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LEVEL SET DRIVEN SMOOTH CURVE APPROXIMATION

FROM UNORGANIZED OR NOISY POINT SET ∗

A. Claisse1 and P. Frey2 ,1

Abstract. In this paper, we propose a curve construction method for a non uniform point data

set based on a minimal curve approximation model. Numerically, the level set method is used

for curve reconstruction. We represent the shape of the curve through its distance function and

formulate curve reconstruction as a constrained minimization problem. We solve the minimization

problem on a highly anisotropic triangulation to improve the accuracy of the numerical scheme.

This method can handle complex geometries and deal with arbitrary topologies as well as with

noisy data sets. Several numerical examples are provided to show the efficiency of the proposed

approach.

Résumé. Dans ce papier, on propose un modèle de courbe d’approximation minimale pour con-

struire une courbe à partir d’un nuage de points. Numériquement, la reconstruction de la courbe

s’appuie sur une formulation de type ligne de niveau. On représente la forme de la courbe par sa

fonction distance aux points et on exprime ce problème comme un problème de minimisation. Ce

dernier est résolu sur une triangulation anisotrope qui permet d’améliorer la précision du schéma

numérique. Cette méthode permet de traiter des géométries complexes et des topologies quelcon-

ques ainsi que des données bruitées. Des exemples de reconstruction sont proposés pour montrer

l’éfficacité de cette approche.

1. Introduction

The problem of reconstructing a regular curve from an unorganized point data set remains an important
and an active area of research, despite numerous papers recently published on this topic [39, 47]. With the
recent advent of sensing and scanning devices, large-scale points sampled curve and surface reconstruction
algorithms have been receiving a great deal of attention in geometric modelling and reverse engineering as
well as in computational workflows. There is a crucial need for a high-quality robust and efficient shape
reconstruction technique for an arbitrary data set. The challenge for curve reconstruction is then to design
versatile methods to handle a wide range of shapes. Furthermore, an adequate procedure should have a
representation that is good for static approximation but also for dynamic deformations of the manifold.

The interpolation (resp. approximation) problem we consider can be loosely stated as follows: Given a set
of points V which are sampled from a regular curve in R

2, construct a smooth curve Γ so that all points of V

lie on (resp. close to) Γ. This formulation is obviously not very straight and since it is context dependent,
it may lead to twofold interpretation. On the one hand, data analysis would consider that the shape of the
manifold from which the data has been sampled is not known and then the aim is to find a “reasonable”
solution among all possible. On the other hand, curve reconstruction considers that the original curve is
known and that this knowledge can be suitably used to drive the algorithms.
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We assume in this paper that the points in the data set V are sampled from an actual curve, possibly
with noise or uncertainty in the data, although the geometry and the topology of the real shape are not
known a priori and can be arbitrarily complex. This also means that no connection or ordering information
among the data points is known. A proper reconstruction is usually possible if the sampling of the points
is “sufficient”. However, finding a sufficient sampling condition is a fairly difficult problem and as such
was largely neglected, if not simply ignored, in most research work up to now, at the noticeable exceptions
of [7, 8].

Mathematically, the interpolation or approximation curve reconstruction as stated here is an ill-posed
problem for which there is no unique solution [30]. In general, the solutions to this problem can be classified
into two broad categories: depending on whether the reconstructed manifold has an explicit or an implicit
representation. Explicit representations (including parametric curves and discretized curves or meshes)
prescribe the exact location of the curve while implicit representations consider the curve as a specific iso-
contour of a real valued function. An explicit representations present the advantage of speed and can easily
handle sharp features, however it faces difficulties in tracking large deformations or processing topology
changes. Recently, a lot of attention has been targeted to implicit representations. The computational cost
is usually high for large data sets since the construction is global (i.e. requires solving a large linear system),
but they offer the advantage to be almost insensitive to topological complexity and requires a simple data
structure. However, they have difficulties in dealing with sharp features. Nonetheless, partial differential
equation (PDE) driven approaches to solve level set problems, introduced by [38, 46], have now become a
robust method to handle dynamically evolving interfaces. The algorithm starts from an initial curve (e.g.
enclosing the point data set) and deforms it toward the data set by solving a PDE advection type problem
until some stopping criterion is met. However, most of these approaches are not suitable for processing noisy
data.

1.1. Our approach

We propose a PDE-driven, level set method to reconstruct a regular curve shape from a set of unorganized
points. In this approach, the solution curve Γ is represented as the zero level set u(x) = 0 of a signed distance
function u and the problem is reformulated as a constrained energy minimization problem. The regularity
of the curve Γ is controlled by a surface tension term related to the local curvature of the manifold. A
level set method is used to solve the temporal evolution of an initial curve Γ(t = 0) toward the boundary
of the point set. Actually, the problem of propagating a curve is equivalent to the problem of updating the
signed distance function. Furthermore, the variational problem is solved using first-order Lagrange P1 finite
elements on anisotropic unstructured triangulations that allows to improve noticeably the accuracy of the
solution. We propose a three-step algorithm to perform the curve reconstruction process:

(1) initialization stage: at first, a scalar value d(x, V ) corresponding to its distance to the point set V is
assigned to each mesh vertex x of a quasi-uniform anisotropic triangulation Th, that is highly refined
in the vicinity of the point cloud using the technique described in [20];

(2) evolutionary stage: an initial regular implicit curve Γ(t = 0) is progressively deformed by solving a
level set based advection equation until it fits at best through the data set;

(3) discretization stage: in the third phase, a piecewise affine approximation of the regular final curve
is obtained that allows for the fast visualization of the numerical solution.

