
Sensors 2010, 10, 4950-4967; doi:10.3390/s100504950 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Level Set Approach to Anisotropic Wet Etching of Silicon 

Branislav Radjenović 1,*, Marija Radmilović-Radjenović 1 and Miodrag Mitrić 2  

1 Institute of Physics, Pregrevica 118, 11080 Beograd, Serbia; E-Mail: marija@ipb.ac.rs 
2 Vinča Institute of Nuclear Sciences, P.O. Box 522, 11001 Beograd, Serbia;  

E-Mail: mmitric@vin.bg.ac.rs 

* Author to whom correspondence should be addressed; E-Mail: bradjeno@ipb.ac.rs;  

Tel.: +381-11-371-3176; Fax: +381-11-316-2190. 

Received: 31 December 2009; in revised form: 8 April 2010 / Accepted: 13 April 2010 / 

Published: 17 May 2010 

 

Abstract: In this paper a methodology for the three dimensional (3D) modeling and 

simulation of the profile evolution during anisotropic wet etching of silicon based on the 

level set method is presented. Etching rate anisotropy in silicon is modeled taking into 

account full silicon symmetry properties, by means of the interpolation technique using 

experimentally obtained values for the etching rates along thirteen principal and high index 

directions in KOH solutions. The resulting level set equations are solved using an open 

source implementation of the sparse field method (ITK library, developed in medical image 

processing community), extended for the case of non-convex Hamiltonians. Simulation 

results for some interesting initial 3D shapes, as well as some more practical examples 

illustrating anisotropic etching simulation in the presence of masks (simple square aperture 

mask, convex corner undercutting and convex corner compensation, formation of suspended 

structures) are shown also. The obtained results show that level set method can be used as 

an effective tool for wet etching process modeling, and that is a viable alternative to the 

Cellular Automata method which now prevails in the simulations of the wet etching process. 

Keywords: etching; level set; profile evolution; simulation 

 

1. Introduction 

Micro- and Nano Electro Mechanical Systems (MEMS and NEMS) represent a rapidly expanding 

field of semiconductor fabrication technologies for producing micro and nano scale mechanical, 
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electric, optical, fluidic, and other devices [1]. The inherently multi-physical and multi-disciplinary 

design of M(N)EMS devices demands new design methodologies including the integration of 

modeling, design, and simulation for M(N)EMS as early as possible in the course of the different  

life-cycle phases. In an ideal M(N)EMS design environment, it would be of great importance first to 

simulate the fabrication process steps in order to generate three dimensional (3D) geometrical models, 

including fabrication-dependent material properties and initial conditions. Refined control of etched 

profiles is one of the most important tasks of M(N)EMS manufacturing process. In spite of its wide 

use, the simulation of etching for M(N)EMS applications has been so far a partial success only, 

although a great number of commercial and academic research tools dedicated to this problem are 

developed.  

Actually, two types of simulations exist [2]: the first category includes simulators describing 

etching process on the atomistic level, usually including the description of etched surface 

morphologies. The second type deals with the prediction of the etching profile evolution in engineering 

applications, typically including the combination of etching with other MEMS manufacturing 

techniques. The so called atomistic simulators based on cellular automata and Monte Carlo methods [2-7] 

belong to the former group. In this methods, a silicon substrate is represented by a large number of 

cells that reside in a crystalline lattice. During the etching process, the state of each individual cell, i.e., 

whether it is removed from or remains within the lattice, is determined by the strength of chemical 

bounds and link status of its lattice neighbors. Also, the step-flow aspect [8] of wet etching process fits 

well into cellular automata method [7]. 

