update operations have to
be applied to the leaves of the new tree, since the leaves must know the PQ-
tree that they belong to. To avoid the usage of Fast-Union-Find-Set operations
which sum up to O(|V |α(|V |, |V |)) operations, we apply the following strategy.
Leaves are updated only when they are involved in a reduce or merge operation.
In order to update the leaves, we traverse all nodes from the considered leaf to
its root. Let U be a set of PQ-trees with leaves labeled w in their frontier. We
show that if this strategy is applied for all leaves except for the leaves in the
PQ-tree with the lowest LL-value in U , the number of operations is proportional
to the number of operations needed to reduce all these leaves. We do not need to
know the PQ-tree with the lowest LL-value in U . It is easy to see that this tree
is implicitly defined. Hence we can avoid for every merge operation the traversal
of the tree corresponding to the highest component. Thus the total number of
operations needed to perform the updates is bounded by O(|V |).

v5

Rj
2

Rj
3

Rj
1

Rj
5

v3 v2

Rj
4

v4

v{1,2}

v

v1

Fig. 4. The forms Rj
i , i = 1, 2, . . . , 5 are merged at vertex v. The v-singular

components are drawn shaded and placed into an interior face of Rj
1. The non

singular components are merged according to their height. The vertices vi, i =
1, 2, . . . , 5 and v{1,2} each correspond to a new leaf that replaces the sequence
of pertinent leaves in the corresponding PQ-tree.

The procedure CHECK-LEVEL is divided into two phases. The First Re-
duction Phase constructs the PQ-trees corresponding to the reduced extended
forms of Gj . Every PQ-tree T (F j

i) that represents all level planar embeddings

232 Michael Jünger, Sebastian Leipert, and Petra Mutzel

of some component F j
i is transformed into a PQ-tree T (Hj

i) representing all
level planar embeddings of the extended form Hj

i . We continue to reduce in ev-
ery PQ-tree T (Hj

i) all leaves with the same label, thereby constructing a new
PQ-tree, representing all level planar embeddings of Hj

i , where leaves with the
same label occupy consecutive positions. If one of the reductions fails, G cannot
be level planar. Leaves with the same label v are replaced by a single represen-
tative vi. Such a single representative vi gets the same label v, storing either a
value PML(vi) = ML(R) if the root R of the pertinent subtree is a P -node or
a value QML(vi) = min{ML(x, y) | x, y consecutive children of R, x pertinent
or y pertinent}, if the root R is a Q-node. The default value of QML(vi) and
PML(vi) is set to k + 1. These values store the height of the largest new interior
face that is constructed by merging the vertices labeled v and are needed to
handle singular components correctly.

PQ-trees of different components are merged in the Second Reduction Phase
using a function INSERT, if the components are adjacent to the same vertex v on
level j+1. Given the set of leaves labeled v, we first determine their corresponding
PQ-trees. If some leaves labeled v are in the frontier of the same PQ-tree, we
reduce them and replace them by a single representative. The PQ-trees are then
merged pairwise in the order of their sizes. We show that using this ordering a
PQ-tree T (F) is constructed, that represents all possible level planar embeddings
of the merged components. If there is more than one v-singular reduced extended
form, v ∈ Vj+1, we only need to merge the largest one of these forms. If it is
possible to embed this form level planar, all other v-singular forms obviously can
be embedded level planar as well. Even though v may not be the only common
vertex in the merged components, we do not reduce leaves with label w 6= v
in the PQ-tree in order to obtain a linear time algorithm. If one of the reduce
or merge operations fails while applied in this phase, the graph G is not level
planar. Figure 4 illustrates the merge process. The PML- and QML-values are
updated by using a function UPDATE. Finally we add for every source of Vj+1

its corresponding PQ-tree. Thus the set of PQ-trees constructed by the function
CHECK-LEVEL represents all level planar embeddings of the components Gj+1.
The following code fragment contains operations that perform on the graph G.
They are kept in the code for documentation purposes. Any implementation
would of course rely only on the manipulation of the PQ-trees.

C(Gj+1) CHECK-LEVEL(C(Gj), Vj+1)
begin

First Reduction Phase
for every component F j

i in Gj and its corresponding PQ-tree in T (F j
i) do

construct Hj
i ; construct T (Hj

i);
for every v ∈ Vj+1 do

for every extended form Hj
i do

if Sv
i 6= ∅ then
if REDUCE(T (Hj

i), Sv
i) = ∅ then return ∅;

Level Planarity Testing in Linear Time 233

else
replace Sv

i in T (Hj
i) by a single representative vi;

set PML(vi) or QML(vi); Sv
i := {vi};

for every extended form Hj
i do T (Rj

i) := T (Hj
i);