Important features of our approach are the following:

• We use a variational PDE-driven approach that relies on two terms: a fitting term involving the
distance to the data set and a curvature-based surface tension term to control the regularity of the
curve;

• Complex topology and noisy data set can be handled with no difficulty;
• We solve the level set based minimization problem on unstructured triangulations using efficient and

accurate numerical schemes;
• Our method can be extended in a straightforward manner to higher space dimension.
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1.2. Related work

As pointed out, numerous research works have been published recently on the topic of curve and sur-
face reconstruction from unorganized point clouds. Computational geometry approaches based on Delaunay
triangulations or Voronöı diagrams on the one hand and volumetric techniques relying on signed distance
functions on the other hand compose the main categories of published work. In general, the type of repre-
sentation considered is strongly related to the domain of application. For instance, triangulations, sudivision
surfaces, discretized level sets, scalar spline functions, radial basis functions or point set surfaces have been
investigated [5,6,11]. It is beyond the scope of this paper to review these approaches, but we refer the reader
to the paper [27, 35] for a survey of the topic of surface reconstruction. We retain here only the approaches
based on implicit shape representations and level set methods, because of their ability to manage topological
changes and to deal with a certain degree of uncertainty in the point data sets.

Volumetric approaches aim in general at defining a discrete signed distance function to the points of
the data set. Then, a piecewise affine discretization of the zero level set is constructed using efficient and
straightforward heuristic algorithms, e.g. Marching polyhedra [13,32]. In most methods, the data set is used
to define a discrete signed distance function on Cartesian grids and denotes the zero level of this function
as the reconstructed curve or surface [8, 10, 26]. This approach requires the knowledge of the orientation of
the manifold to distinguish between its interior and its exterior and thus the estimation of the local normals
or the tangent planes [16, 41]. This is known to be one of the most critical stage in the reconstruction
process. Methods based on signed distance functions have usually the drawback of resulting in manifolds
with not the lowest possible genus or presenting severe topological artifacts (e.g. due to local inconsistencies).
Unsigned distance functions can be introduced to overcome this problem since they do not carry orientation
information [27].

Following [33, 46], we consider the reconstruction problem on the continuous level, by developing a con-
tinuous model based on PDEs and differential geometry properties that involves only the unsigned distance
function to the data set. The level set method is used as a convenient numerical technique to deform con-
tinuously an initial curve following the gradient descent of an energy functional. However, instead of solving
the PDE on structured grids, we introduce here highly stretched elements in the vicinity of the data set to
considerably improve the numerical approximation of the manifold at convergence of the numerical scheme.

The remainder of this paper is organized as follows. The variational minimization problem corresponding
to the curve reconstruction model is described in Section 2. Section 3 review the main numerical issues faced
in the reconstruction process. In Section 4, experimental results on synthetic and real data sets are provided
to illustrate the efficiency and the salient features of our approach.

2. Curve reconstruction model

Let V denote a general data set consisting a data points sampled from a regular planar curve. Define

d(x) = dist(x, V ) = min
y∈V

‖x − y‖

to be the distance function to V . Typically, the deformation and the evolution of an initial arbitrary regular
curve Γ0 are governed by a time-dependent system of second-order partial differential equations with the
following general form:

∂Γ(t)

∂t
= F (t, x, κ, f)~n(t, x) , (1)

where F is a velocity function, t denotes the time parameter, κ is the local curvature at point x and f is an
external force; ~n is an unit direction vector, e.g. the curve outward normal vector. Here Γ(0) = Γ0 is the
initial curve. Usually, Equation (1) can be either supplied by the user or is obtained by the Euler-Lagrange
equation of some energy functional based on the calculus of variations [46]. In the latter option, the purpose
is to find a local minimizer of the energy functional that corresponds to a minimal curve attached to the
data set.
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2.1. The level set formulation

Since the topology and the geometry of the final curve are not known a priori, we use a level set method
for curve evolution according to [42]. In this approach, an implicit curve Γ, which is usually the zero
isocontour of a suitable scalar function u, is evolved according to a law of motion similar to that prescribed
by Equation (1) to the steady state. Interestingly, instead of explicitly tracking the curve at each time step, it
is implicitly captured by solving the PDE for the level set function on a grid or a triangulation encompassing
the set V . Hence, topological changes are easy to handle and do not need special care. Numerically, the
level set formulation can be restricted to a narrow band surrounding the zero level set [2, 40]. But, we will
see in Section 3 how we circumvented this formulation by introducing anisotropic triangulations.