The most common type of the engineering simulators are so called geometrical simulators [9]. The 

etching profile is viewed as a set of planes propagating along their normal directions with the 

velocities obtained experimentally. The earlier geometric approaches implicitly assume that the 

etching is (quasi) equilibrium process that can be regarded as the reversal of crystal growth in saturated 

solutions, and that for every intermediate state Wulff theorem holds (a relatively new and 

mathematically rigorous exposition of the Wulff problem can be found in reference [10]). That means 

that the etched crystal is always in the minimum energy state with the shape determined by the 

Legendre transformation of the surface tension (Wulff shape). Within each time step, each plane 

forming a part of the surface evolves along its normal direction, experiencing a displacement according 

to the known etch rate for that particular plane. The change in geometry at the intersecting lines 

between adjacent crystallographic planes or at the edge of a masked region is determined using the 

Wulff-Jaccodine method [9], in order to avoid the problem of the missing values of the surface 

tensions. These simulators require the knowledge of complete etch rate diagrams, to be obtained 

somehow (experimentally, or in another calculations). Since only a finite set of etch rates can be 

obtained from experiment, it is particularly complicated to describe the evolution of curved  

non-crystallographic surfaces. Generally, continuum geometric representation of the etched surfaces is 

much more convenient for engineering applications, since it is usually necessary to integrate etching 

profiles evolution with other processes like chemical reactions, deposition, diffusion, viscous flow, etc. 

which are also described by continuum (partial differential) equations.  

The level set method for evolving interfaces [11] belongs to the geometric type of methods, and it is 

specially designed for profiles which can develop sharp corners, change of topology and undergo 

orders of magnitude changes in speed. It is based on Hamilton-Jacobi type equation for the level set 
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function using techniques developed for solving hyperbolic partial differential equations. This method 

is free on any implicit assumptions about the nature of the processes that force interface evolution, and 

the whole physics and chemistry of them are contained in just one parameter-normal component of the 

surface velocity. During last several years several variants of the level set methods have been 

developed with application to micro fabrication problems [12,13]. In this study we present an 

anisotropic etching simulator based on the sparse field method for solving the level set equations. The 

sparse-field method itself, developed by Whitaker [14], and broadly used in image processing 

community, is an alternative to the usual combination of narrow band and fast marching procedures for 

the computationally effective solving of the level set equations [15,16]. Our primary goal is to develop 

an accurate, stable and efficient 3D code for tracking of the etching profile evolution that includes 

different physical effects such as anisotropy and material-dependent propagation rates, yet being 

computationally effective to run on desktop PCs.  

The paper is organized as follows: in Section 2 some aspect of the silicon wet etching process are 

discussed. After that, the relations describing the angular dependence of the etching rates, based on an 

interpolation procedure and silicon crystal symmetry properties, are derived. In Section 3 the necessary 

details for the implementation of the sparse field method for solving the level set equations in the case 

of etching rates defined in Section 2, are described. Section 4 contains simulation results for some 

interesting initial 3D shapes (cube and sphere), as well as some more practical examples illustrating 

anisotropic etching simulation in the presence of masks (simple square aperture mask, convex corner 

undercutting and convex corner compensation, formation of suspended structures). 

2. Anisotropic Etching of Silicon: Angular Dependence of the Etching Rate 

Although silicon etching techniques are currently undergoing a revolution driven by the 

incorporation of plasma etching process, anisotropic wet chemical etching is still the most widely used 

processing technique in silicon technology [1]. Not only the cost of wet etching systems is much lower 

than that of plasma types, but also certain features can only be realized using anisotropic wet etching. 

Very complicated 3D structures can be formed by this technique; it enables controlled undercutting of 

suspended structures, not possible by other microfabrication techniques. It is also referred to as “bulk 

micromachining”, since in this technology the body of the silicon wafer is etched away.  

The anisotropy of the etching process is actually the orientation dependence of the etch rate. 

Regardless of the great amount of work done in this field, there is no generally accepted single theory 

for a mechanism that explains the great anisotropy in silicon wet etching. It is accepted [6] that the 

origin of this macroscopic anisotropy in the etching process lies in the crystal site-specificity of the 

etch rates at the atomistic level.  

As stated earlier, in order to simulate the time evolution of 3D etching profiles it is essential that 

exact etch rates in all directions are known. In this paper we shall use the experimental values of 

etching rate for silicon in KOH solutions for three different etchant concentrations (30%, 40% and 50%) 

for etching temperature of 70 ºC, and they are listed in Table 1. These values are taken from 

Reference [17], except the last row which originates from [18]. 
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Table 1. Etching rates of silicon at different KOH concentrations at 70 ºC [17,18]. 