Second Reduction Phase
for v := 1 to |Vj+1| do

for every leaf labeled v do find the corresponding PQ-tree;
for every found PQ-tree Ti, i ∈ {1, 2, . . . , mj} do

if Sv
i ≥ 2 then
if REDUCE(Ti,Sv

i) = ∅ then return ∅;
else

let vT be a new single representative of Sv
i ;

UPDATE(Sv
i ,vT); replace Sv

i in Ti by vT ; Sv
i := {vT };

let Rj
i , i := 1, 2, . . . , p, be the sloppy reduced extended forms;

let o be the number of v-singular reduced extended forms;
eliminate all v-singular Rj

i except for the one with the lowest LL-value;
renumber the remaining Rj

i from 1 to p − o + 1; p := p − o + 1;
sort the Rj

i , such that LL(Rj
1) ≤ LL(Rj

2) ≤ LL(Rj
3) ≤ . . . ≤ LL(Rj

p);
F := Rj

1; T (F) := T (Rj
1);

for i := 1 to p − 1 do
T (F) := INSERT(T (F), T (Rj

i+1), v); F := F ∪v Rj
i+1;

if REDUCE(T (F), Sv
F) = ∅ then return ∅;

else
let vF be a new single representative of Sv

F ;
UPDATE(Sv

F ,vF); replace Sv
F in T (F) by vF ; Sv

F := {vF };
update the root pointers of the leaves; add all sources of Vj+1 in G to H ;
add for every source a corresponding PQ-tree to C(Gj);
C(Gj+1) := C(Gj);
return C(Gj+1);

end.

We now describe in detail how to merge the PQ-trees corresponding to two
components. All five rules presented by Heath and Pemmaraju can be adapted,
but contrary to their algorithm, we have to deal with the fact that a PQ-tree
may correspond to a singular component. Merging two PQ-trees is handled by
the method INSERT. Let LL(Tlarge) and LL(Tsmall) be two PQ-trees such that
Sv

large 6= ∅ and Sv
small 6= ∅, and LL(Tlarge) ≤ LL(Tsmall). Assume further that

Sv
large and Sv

small have been reduced and replaced by a single representative
vlarge resp. vsmall and that Sv

large = {vlarge} and Sv
small = {vsmall}. INSERT

returns a new PQ-tree Tmerge. The method does not reduce the pertinent se-
quence, nor does it replace pertinent leaves by a single leaf. Observe that in
case frontier(Tsmall) = Sv

small, we do not really add Tsmall to Tlarge, since the
component corresponding to Tsmall can be embedded in an interior face or a
v-cavity of the component corresponding to Tlarge.

234 Michael Jünger, Sebastian Leipert, and Petra Mutzel

Tmerge INSERT(Tlarge, Tsmall, v)
begin

if frontier(Tsmall) 6= Sv
small then

attach Tsmall to Tlarge as described in Heath and Pemmaraju (1996a,b);
else if PML(vlarge) 6= k + 1 then

if PML(vlarge) < LL(Tsmall) then do nothing;
else attach Tsmall to Tlarge as described in Heath et al. (1996a,b);

else if QML(vlarge) 6= k + 1 then
if QML(vlarge) < LL(Tsmall) then do nothing;
else attach Tsmall to Tlarge as described in Heath et al. (1996a,b);

return the new PQ-tree Tmerge;
end.

The method UPDATE is applied after two PQ-trees have been successfully
merged and reduced at their leaves labeled v. UPDATE computes the PML- and
QML-value of the new single representative. The values PMLr and QMLr that
appear in the code, are used to compute the height of the largest new cavity.

UPDATE(Sv
F ,vF)

begin
PMLmin := min{PML(ṽ) | ṽ ∈ Sv

F }; QMLmin := min{QML(ṽ) | ṽ ∈ Sv
F };

let r be the root of the pertinent subtree;
if r is a P -node then PMLr := ML(r);
else if r is a Q-node then

QMLr := min
{

ML(x, y) | x, y consecutive children of r,
x pertinent or y pertinent

}
;

if min{PMLmin, PMLr} < min{QMLmin, QMLr} then
PML(vF) := min{PMLmin, PMLr}; QML(vF) := k + 1;

else
QML(vF) := min{QMLmin, QMLr}; PML(vF) := k + 1;

end.

The following theorem shows the correctness of our level planarity test.

Theorem 1. Let G = (V, E) be a directed level planar graph with k ≥ 2 levels.
The algorithm LEVEL-PLANAR-TEST tests G for level planarity.

Proof. We use an inductive argument. Clearly, every component F of G that is
induced by a source and its neighbors is a hierarchy. According to Di Battista and
Nardelli (1988) we have a PQ-tree for every component F representing all level
planar embeddings. So we need to show that in every iteration, the PQ-trees
are correctly maintained and the set of permissible permutations of a PQ-tree
always represents the set of level planar embeddings of the corresponding form.