The first step in the level set formulation of our reconstruction problem consists in embedding the curve
Γ in a computational planar domain: we consider Γ = {x , u(x) = 0} as the zero isocontour of a scalar
function u(x) defined on Ω ⊂ R

2. This level set function u is defined to be a smooth function that is
positive in one side of the closed curve Γ and negative in the other. Now, as will be explained hereafter,
geometric differential properties of the curve Γ can be computed using function u. The second step consists
in introducing the time dependence allowing the motion of the curve Γ. Following [46], we derive a time-
dependent PDE for the level set function u such that the curve Γ and the zero level set obey the same motion
law: Γ(t) = {x , u(t, x) = 0}. This is equivalent to imposing

∀x ∈ Γ(t), u(t, x) = u(t, Γ(t)) = 0 .

By differentiating this equation with respect to the time variable, we obtain:

du

dt
(t, Γ(t)) =

∂u

∂t
(t, x) +

dΓ(t)

dt
· ∇u(t, x) = 0 , (2)

where the term dΓ(t)
dt

can be replaced by the velocity value of x on Γ(t).
In our method, the motion of the curve Γ(t) is purely geometric: its motion law is only related to the

geometric features of the moving curve. Therefore, it seems pertinent to assign the same velocity law to all
isolevel sets of the level set function u, leading to a so-called morphological multiscale PDE [4] of the generic
form:

∂u

∂t
(t, x) = β (t, κ(u(t, x))) |∇u(t, x)| ,

where β is an arbitrary nondecreasing real function and κ(u) is the curvature of the level set of u assing
through x. In our method, this geometric motion of Γ is expressed by a Hamilton-Jacobi type of equation,
for all (t, x) ∈ R+ × R

2:
∂u

∂t
(t, x) + vn(t, x)|∇u(t, x)| = 0 , (3)

where vn(t, x) =
dΓ(t)

dt
· ~n(u(t, x)) =

dΓ(t)

dt
·
∇u(t, x)

|∇u(t, x)|
denotes the velocity field in the direction normal to

the level set passing through x, ~n is the unit outward normal to the level set curve at x.

We mentioned that the velocity vn(t, x) depends usually on the geometric properties of the curve Γ(t),
but it can be also related to the physical parameters of the problem. Mathematically, the viscosity solutions
have been introduced to give a physical sense to the solution of the Hamilton-Jacobi equation. It is well
known that singularities are often encountered in solving this equation and thus appropriate techniques must
be developped to select the unique viscosity solution [9, 15]. Numerically, this solution is difficult to obtain,
mainly because of the existence of singularities and, in general, requires implicit schemes. Here, we are
looking for a viscosity solution that coincides with the curve Γ(t).

2.2. The curve evolution model

The partial differential equation we used to solve our problem is the general weighted mean curvature
flow:

∂u

∂t
(t, x) = αd(x) + d(x)κ(u(t, x)) , Γ(0) = Γ0 , (4)
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where d(x) is the distance function to the point set, α is a real parameter and the curvature is defined as:

κ(u) = div

(

∇u

|∇u|

)

= |∇u|−1

(

∆u − D2u

(

∇u

|∇u|
,
∇u

|∇u|

))

, (5)

this term can be interpreted as the curvature of the level curve {y , u(y) = u(x)} passing through x.
It is easy to see that our model is composed of two terms. Ther term αd(x) corresponds to the attraction by

the distance field (i.e. a fitting term) and the term d(x)κ(u) corresponds to a minimal surface regularization
weighted by the distance function (i.e. a surface tension term). The parameter α balances the potential force
and the surface tension. The nonlinear regularization due to surface tension combined with the attraction
term provides more rigidity of the curve away from the point set and more flexibility close to the data set.
Moreover, the surface tension term has a local impact as it is only related to the curve evolution and not to
the data set.

2.3. The variational minimization problem

The steady state of Equation (4) corresponds to a minimum of the level set function u, when the distance
function vanishes for all points of the curve Γ(t). Hence, it yields the following elliptic equation:

−div

(

∇u(t, x)

|∇u(t, x)|

)

= α ⇔ A(u) = α (6)

where A is a second-order nonlinear elliptic operator. The calculus of variations allows us to consider this
operator as the derivative of an energy functional E : A(u) = E′(u) [22]. Hence, solving our problem simply
requires finding a function u which minimizes the functional E. To this end, we introduce a Lagrangian
operator L : R

2 × R × Ω → R such that: L(p, z, x) = |p| − αz, and then we write:

E(u) =

∫

Ω

L(p(u(x)), z(x), x)dx =

∫

Ω

(|p(u(x))| − αz(x))dx

The Euler-Lagrange equation associated to this functional E is the following:

∂L

∂z
(p, z, x) − divx(∇pL(p, z, x)) = 0 .