Crystallographic 
Orientation 

30% 40% 50% 

(100) 0.797 0.599 0.539 
(110) 1.455 1.294 0.870 
(210) 1.561 1.233 0.959 
(211) 1.319 0.950 0.621 
(221) 0.714 0.544 0.322 
(310) 1.456 1.088 0.757 
(311) 1.436 1.067 0.746 
(320) 1.543 1.287 1.013 
(331) 1.160 0.800 0.489 
(530) 1.556 1.280 1.033 
(540) 1.512 1.287 0.914 
(111) 0.005 0.009 0.009 
(411) 1.340 0.910 0.660 

 

The etching rates for only limited number of directions are known, but they can be used to 

determine rate value in an arbitrary direction by an interpolation procedure. The problem of etching 

rate interpolation is equivalent to function interpolation over a sphere in 3D. For accuracy, the etching 

rate model must interpolate through the given etching rates and directions while maintaining its 

continuity, since possible requirement that the first derivative must be continuous also, is too high, as 

empirical studies have shown cusps in etching rate diagrams. Here we shall use etching rate model 

developed by Hubbard [9], that satisfies these conditions. Of course, this is not the only possibility; the 

problem of finding the optimal interpolation method is out of scope of this paper.  
It is supposed that x, y and z axes are aligned with [100], [010] and [001] crystal directions, 

respectively. The point group of silicon's symmetry m3m (subgroup of Fd3m space group) contains 48 

elements. Since it is not easy to assemble angular section using three principal directions with which 

the whole space can be covered by the symmetry operations, at first we shall use only 16 out of 48 

symmetry elements for that purpose. As a result, we obtain only 1/16th of the all full angular extent 

(0 90 ; 0 45 )       , or the wedge defined by the planes (0 ; 0 ; 0 )x y x zN N N N    , as it is 

shown in Figure 1a, where the symmetry elements and the symmetry operations are denoted.  

The second step is to divide this angular section into three equivalent (curved) triangles as it is 

shown in Figure 1b. These triangles are connected by the roto-inversion symmetry operations denoted 

in the same figure, with 3-fold roto-inversion axis going along (111) direction. The upper triangle, 

defined by (001), (101) and (111) directions, is the region where the etching rate should be 

interpolated. This is a 1/48th part of the all full angular extent, and in it for every arbitrary direction the 

equivalent point exists, which can be determined using enlisted symmetry operations. 
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Figure 1. Etching rate interpolation region: (a) The angular section defined by the planes 

(0 ; 0 ; 0 )x y x zN N N N    . (b) Irreducible triangles (1/48th part of the all full angular 

extent). Curved triangle A is used as the interpolation region. 

 

The simplest method is to use only the experimental rate values for the principal directions [100], [110] 

and [111], since in three dimension three independent vectors are needed to define a basis. In that case, 

the interpolation region is shown in Figure 2a. Following the methodolgy described in Reference [9], 

the etching rate R in an arbitrary direction N' is calculated in two steps. The first is to find the 

equivalent direction N (Nx, Ny, Nz) in the interpolation region using symmetry operations; the second is 

to apply the appropriate interpolation relation:  

100 110 111( ') ( ) ( ) ( ) /z x x y y zR R R N N R N N R N N       N N , (1) 

where Rhkl is etching rate in [hkl] direction. Details of this interpolation procedure can be found in [9]. 

Changing to the spherical coordinates: 

sin cos ; sin sin ; cosx y zN N N        (2) 

it is straightforward to obtain etching rate angular dependence. 

Figure 2. The (a) three- , (b) four- and (c) thirteen-parameters inetrpolation subregions. 
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In Figure 3a the resulting three-parameter etching rate is shown in the full angular extent. The 

presence of cusps in the etching rates implies the existence of facets in the etching profiles. Better 

interpolation results can be obtained if additional experimentally obtained rates are included. For 

example, if include the first most important (high index) planes {311}, the interpolation region will 

consist of two sections: I [101, 001, 113], and II [101, 113, 111], as it is depicted in Figure 2b. Then, 

the etching rate R in an arbitrary direction N (Nx, Ny, Nz) will be given by the relation: 

 
100 110 311

111 110 311

( 2 ) ( ) 3 / ; I
( )

2 /2 ( ) 3 ( )/2 / ; II

z x y x y y z

x y z x y z x z

R N N N R N N R N N
R

R N N N R N N R N N N

        
         

N
N

N
 (3) 

Figure 3. The angular dependence of the etching rate calculated using interpolation 

formulas with three (a), four (b) and thirteen (c) interpolation parameters (for 30% etchant 

concentration) listed in Table1. 