Let F j
i , i ∈ {1, 2, . . . , mj}, be an arbitrary component of Gj , 1 ≤ j < k,

Hj
i be its extended form and Rj

i be its proper reduced extended from. It is
straightforward to show that if Ti is a PQ-tree representing all level-planar
embeddings of Hj

i , then there exists a PQ-tree T ′
i , equivalent to Ti, such that

Level Planarity Testing in Linear Time 235

for all v ∈ {1, 2, . . . , |Vj+1|}, the leaves corresponding to Sv
i occupy consecutive

positions. Thus the PQ-tree constructed from T ′
i by reducing every set Sv

i and
replacing it by a single representative vi represents all level planar embeddings
of Rj

i implying the correctness of the first merge phase.
Now let v be an arbitrary vertex of level j+1, where j < k. Let Rj

1, R
j
2, . . . , Rj

p,
p ≥ 2 be reduced extended components with their virtual vertices on level
j + 1 kept separate such that Sv

i 6= ∅ for all i = 1, 2, . . . , p and |Sw
i | ≤ 1

for all w = 1, 2, . . . , v and i = 1, 2, . . . , p. Let F be the component induced
by Rj

1, R
j
2, . . . , Rj

p with v being the only identified vertex. All other vertices
with common label are kept separate. Assume w.l.o.g. that LL(Rj

1) ≤ LL(Rj
2) ≤

LL(Rj
3) ≤ . . . ≤ LL(Rj

p). Assume further, that F is constructed by first merging
Rj

1 and Rj
2 to Rj

{1,2} identifying the sets of virtual vertices Sv
1 and Sv

2 to one
vertex v, and then merging for every i = 3, 4, . . . , p the reduced extended forms
Rj

{1,2,... ,i−1} and Rj
i to Rj

{1,2,... ,i} identifying the sets of virtual vertices Sv
i to

v. Let T1, T2, . . . , Tp be the PQ-trees corresponding to Rj
1, R

j
2, . . . , Rj

p. It can
be shown by induction on the number of components that the PQ-tree T (F)
constructed by using the function INSERT on all Ti, in the order 1, 2, . . . , p,
reducing the leaves labeled v after every merge step and replacing them with a
single representative represents all level planar embeddings of F . When proving
the induction we differentiate between v-singular components and nonsingular
components. In the latter case let Si, 1 ≤ i ≤ p, be the set of virtual vertices of
Rj

i except for vertex v, and let S{1,2,... ,i}, 1 ≤ i ≤ p, be the set of virtual vertices
of Rj

{1,2,... ,i} except for vertex v. The correctness of the merge operation can
then be shown by proving first that if π{1,2,... ,i}, i ≤ p, represents a level planar
embedding of Rj

{1,2,... ,i}, then the vertices of Si form a consecutive sequence in
π{1,2,... ,i} and the vertex v is incident to Si. Notice that this result is not true,
if the order of the merge process is changed. This proves that the operations for
merging PQ-trees are correct.

For completing the proof of correctness, let v ∈ Vj+1, j < k, and let Rj
i

be a level planar reduced extended form with Sv
i 6= ∅ and |Sw

i | ≤ 1 for all
w = 1, 2, . . . , v − 1 such that Rj

i has been constructed by w-merging several
reduced extended forms. Let Ti be the corresponding PQ-tree, representing all
level planar embeddings of Rj

i . Let F be the component constructed from Rj
i

by identifying all virtual vertices labeled v to a single vertex v. It can be shown
that the PQ-tree T (F) constructed from Ti by reducing Sv

i in Ti, replacing the
sequence of leaves corresponding to Sv

i by a single representative, represents all
level planar embeddings of F . ut

Before determining the time complexity of the algorithm LEVEL-PLANAR-
TEST, we determine the number of calls for REDUCE. Obviously, the number
of calls for REDUCE in the first reduction phase is bounded by |V |, while the
number of calls of REDUCE performed upon an successful INSERT operation
is bounded by s− 1, where s denotes the number of sources of G. We show that
at most s − 1 extra REDUCE operations are necessary if the reduced extended
forms are merged according to their size. This is not a trivial result, as has been

236 Michael Jünger, Sebastian Leipert, and Petra Mutzel

stated by Heath and Pemmaraju (1996b). They observe that only one extra
reduction is possible after every INSERT operation. This is only true for the
first INSERT operation at a vertex v. If more components have to be merged,
their observation is not true in general.

Theorem 2. The algorithm LEVEL-PLANAR-TEST can be implemented to
run in O(|V |) time for any proper leveled graph G = (V, E).