Taking p(x) = ∇u(t, x) and z(x) = u(t, x) leads to retrieve Equation (6) and consequently, the energy
functional E to minimize is:

E(u(x)) =

∫

Ω

(|∇u(x)| − αu(x))dx . (7)

Actually, the integration domain Ω can be any open set that contains the zero level set of the function u.
The curve Γ(t) at steady state is given by the solution of the following minimization problem:

u = min
v

E(v) . (8)

The above discussion shows that if u is a solution of the elliptic problem (6), u is also a solution of the
minimization problem (8) and conversely. In this respect, the curve Γ(t) at steady state is a minimal
approximation curve.

The minimal curve model can handle complex topologies and construct a regular curve that is smoother
than piecewise affine discretization in planar domains. It can also deal with noisy data sets, to some extent,
by balancing the attraction and the surface tension terms.

3. Numerical issues

There are several key numerical features in our curve reconstruction approach. First, we compute the
distance field to an arbitrary data set on an unstructured triangulation. Second, we need to evaluate the
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first and second derivatives of the level set function at the vertices of the triangulation. Third, we generate
a highly anisotropic triangulation of the computational domain, to improve the accuracy of the numerical
solution. Fourth, we solve the time dependent PDE for the level set function. And finally, we need to
address the reconstruction of (un)signed distance functions as the gradient of the level set function may
become distorded after a few time steps.

3.1. Distance function computation

The distance function d(x) to an arbitrary data set V solves in principle the general Eikonal equation:

|∇u(x)| = 1 , u(x) = 0 , x ∈ V . (9)

The characteristics lines of this PDE are straight lines along which the information propagates from the data
set. In [46], an algorithm combining upwind differencing with Gauss-Seidel iterations of different sweeping
order is used to solve Equation (9) on Cartesian grids. However, because we are dealing with an unstructured
triangulation Th, we have employed the simplest and most useful method that consists in computing the
unsigned distance function as: d(x) = min

y∈V
|x − y|, for all vertices x ∈ Th. Notice that this expensive

computation is performed only at the beginning of the program, to initialize the distance function used in
our model Equation (4). Moreover, since the triangulation Th is highly anisotropic, the number of mesh
vertices is quite small as will be shown in the examples. However, we have paid more attention on the
procedure to reinitialize the level set function u with the signed distance function (see hereafter) as it is used
much often in the numerical resolution scheme and we certainly avoided using the straightforwrad algorithm
based on the discretized version of the equation: d(x) = min

y∈V
|x − y| sgn(u(x)).

3.2. Curvature and derivative estimation

Our model Equation (4) involves the first (gradient) and second order (Hessian) derivatives of the level
set function u. Hence, it is important for the efficiency and the robustness of the method to compute these
derivatives as accurately as possible based on a discretized information associated with the mesh vertices.
Furthermore, we need to compute the second derivatives of the unsigned distance function d in the vicinity
of the data set V , in order to generate an adapted anisotropic triangulation Th. Moreover, we would like to
compute the second order derivatives of the level set function u at the mesh vertices. We have tested and
used two options: a L2 projection scheme (for the level set function) and a least-square approximation of
the derivatives (for the distance function). Notice that both approaches can be easily extended to deal with
three dimensional problems with simplicial triangulations.

Here, we suppose that the level set function u is known at the mesh vertices. In other words, we consider
the approximation space Vh associated with the Lagrange P1 finite element: Vh = {v ∈ H1(Ω) , v|K ∈ P1}.
Since the level set function u is considered the P1 discrete solution at each vertex of Th, its gradient is a
constant value on each element and is not continuous. This would prevent any computation of second order
derivatives. The objective is to reconstruct a P1 gradient from the current level set function u.

3.2.1. A L2 projection scheme

Setting the evaluation of the derivatives in the finite element context allows us to consider the L2 inter-
polation operator Πh. For all v ∈ L2(Ω), Πhv ∈ L2(Ω) is such that:

∫

Supp(ϕj)

(Πhv − v)(ω) = 0 , ∀ω ∈ P1 and (Πhv)|Supp(ϕj) ∈ P1 ,
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where Supp(ϕj) denotes the support of each shape function ϕj . Considering the projection operator applied
to ∇u ∈ L2(Ω), leads us to write, for all ω ∈ P0:

∫

Supp(ϕj)

(Πh(∇u) −∇u)(ω) = 0 , ⇐⇒

∫

Supp(ϕj)

Πh(∇u) =

∫

Supp(ϕj)

∇u

⇐⇒ |Supp(ϕj)| (Πh(∇u))|Supp(ϕj) =
∑

K∈Supp(ϕj)