 

Figure 3b shows the four-parameter angular dependence of the etching rate. There is no any 

principal difficulty in including other known high index etching rates, only the resulting analytical 

expression will become more complicated. In our previous papers [19], [20] we have used only these 

interpolation formula. Also, the interpolation procedure has been performed on the whole wedge, 

shown in Figure 1. as it was suggested initially in [9]. Here we shall write expression obtained using 

etching rates in thirteen directions, listed in Table 1, in order to improve our simulation model. 

Actually, these all that we could find in literature, although it is possible to find more data in 

commercial sources. In that case, the interpolation region is divided in eleven subregions, as it is 

shown in Figure 2c. The resulting etching rate angular dependence is shown in Figure 3c. It is obvious 

that it is important to include as many as possible parameters (experimental values of the etching rates) 

in order to increase precision of the interpolation procedure. 
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     N

 

(4) 

Figure 4. The angular dependence of the etching rate calculated using interpolation 

formulas with thirteen-parameters for three etchant concentrations: (a) 30%, (b) 40% and (c) 50%. 

 

In Figure 4 the angular dependencies for three different etchant concentrations are shown. As can be 

seen, the increase of concentration slows down etching process, but the shapes of these functions are 

(roughly) identical. 

It is important to remember that all physical aspects of the etching process are contained in these 

angular dependences, and that they determine time evolution of the feature profile completely, 

appearance and disapearrance of particular planes and the final profile. For different values of the 

parameters these shapes look different. Inclusion of additional planes will also change the shape of 

angular dependences. 

3. Level Set Method for Non-Convex Hamiltonians 

Level set method, introduced by Osher and Sethian [11], is a powerful technique for analyzing and 

computing moving fronts in a variety of different settings. The level sets are used in image processing, 
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computer vision, computational fluid dynamics, material science, and many other fields. Detailed 

exposition of the theoretical and numerical aspects of the method, and applications to different areas 

can be found in books [15,16], and recent review articles [21,22]. The basic idea behind the level set 

method is to represent the surface in question at a certain time t as the zero level set (with respect to the 

space variables) of a certain function  (t, x), the so called level set function. The initial surface is 

given by {x |  (0, x) = 0}. The evolution of the surface in time is caused by “forces” or fluxes of 

particles reaching the surface in the case of the etching process. The velocity of the point on the 

surface normal to the surface will be denoted by R (t, x), and is called velocity function. For the points 

on the surface this function is determined by physical and chemical models of the ongoing processes. 

The velocity function generally depends on the time and space variables and we assume that it is 

defined on the whole simulation domain. At a later time t > 0, the surface is as well the zero level set 

of the function  (t, x), namely it can be defined as a set of points {xn |  (t, x) = 0}. This leads to 

the level set equation: 

( , ) 0R t
t

 
  


x  (5) 

in the unknown function  (t, x), where  (0, x) = 0 determines the initial surface. Having solved this 

equation the zero level set of the solution is the sought surface at all later times. Actually, this equation 

relates the time change to the gradient via the velocity function. In the numerical implementation the 

level set function is represented by its values on grid nodes, and the current surface must be extracted 

from this grid. In order to apply the level set method a suitable initial function  (0, x) has to be 

defined first. The natural choice for the initialization is the signed distance function of a point from the 

given surface. As already stated, the values of the velocity function are determined by the physical models.  