Proof. The linear time follows from an amortized analysis. We use the observa-
tion of Di Battista and Nardelli (1988) that in a level planar graph |E| ≤ 2|V |−4
holds. Heath and Pemmaraju (1996a,b) have shown that the overall number of
operations that have to be performed on all calls of INSERT is bounded by
O(|V |). The number of all operations performed on all calls of REDUCE during
the first reduction phase is bounded by O(|V |) which follows from a similar ar-
gument as used by Booth and Lueker (1976) for the simple planarity test. The
number of operations performed on all calls of REDUCE after a call of INSERT
is proportional to the amount of work that has to be done in INSERT. Since the
number of extra calls of REDUCE is bounded by one for each call of INSERT
and the amount of work that has to be done for these extra calls is also propor-
tional to the number of operations in INSERT, we conclude that the number of
operations performed on all calls of REDUCE is bounded by O(|V |). Further-
more, we know that the total number of operations in order to update the leaves
before merging PQ-trees is bounded by the number of operations performed in
all calls of REDUCE. The total number of update operations that have to be
performed after a merge phase of a level is complete is obviously bounded by
O(|E|). Hence the total number of operations is bounded by O(|V |). ut

4 Remarks

For simplicity, we restricted ourselves in this paper to the level planarity testing
of proper leveled graphs. Of course, every non proper leveled graph can be trans-
formed into a proper one by inserting dummy vertices. This strategy should not
be applied since the resulting number of vertices may be quadratic in the original
number of vertices. The following theorem shows that our level planarity test
works on non proper leveled graphs as well as on proper leveled graphs, having
a linear running time for both classes of leveled graphs.

Theorem 3. The algorithm LEVEL-PLANAR-TEST tests any leveled graph
G = (V, E) for level planarity in O(|V |) time.

Proof. Consider an edge e = (v, w), v ∈ Vj , w ∈ Vl, 1 ≤ j < l − 1 ≤ k − 1,
traversing one or more levels. Inserting dummy vertices for e in order to construct
a proper hierarchy would result in a graph G′ such that every dummy vertex ue

i ,
i ∈ {j+1, j+2, . . . , l−1} has exactly one incoming edge and one outgoing edge.
However, the reduction of a PQ-tree T with respect to a set U with |U | = 1
and replacing the set by a new set U ′ with |U ′| = 1 is trivial and does not

Level Planarity Testing in Linear Time 237

modify the PQ-tree. Hence we do not need to consider the dummy vertices and
we therefore do not introduce them at all, yielding a linear level planarity test
for general leveled graphs. ut

An embedding of a general level planar graph G = (V, E) can be computed
in linear time as follows:

1. Add an extra vertex t on an extra level k + 1 and compute a hierarchy by
adding an outgoing edge to every sink without destroying level planarity.

2. Add an extra vertex s on an extra level 0 and compute an st-graph by adding
the edge (s, t) and an incoming edge to every source without destroying the
level planarity.

3. Compute a planar embedding using the algorithm by Chiba et al. (1985).
4. Construct a level planar embedding from the planar embedding.

The difficult part is to insert edges without destroying level planarity. We apply
the following strategy. The idea is to determine the position of a sink t ∈ Vj ,
j ∈ {1, 2, . . . , k − 1} by inserting an indicator as a leaf into the PQ-trees. This
indicator is ignored throughout the application of the level planarity test and will
be removed either with the leaves corresponding to the incoming edges of some
vertex v ∈ Vl, l ∈ {j + 1, j + 2, . . . , k}, or it can be found in the final PQ-tree.
However, this strategy is accompanied by a set of difficult case distinctions that
are to be discussed in another paper. Nevertheless, the time needed to compute
a level planar embedding is bounded by O(|V |) since the number of extra edges
is bounded by the number of sinks and sources in G.

References

[1976]K. Booth and G. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences, 13:335–379, 1976.

[1985]N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding
planar graphs using PQ-trees. Journal of Computer and System Sciences, 30:54–76,
1985.

[1988]G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE Trans-
actions on systems, man, and cybernetics, 18(6):1035–1046, 1988.

[1996a]L.S. Heath and S.V. Pemmaraju. Recognizing leveled-planar dags in linear
time. In F. J. Brandenburg, editor, Proc. Graph Drawing ’95, volume 1027 of
Lecture Notes in Computer Science, pages 300–311. Springer Verlag, 1996a.

[1996b]L.S. Heath and S.V. Pemmaraju. Stack and queue layouts of directed acyclic
graphs: Part II. Technical report, Department of Computer Science, Virginia Poly-
technic Institute & State University, 1996b.

[1997]M. Jünger, S. Leipert, and P. Mutzel. Pitfalls of using PQ-trees in Automatic
Graph Drawing. In G. DiBattista, editor, Graph Drawing ’97, volume 1353 of
Lecture Notes in Computer Science, pages 193–204. Springer Verlag, 1997.

	Introduction
	Preliminaries
	A Correct Linear Time Level Planarity Test
	Remarks
	References