∫

K

∇u

⇐⇒ (Πh(∇u))|Supp(ϕj) = |Supp(ϕj)|
−1

∑

K∈Supp(ϕj)

|K| ∇(u|K) ,

where |K| denotes the measure (area) of triangle K ∈ Th.
Introducing the barycentric coordinates (ωj)j=1,3 of the vertices xj of each triangle K ∈ Th leads to write:

u|K =

3
∑

j=1

u(xj)ωj , and ∇(u|K) =

3
∑

j=1

u(xj)∇ωj ,

For every point x ∈ K, there exists a unique vector (ωj(x))j=1,3 solution of the system:

x =

3
∑

j=1

aj ωj(x) , and

3
∑

j=1

ωj(x) = 1 ,

where the (aj)j=1,3 represent the vertices of element K. Indeed, this 3×3 linear system admits the following
matrix M as associated matrix, where (ai,j)i=1,2 denote the coordinates of point (aj):

M =





a1,1 a1,2 a1,3

a2,1 a2,2 a3,3

1 1 1





and this matrix M is inversible if and only if the simplex K is non degenerated. Having computed the
coordinates ωj , it is now possible to compute ∇u|K .

The Clément operator Πc : L2 → Vh, defined for the vertices aj ∈ K as:

Πcv =

3
∑

j=1

Πhv(aj) ϕj ,

allows to reconstruct the P1 gradient of the level set function u as follows:

∇u = Πc(∇u) :=

[

Πc

(

∂u

∂x

)

,Πc

(

∂u

∂y

)]

.

Finally, the gradient of ωi is obtained as:

∇ω1 =

(

a2,2 − a2,3

−(a1,2 − a1,3)

)

∇ω2 =

(

a2,3 − a2,1

−(a1,3 − a1,1)

)

∇ω3 =

(

a2,1 − a2,2

−(a1,1 − a1,2)

)

.

Numerically, computing the P1 gradient of the level set function u at a vertex aj ∈ K requires identifying
the set B(aj) of triangles that compose the support of the shape functions, i.e. all triangles sharing the
vertex aj . Actually, the numerical scheme is a weighted reconstruction scheme, where the weights are related
to the areas of the triangles in B(aj).

After the reconstruction of the P1 gradients of the level set function u, the same L2 projection procedure
is applied to each component of the gradient vectors in order to reconstruct the P1 Hessian matrix H of u:
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H(u) = ∇((∇u)t), with for each component (xi)i=1,2:

∇

(

Πc

(

∂u

∂xi

))

(x) = |Supp(ϕj)|
−1

∑

K∈Supp(ϕj)

|K| ∇

(

(

Πc

(

∂u

∂xi

))

|K

)

.

The resulting algorithm is straightforward:

/* Compute the P1 gradient of the level set function u */

for each vertex x ∈ Th do
construct the set B(x) = {K ∈ Th , x ∈ K}
compute the P1 gradient of u(x) as:

∇u(x) =

∑

K∈B(x) |K| ∇u|K

|B(x)|

end

/* Compute the P1 Hessian matrix of the level set function u */

for each vertex x ∈ Th do
identify the set B(x) = {K ∈ Th , x ∈ K}
compute the P1 gradient of each component of vector ∇u(x) as:

H(u)i(x) =

∑

K∈B(x) |K| ∇(Πc∇u)i|K

|B(x)|

end

The local mean curvature term κ(u) that appears in our model Equation (4) is computed using Equa-
tion (5) or, more simply, as the trace of the Hessian matrix.

3.2.2. A least squares approximation scheme

The previous approximation scheme for computing the first and second order derivatives of the level set
function u worked fairly well in most applications. However, for generating an anisotropic metric tensor
field suitable for mesh adaptation, we considered a least squares approximation scheme [23], that we briefly
describe here.

Let x be a vertex of Th and let consider the set P (x) of all mesh vertices connected to x. We suppose that
Card(P (p)) ≥ 3, a reasonable hypothesis in two dimensions. Considering a second order Taylor expansion
of the level set function u at a vertex ai ∈ P (x) leads to write:

u(ai) = u(x) + ~xai .∇u(x) +
1

2
〈 ~xai, H(u)(x) ~xai〉

⇐⇒
1

2
〈 ~xai, H(u)(x) ~xai〉 = u(ai) − u(x) − ~xai .∇u(x) .

This relation can be also developed as follows:

1

2
(ax2

i + 2bxiyi + cz2
i ) = u(ai) − u(x) − (αxi + βyi) , (10)

where xi, yi denote the coordinates of vector ~xai, α, β are the components of ∇u(x) and a, b, c are the
components of the Hessian matrix H(u). Writing this equation for all vertices in the set P (x) leads to a
usually over-determined system of the form:

AU = B , with UT =
(

a b c
)
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where A is a (n × 3) matrix function of (xi, yi) and B is a vector of size n given by the right-hand side of
the Relation (10). This system is solved using a least-square approximation which consists in minimizing
the distance between the vectors AU and B of R

n by minimizing the square of the Euclidean norm of their
difference, as follows:

”Find U ∈ R
3, such that ‖AU − B‖2 = inf

Y ∈R3

‖AY − B‖2.”