The equation (5) can be rewritten in Hamilton-Jacobi form: 

( ( , )) 0,H t
t

 
  


x  (6) 

where the Hamiltonian is given by H = R (t, x)|φ(t, x)| (in this context the term “Hamiltonian” 

denotes a Hamiltonian function, not an operator). A detailed exposition about the Hamilton-Jacobi 

equation, the existence and uniqueness of its solution (especially about its viscosity solutions), can be 

found in Reference [23]. We say that such a Hamiltonian is convex (in n ) if the following condition 

is fulfilled: 

,0
2






ji xx

H

  (7) 

where 
ix  is a partial derivative of φ(t, x) with respect of xi . If the surface velocity R (t, x) does not 

depend on the level set function φ(t, x) itself, this condition is usually satisfied. In that case, we can say 

that the problem is of free boundary type. In that case the spatial derivatives of  can be approximated 

using the Engquist-Osher upwind finite difference scheme, or by ENO (higher-order essentially  

non-oscillatory) and WENO (weighted essentially non-oscillatory) discretization schemes, that 

requires the values of this function at the all grid points considered. The resulting semi-discrete 
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equations can be solved using explicit Euler method, or more precisely by TVD (total-variation 

diminishing) Runge-Kutta time integration procedure (see Reference [15] and [16] for the details). 

Several approaches for solving level set equations exist which increase accuracy while decreasing 

computational effort. They are all based on using some sort of adaptive schemes. The most important 

are narrow band level set method, widely used in etching process modeling tools, and recently 

developed sparse-field method [14], implemented in medical image processing ITK library [24]. The 

sparse-field method use an approximation to the distance function that makes it feasible to recompute 

the neighborhood of the zero level set at each time step. It computes updates on a band of grid points 

that is only one point wide. The width of the neighborhood is such that derivatives for the next time 

step can be calculated. This approach has several advantages. The algorithm does precisely the number 

of calculation needed to compute the next position of the zero level set surface. The number of points 

being computed is so small that it is feasible to use a linked-list to keep a track of them, so at each 

iteration only those points are visited whose values control the position of the zero level set surface. As 

a result, the number of computations increases with the size of the surface, rather than with the 

resolution of the grid.  

The non-convex Hamiltonians are characteristic for anisotropic etching and deposition  

simulations [13].The upwind finite difference scheme cannot be used in the case of non-convex 

Hamiltonians. The simplest scheme that can be applied in these cases is the Lax-Friedrichs, one which 

relies on the central difference approximation to the numerical flux function, and preserves 

monotonicity through a second-order linear smoothing term [16]: 

     

1 [ , ,
2 2 2

1 1 1
]

2 2 2

x x y y z z
ijk ijk ijk ijk ijk ijkn n

ijk ijk

x x y y z z
x ijk ijk y ijk ijk z ijk ijk

D D D D D D
t H

D D D D D D

 

  

     


     

   
     

 

     
 (8) 

where ( , )x y z
ijkD  and ( , )x y z

ijkD  are usual forward and backward differences: 

1, , , , , , 1, ,

, 1, , , , , , 1,

, , , , 1 , , , , 1

,

,

,

n n n n
i j k i j k i j k i j kx x

ijk ijk

n n n n
i j k i j k i j k i j ky y

ijk ijk

n n n n
i j k i j k i j k i j kz z

ijk ijk

D D
x x

D D
y y

D D
z z

   

   

   

  

  

  

 
 

 
 

 
 

 
 

 

 (9) 

and αx (αy, αz) is a bound on the partial derivative of the Hamiltonian with respect to the first (second, 

third) argument: 

max , max , maxx y z
x y z

H H H  
  
  

  
  

 (10) 
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The terms on the second row of the above equation are the smoothing terms. They are similar to the 

second derivatives in each variable. In general, these terms need not be calculated exactly. 

Overestimated values will produce non-realistic smoothing of the sharp corners in the implicit 

surfaces. Too little smoothing usually leads to numerical instabilities in calculations. In Reference [25] 

it is shown that it is possible to use the Lax-Friedrichs scheme in conjunction with the sparse field 

method, and to preserve sharp interfaces and corners by optimizing the amount of smoothing in it.  