It can be shown that the solution of this problem is the solution of the linear 3 × 3 system of normal
equations [14]:

AT A U = AT B .

This resulting system is solved using a Gauss pivoting algorithm and the local mean curvature is computed
as with the previous approximation scheme.

3.3. Anisotropic mesh generation

High-order schemes (ENO, WENO) have been proposed to resolve the curve evolution equation on struc-
tured meshes [28,37]. However, their extension to arbitrary unstructured triangulations is difficult and only
a few algorithms have been proposed [1]. In order to achieve a good numerical accuracy and to limit to some
extent the diffusive effect of the numerical scheme, we heavily rely on anisotropic adapted triangulations.

Schematically, mesh adaptation consists in concentrating a large number of vertices in regions of large
solution variations and in minimizing the number of vertices in other regions of the computational domain.
Consequently, the number of nodes required to compute a solution with a desired accuracy can be reduced
by a substancial amount, thus impacting favorably the computational cost of the simulation. While isotropic
mesh adaptation only controls the element size, anisotropic adaptation adjusts the element size as well as
the element shape and orientation using a metric tensor field to better match the solutions variations. The
adaptation procedure involves an error estimate or error indicator to evaluate the solution variations. The
theory of error estimates has been largely investigated these last years and has provided the concept of
optimal triangles with respect to a metric tensor field based on the gradient and the Hessian of the solution
(see [23,24] for a survey).

The metric tensor defining the generic mesh element features is represented as an ellipsoid in which the
element must fit. Hence, the notion of size, shape and orientation are related to its volume, the lengths of
the semi-axes and its principal axes vectors, respectively. This metric tensor M(x) is a symmetric positive
definite matrix that is used to create a quasi-uniform mesh in the metric related to M . Actually, the volume
of an element K is unitary:

∫

K

√

det(M(x)) dx = 1 ,

which corresponds to the discrete formulation:

|K|
√

det(MK) = 1

taking MK as a mean value of M(x) on K. The length of a segment or a curve γ(t) : [0, 1] → R
2 is defined

as:

|γM | =

∫ 1

0

√

〈γ′(t), M(x)γ′(t)〉 dt ,

The spectral decomposition theorem allows to decompose M as:

M = R Λ Rt =

2
∑

i=1

λi~ei~e
t
i ,

where the normalized eigenvectors of M are the columns of the matrix R = [~e1, ~e2], Λ is the diagonal matrix
of the eigenvalues (λi)i=1,2.

In [20, 21], we proposed a method for defining the metric tensor to control the generation of anisotropic
elements in the vicinity of an interface defined with a level set function. Here, we adapted this approach as
follows. The main idea is to consider the local curvature of the zero level set of the distance function d to
prescribe the local element size, the orientation of each element being chosen to coincide with the tangent and
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the normal directions to the function d. This will automatically provide a refinement close to the data set
V (where the distance function vanishes) and a desirable stretching of the element related to the curvature
of the zero isoline. By doing so, we can prove that the Hausdorff distance between the zero isoline Σ of the
distance function and a piecewise affine aproximation Σh of this isoline is bounded.

Hy

Hx

d = 0 d = 0

Hx

Figure 1. Isotropic vs. anisotropic mesh adaptation in the vicinity of the zero level set.

More precisely, here we define the local metric tensor at each vertex x ∈ Th as:

M(x) =
∇d(x)∇dt(x)

h2
min

+
H(d)(x)

ε
,

where hmin represents the smallest (user-prescribed) element size in Th, ε is a tolerance value such that
d(Σ,Σh) < ε and H(d) is the Hessian matrix of the distance function at x. This metric tensor ensures that
the mesh elements will be aligned with the tangent and the normal directions to the isoline Σ and the size
l(x) in the tangent direction will be related to the mean curvature by setting:

l(x) =

√

ε

κ(d)(x)
.

Given an initial triangulation T0 of the computational domain Ω, the triangulation is iteratively adapted
to this metric tensor by using classical local mesh modification operations: edge split, edge flip, edge col-
lapsing and vertex relocation [24]. In addition, a mesh gradation procedure is used to propagate the metric
information inside the domain [12]. Figure 2 shows the difference between the isotropic and the anisotropic
mesh refinement in the vicinity of the zero isoline Σ. The isotropic triangulation contains 41, 127 vertices
while the anisotropic triangulation contains 11, 751 vertices corresponding to the same hmin and ε values.

3.4. Solving the PDE

Our numerical implementations of the numerical resolution of the nonlinear model Equation (4) are based
on standard schemes for the level set method. We have first implemented a first order explicit scheme. A
stable time explicit requires a restrictive time step, ∆t = O(h2

min), where hmin is the minimal mesh element
size. However, since we are working with minimal anisotropic triangulations (and not Cartesian grids), it
seems worth to test first this option, that is also easy to implement.