It is essential to express the etching rates in terms of the level set function itself in order to obtain 

level set equation in Hamilton-Jacobi form. To accomplish this goal, we start from the facts that the 
unit vector normal to the zero level set is given by /  N , and that the angles  and  are 

connected to the level set function by the 
22sin 1 /z     and /ytg    . In this way the 

rate R can be expressed in terms of the geometrical properties of the level set function itself, and the 

Hamiltonian becomes: 

110 100 111 110 100( ) ( ) ( ) /x y z zH R R R R R               (11) 

for the simple etching rate angular dependence given by the relation (1). In order to implement  

Lax-Friedrichs scheme it is necessary to find first derivatives appearing in (10). After some 

straightforward algebraic manipulations the following relations can be obtained: 

      2 2
111 110 100 110 100( ) /

xx y y z x z
x

H
R R R R R       




       


 (12) 

   2 2
100 111 110 110( ) ( ) /y z x y y x z

y

H
R R R R        


             

(13) 

   2 2 3 2
100 110 110 111 100( ) ( ) ( ) /x y x y z z

z

H
R R R R R      


         

 
(14) 

If the high index planes {311} are included, the expressions become more complicated because the 

interpolation region is then divided in two subregions. Since one of the goals of this study is 

investigate the influence of these planes on the final outcomes, we shall write them explicitly. The 

Hamiltonian corresponding to the relation (3) has the form: 

110 100 311 100 110 100

311 110 111 111 110 311 111

( ) (3 2 ) / ; I
( )

(3 / 2 / 2) ( ) (3 ) / 2 / ; II

x y z z

x y z z

R R R R R R
H

R R R R R R R

     


     

            
           

 (15) 

while the derivatives are: 

   

   

2

311 110 100 110 100 110 100 100

2

110 111 311 110 111 311

3 ( ) ( ) ( 2 ) / ; I

(2 3 ) 2 ( ) ( 2 ) 3 ( ) / 2 ; II

x y x x y z z

x
x x y x y z z x z

R R R R R R R RH

R R R R R R

        

            

                              

 (16) 
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2

311 100 110 110 311 100

2
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3 2 3 2 / ; I

2 3 /2 / ; II

y x y y z x y z

y
y x y x y z z x z
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(17) 

        
          

2 2 3 2
100 110 100 110 311 100

2 2 3 2
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2 3 / ; I

3 2 2 3 / 2 ; II

x y x y z z

z x y x y z z
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(18) 

The same procedure can be used to derive relations when thirteen experimental values of the 

etching rates for interpolation are used (eleven subregions, Figure 2c). Namely, using  

thirteen-parameters formula (4) the following Hamiltonian has been obtained: 

 

 

 

 

 

 

 

 

(19) 

 

 

 

 

 

 

 

The necessary first derivatives can be derived directly from (18), but the corresponding expressions 

are too cumbersome to be stated here.  

The second derivatives of the Hamiltonian appearing in (11) and (15) are also needed for checking 

their convexity condition (7). Actually, it is not necessary as the Figure 3 and 4 suggest that the etching 

rates (and corresponding Hamiltonians) are non-convex functions. It means that it is convenient to 

implement already mentioned procedure [25] in order to solve numerically initial value problem (5). 

4. Simulation Results 

Potassium hydroxide (KOH) is the most common and the most important chemical etchant, because 

of its excellent repeatability and uniformity in fabrication, and its low production cost. In actual 

calculations we made use of etching rates listed in Table 1. The actual shapes of the initial surfaces are 

described using simple geometrical abstractions. In the beginning of the calculations this descriptions 

are transformed into the initial level set functions using the fast marching method [15]. If the initial 

profile is defined with a bitmap mask, a special routine is used to generate corresponding initial level 

set function starting from the mask file. Our implementation is based on ITK library [24]. The classes 
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describing the level set function and the level set filter are reimplemented according to the procedures 

for treating non-convex Hamiltonians described in the previous section. 

Here we shall present some results obtained using previously described methodology. In view of the 

fact that we were not able neither to compare our results with cellular automata simulations nor to 

perform any experimental work, we have carefully chosen set of examples for which the outcomes 

(final profiles) are known, either from simple theoretical considerations or from published 

experimental results. For example, it is expected that the final shape after the etching of any 3D object 

must be composed of the fastest etching planes. Similarly, etching through the aperture of any form 

ends with a cavity bounded by the slowest {111} planes [1]. 

Since the cube is the simplest isometric crystal form [26], first we present the time evolution of the 

initial cube shape made of {100} planes. In Figure 5, the changes of the cube form are shown at five 

equidistant time moments for 30% etchant concentration and thirteen-parameters interpolation 

formula.  

Figure 5. Etching profiles of the silicon cube with initial edge of 30 m after 0 s, 120 s, 240 s,  

360 s and 480 s, obtained using the thirteen-parameters interpolation formula for 30% etchant 

concentration.  

 

It is obvious that the initial cube shape gradually transforms to the final tetrahexahedron, consisting 

of 24 triangles belonging to the {012} family of planes, through the combinations of these shapes. It is 

expected given that tetrahexahedron is the only isometric form made of {012} principal planes. If the 

fastest planes are not {012} family, as in the case of 40% etchant concentration, the final profile shape 

will change accordingly. We shall pay more attention to this in the next, more interesting case. 

In order to test the strength of the method we have chosen to simulate etching of the silicon ball in 

KOH etchant. The initial spherical surface contains all possible velocity directions, so it is expected 

that the anisotropy of the etching process will produce the most dramatic changes of the initial shape. 

This shape, or more precisely hemisphere, is used in the experimental setup [17,27] for measuring 

etching rates anisotropy, also. In such an experiment a hemisphere is only etched for a short time in 

order to minimize the inteference of neighbouring orientations. Here we shall follow etching process 

until its final stage. Figure 6 the illustrates changes of the initial spherical shape at six equidistant 

(reduced) time moments for 40% and 50% etchant concentrations. The results are different from 

preliminary ones published in reference [19], where calculations with three parameters etching rates 

were performed on coarser mesh and with underestimated smoothing term in Lax-Friedrichs finite 

difference scheme. In the first case the final stage is (quasi) dodecahedron since the planes {110} are 

the fastest family. By word “quasi” we mean curved, since {110} planes forming dodecahedron are 
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obviously bent toward {012} planes of the corresponding tetrahexahedron. The higher order fast 

etching planes ({320}, {530} and {540}) have no influence on the final shape, although some 

tetrahexadral forms probably can be recognized in the early phases of the profile evolution. This 

problem requires more careful analysis that goes beyond the scope of the present paper. For 50% 

etchant concentration (Figure 6b), the final shape is pure tetrahexahedron, since the fastest plane 

family is {012}, as can be seen from Table 1. The shape evolution for 30% etchant concentration is 

almost the same (a little bit faster), so it is not shown here. 

Figure 6. Etching profiles of the sphere with initial radius of 25 m after 0 s, 100 s, 200 s, 

300 s, 400 s, 500 s and 600 s, obtained using thirteen-parameters interpolation formulas for  

(a) 40% and (b) 50% etchant concentrations. 

 

In Figure 7 process inverse to etching, namely, the artificial growth of the cube and the sphere when 

growth rate is equal to the etching rate, is presented.  

Figure 7. Artificial growth of the cube (upper row) and the sphere (lower row) with the 

growth rates given by the thirteen-parameters etching rate interpolation formulas for 30% 

etchant concentration. 
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The final shapes are the same in both cases; it is octahedron made of the slowest {111} family of 

planes. It can be obtained [28] by the Legendre transform of etching rate angular distributions: 

' 0

( ')
( ) inf

'

R
W

 

    N N

N
N

N N
 (20) 

It can be easily shown that applying transform (20) on etching rates defined by (1), (3) and (4) lead 

to octahedrons. This example shows that possibilities for using the inverse modeling for design 

purposes are very limited, since the information about the initial shape is lost quickly. Actually, it is 

connected with the detailed knowledge of the etching rate anisotropy, as well as with the mask 

orientation, and probably models based only on relatively small number of parameters (like one 

presented in this paper) are not sufficient for this purpose. 

The first example in which the maks are used is etching through square openings in the {100} 

silicon plane with edges aligned to <100> (Figure 8, upper raw) and <110> (Figure 8, lower row) 

directions. Formation of the V-shaped cavities consisting only of slow {111} planes is reproduced 

correctly in both cases. The masks square edge lengths are choosen to be 15 2 m and 15m for <100> 

and <110> aligning directions respectively, so the final profiles are the same size cavities. 