3.4.1. A First order explicit scheme

We introduce the notations un
i = u(xi, t

n), dn
i = d(xi, t

n) and κn
i = κ(xi, t

n). In this scheme, the time
derivative is replaced by the classical differential quotient:

∂u(x, t)

∂t
≈

un+1
i − un

i

∆t
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Figure 2. Impact of the anisotropic metric tensor (left) in mesh adaptation compared to
isotropic refinement (right).

and our model Equation (4) is then solved by the explicit first order upwind scheme:

un+1
i = un

i + ∆t (dn
i (κn

i + α))

with κn
i = div

∇un
i

|∇un
i |

. Hence, knowing the values of the level set function u at the vertices of the triangulation

at step t leads to easily obtain the values of u at time t + ∆t using a simple loop over the mesh vertices. As
pointed out however, the simplicity of this scheme is balanced by the restrictive CFL condition on the time
stepping. To overcome this problem, we have started investigating a semi-implicit time-stepping scheme on
unstructured triangulations.

3.4.2. A semi-implicit scheme

The nonlinear curve evolution equation can be writen under the following form:

∂u(t, x)

∂t
= d(x)(α + κ(u(t, x)) = d(x)

(

α + ∇ ·

(

∇u

|∇u|

))

.

It is classical to explicit the non linear term of the equation as follows:

un+1
i − di ∆t∇ ·

(

∇un+1
i

|∇un
i |

)

= di ∆t α + un
i

Solving this equation requires solving a linear system. This is achieved using a GMRES algorithm. In this
approach, the time step ∆t can be chosen on the order of O(hmin), as no CFL condition applies.

For both schemes, a stopping criterion has been added to avoid unecessary expensive advections of the
level set when the curve Γ(t) is already close to the data set. To this end, we introduce the following stopping
test:

max
x∈V

|(Πhu)(x)| < ε (11)

where ε is a user-specified tolerance value and (Πhu)(x) is obtained using the L2 projection scheme described
above.
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3.5. Renormalization algorithm

The distance function d enjoys the property: |∇d| = 1, which notably simplifies the computation of the
normal vector and the mean curvature. Although any level set function can be used theoretically, in practice
a signed distance function is preferred to avoid inaccuracy in numerical computations and stiffness in the
resolution. Our level set function u is initialized with a signed distance function corresponding the distance
of the mesh vertices to an implicitly defined simple curve geometry (e.g. a circle). Unfortunately, all motion
fields, but a constant velocity field, do not preserve this property. This behavior is also amplified by using
a first order scheme for solving the PDE; it introduces a numerical dissipation effect resulting in |∇u| ≫ 1
after a few steps. To recover it, a renormalization stage is introduced every (user-specified) n steps of the
solver.

Typically, a renormalization procedure consists in solving the following equation:

∂tu − S(u)(1 − |∇u|) = 0

where S(u) is a sign function taken as 0 along the zero isocontour of the function. Sethian [42] suggested
to use a Fast-Marching method to evolve a front at constant speed initiated from the interface Γ(t). The
algorithm can be seen as an extension of Dijkstra’s algorithm [17] to compute shortest paths between points
in the domain. It consists in solving the following equation in each element:

3
∑

j=1

‖∇ϕju(aj)‖
2 = 1 (12)

where the ϕj are the Lagrange shape functions and u(aj) is the value of the level set function u at the vertices
aj of the element. The following algorithm correspond to a first order scheme when an affine approximation
is used to solve this equation. Suppose we have three groups of vertices : (A)ccepted, (C)onsidered and
(F)ar.

(1) Compute the distance values for the vertices of the elements intersected by Γ(t),
now considered as (A),

(2) put the neighbors of all these points in the group (C) and
compute the distance values using Equation (12),

(3) loop over the set (C) until it is empty:
• take x ∈ (C) with the smallest absolute value, move it in set (A),
• transfer all neighbors of x from (F) to (C),
• update the values of all neighbors of x in (C) using (12).

We improved this approach by considering that the function u is a signed distance function to a curve Γ(t).
Since the sign is not modified by this procedure, it is sufficient to compute the Euclidean distance to Γ(t) to
fully determine the function u.

4. Numerical results

In this section, we will present several experimental examples on both synthetic and real datasets, to show
the efficiency and the robustness of our curve reconstruction method. In particular, we show that the level
set formulation can handle complicated geometries and deal efficiently with topological changes during the
curve evolution.

4.1. Sampled point data set

In order to illustrate the various stages of the method, we consider first a data set V where all points
have been sampled from a parametric curve Γ. Here, the computational domain Ω is a disk of unit diameter
centered at (0.5, 0.5). The triangulation Th contains 6, 634 vertices corresponding to a minimal element size
hmin = 0.001 (Figure 3, top). The evolution of the curve Γ(t) is illustrated Figure 3 (bottom, left) on several
time steps. The parameter α in the curve evolution Equation (4) has be set to 0.5 hmin and the explicit solver
was used with a stability condition ∆t = O(h2

min). The initial curve Γ(0) = Γ0 is the implicit circle centered
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at (0.5, 0.5) of diameter 0.9. The final result has been obtained in 9, 800 iterations with the renormalization
of the level set function u every 100 time steps.