Figure 8. Etching through a square aperture mask in {100} plane aligned to <100> (upper 

row) and <110> (lower row) directions. Profiles after 100 s, 300 s, 600 s and 900 s, 

obtained using thirteen-parameter interpolation formulas. 

 

Real applications very often require that mask includes, instead of only concave as in the previous 

case, many convex corners. In that case typical undercutting faceted shape beneath such a corner 

appears [29]. Convex corner undercutting can be a useful phenomena; for example it helps in the 

manufacturing of cantilever beam structures. On the other hand, it is highly undesirable in production 

mesa structures. Etching profiles evolution starting with two simple masks leading to pronounced 

undercutting phenomena are presented in Figure 9. Obtained profiles resemble, at least qualitatively, a 

SEM micrograph of an experimental mesa structure (see Figure 1 in reference [30]), although it seems 

to be more rounded then the experimental one. Generally speaking, convex corner undercutting is a 

very important and complex problem. Its proper modeling requires inclusion of a great number of high 

order planes [29], but we think that even relatively simple model with thirteen parameters describes it 
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correctly. It is reasonable to assume that the inclusion of some other high order planes would enhance 

agreement with experimental shapes. 

Figure 9. Convex corner undercutting. Initial aperture is aligned to <110> directions. 

Evolution of the profiles for the square (upper row) and the circular (lower row) masks, 

with the dotted masks superimposed, are presented. 

 
 

In order to avoid the effects of convex corner undercutting various compensation techniques are 

widely used. One of the most effective compensation structure is <100> oriented beam [29]. In Figure 10 

the effects of such a compensation on the profile evolution during the mesa structure fabrication are shown. 

Figure 10. Convex corner compensation in mesa structure fabrication. Compensation mask 

is shown in the upper left corner. Initial aperture is aligned to <110> directions. Profiles at 

six equidistant time moments, with the dotted mask superimposed, are presented. 

 

As it is mentioned in section 2, the anisotropic etching of sacrificial layers is usually used for 

manufacturing of suspended structures using. In Figures 11 and 12 evolutions of the etching profiles 

leading to formation of two different released structures are shown. The mask in Figure 11 contains 

both concave and convex corners, while that in Figure 12 includes only concave ones. In both cases the 

final profile is V-shaped {111} cavity beneath the suspended structure. Such structures are used for 



Sensors 2010, 10              

 

 

4965

different purposes. Various types of cantilever beams (Figure 11) are required in accelerometers, light 

modulators, etc.  

Figure 11. Formation of a system of suspended cantilever beams. Initial aperture is aligned 

to <110> directions. 

 

Figure 12. Formation of a released suspended plate. Initial aperture is aligned to <110> directions.  

 

5. Conclusions  

In this paper we have shown that the profile evolution during anisotropic wet etching of silicon can 

be described by the non-convex Hamiltonian arising in the Hamilton-Jacobi equation for the level set 

function. Angular dependence of the etching rate is calculated on the base of full silicon symmetry 

properties, by means of the interpolation technique using experimentally obtained values of the etching 

rates for principal and some of high order planes (totally thirteen) in KOH solutions. The resulting 

level set equations are solved by applying the sparse field method extended for the case of non-convex 

Hamiltonians. The simulation results showing profile evolution in some interesting 3D cases are 

presented: cube and sphere for various etchant concentrations. Also, examples are given showing that 

the method can be used to model etching process in the presence of masks. These include simple 

square aperture masks differently oriented, convex corner undercutting and convex corner 

compensation, formation of suspended structures. The results obtained so far show that level set 

method can be used as an effective tool for wet etching process modeling on the device level, and that 

it is a viable alternative to the cellular automata method which now prevails in the simulations of the 
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wet etching process both in microscopic (atomistic) and engineering applications. However, much 

work is still needed to improve it to the level of the current commercial cellular automata simulators 

(for example, IntelliEtch [31]). It is especially important to reduce memory consumption which is, in 

our implementation, proportional to N3 (N-resolution in one spatial direction). We believe that it is also 

possible to use the level set method to analyze microscopic etching mechanisms on atomistic level, 

especially in conjunction with kinematic wave theory [32], and this will be a part of our future research. 
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