Figure 3. Construction of a regular curve for approximating an analytically defined point
set. Anistropic triangulation Th (top), the curve Γ(t) at different time steps (bottom left)
and the level set function u at convergence of the method (bottom right).

In order to assess the robustness of our approach on noisy data sets, we have conducted the same numerical
experiment with adding a random noise on the coordinates of the points in the data set V . The result can be
seen on Figure 4 where we represented both the level set function u at convergence (left) and the unsigned
distance function (right). It is easy to see that the stopping criterion (11) allows to reconstruct a smooth
approximation minimal curve fitting at best through the points of the data set.

4.2. Multiple connected components data set

To illustrate the ability of our method to handle topological changes during the curve evolution, we
propose the following experiment. Here, the domain Ω is defined as a black and white image where the letters
{P, o, i, n, t, s} have been written (Figure 5). A simple procedure is used to convert this image into a regular
uniform mesh of a unit square. Then, the contours of each letter have been sampled defining the desired data
set V . The unsigned distance function d has been computed and a quasi-uniform anisotropic triangulation
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Figure 4. Construction of a regular approximation curve for noisy point set. Comparison
between the final level set of u (left) and the unsigned distance function d (right).

similar to that represented Figure 5 has been generated based on the metric tensor field related to the local
curvature of the zero isocontour of d. In this example, each letter is obviously a connected component that
we would like to isolate.

Again in this example, we started from a circle enclosing the point set V (Figure 7, top right). The
anisotropic triangulation contains 12, 768 vertices corresponding to a minimal size hmin =. 10−4 and is
represented on Figure 6. The explicit scheme was used to solve the problem with a stability condition such
that ∆t = O(h2

min) and every 100 time steps, the renormalization procedure was carried out on the data to
recover a signed level set function.

Figure 5. Example of a data set with multiple connected components. Original black and
white image (left) and quasi-uniform anisotropic triangulation with associated distance field
(right).

Figure 7 shows the evolution of the curve Γ(t) at the initial stage (left), at intermediate (simply connected)
and final stages (right). Our method captured the various connected components without apparent difficulty
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Figure 6. Anisotropic quasi uniform triangulation Th used to capture the multiple con-
nected components of the data set V and local enlargement in the vicinity of the point set
(right).

on a reasonably fine triangulation. Notice that the missing embedded parts of the letters P and O have to
be considered here as an artefact of the current heuristic renormalization algorithm and not as a restriction
of the evolutionary process. The last Figure 8 shows a comparison between the level set function u at
convergence and the unsigned distance function d in the vicinity of letter ”S”. Notice the irregularity of
the point set related to the sampling algorithm used to convert a digital image into a mesh (no antialiasing
procedure has been applied). The figure shows the regularity of the computed level set function u.

Figure 7. Anisotropic quasi uniform triangulation Th used to capture the multiple con-
nected components of the data set V and local enlargement in the vicinity of the point set
(right).
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Figure 8. Comparison between the reconstructed level set function u at convergence (left)
and the unsigned distance function d (right) near the letter ”S”.

4.3. First experiment in three dimensions

To conclude our presentation, we propose a preliminary numerical experiment in three dimensions. As
mentioned, our approach can be extended without difficulty in three dimensions. It requires however the
ability to generate anisotropic triangulations composed of tetrahedral elements. The authors have used a
software developed in collaboration with C. Dobrzynski (Univ. Bordeaux I) that we are pleased to acknowl-
edge here [18]. This example use real data sampled from a MRI data acquisition in view of a biomedical
application.

The data set correspond to the sampling of a human brain. The quasi-uniform anisotropic triangulation
contains 652, 088 vertices corresponding to a minimal element size hmin = 7 · 10−4. The initial surface is an
implicit sphere centered at the origin and enclosing the data set V . We used the first order explicit Euler
scheme with the stability condition ∆t = O(h2

min). Figure 9 illustrates the regularity of the reconstructed
surface and, more importantly, that it is composed of a single connected component. This points out a
potential strength of our approach in three dimensions: its ability to minimize the number of connected
components when reconstructing a highly complex surface. This feature offers likely an attractive alter-
native to Marching Cube type algorithms which present several drawbacks regarding the topology of the
reconstructed surfaces.

5. Conclusions

In this paper, we proposed a new PDE-driven curve evolution model that can deal with arbitrary point
data sets. The deformation of an initial regular curve is governed by partial differential equations and using
the calculus of variations we proved that this model correspond to a constrained minimization problem. Our
model ensures regularity and stability of the reconstructed curve. A variational formulation of the problem is
efficiently solved on anisotropic optimal triangulations with a minimal number of degrees of freedom. Next,
we plan to further apply this model on three dimensional point sets as all procedures can be easily extended
to higher dimensions.
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Figure 9. Preliminary 3d result. Construction of a regular surface to approximate the
surface of a sampled brain.
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