Level-Set Function Approach to an Inverse Interface Problem

Kazufumi Ito* Karl Kunisch' Zhilin Lit

Abstract

A model problem in electrical impedance tomography for the identification of unknown
shapes from data in a narrow strip along the boundary of the domain is investigated. The
representation of the shape of the boundary and its evolution during an iterative reconstruction
process is achieved by the level set method. The shape derivatives of this problem involve the
normal derivative of the potential along the unknown boundary. Hence an accurate resolution of
its derivatives along the unknown interface is essential. It is obtained by the immersed interface
method.

1 Introduction

In this paper we discuss the application of the level set function for identifying the unknown shape
of an interface in a problem motivated by electrical tomography. For this purpose let x denote the
conductivity of the medium, u the potential and g the known boundary sources, and consider in a
domain Q with boundary 02 the governing equation

(uVu, Vo)g = (g,v)aq, forve H(Q). (1.1)

We assume that 2 can be decomposed in two disjoint subdomains 2 and Q~ and that the value
of the conductivity is known on each of them. The problem consists in determining the interface I'
between QT and Q™ from measurements z of the potential u along a thin layer along the boundary.
The data can be considered to be obtained, for example, from boundary measurements by numerical
extension into the interior of 2.

The representation of I" and its movement during an iteration process represents a severe diffi-
culty. We propose to use the level set method with the zero level set giving the location of I". Level
set method proposed in [10, 13] and many others in the literature is an extremely versatile tool
for representing moving fronts in a variety of physical processes, involving flow phenomena, crystal
growth and phase changes among others. In the context of inverse problems Santosa and coworkers
in [12] and [9] applied level set techniques to deconvolution and inverse scattering problems.
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The approach we take is based on a least squares technique. The gradient of the cost functional
is computed and utilized to advance the level set function, whose evolution is determined by a
Hamilton Jacobi type equation. In our case the shape derivative involves the normal derivative
of u along I". As a consequence, in order to guarantee a numerically accurate shape derivative,
the normal derivative of u along I' has to be calculated with high accuracy. For this purpose the
immersed interface method as developed in [5, 6, 7] is used. It is known to be second order accurate
along the boundary of interfaces. We believe that the success of identifying numerically some rather
difficult shapes can primarily be attributed to the fact of high numerical accuracy of the potential
and its derivatives along the interfaces.

The remainder of the paper is organized as follows. Section 2 contains the precise problem
statement and a brief discussion of shape derivatives. The proposed numerical algorithm and
several features of its implementation are described in Section 3. The fourth section is devoted to
two numerical examples. In the Appendix the proof of the shape derivative of the solution to the
state equation is given.

2 Problem statement and shape derivative

In this section we give the problem specification and a representation of the shape derivative that
lends itself to a convenient use in the level set method. Let ¢ = o(t,z), t > 0, € R? denote the
level set function. It defines a family of interfaces I'y by

Iy ={zeR*: p(t,z)=0}

and domains
QF ={z € Q:p(t,z) >0}

Q ={zxe€Q:ptz) <0}

For convenience we fix the physical domain 2 to be (—1,1) x (=1, 1) throughout. We consider the
following interface problem for the potential function u € H'(£2)

— div (pu(x)gradu) =0 (2.2)
with boundary condition
% =g on 09, (2.3)

where v is the unit outer normal direction. The conductivity p is supposed to be piecewise constant

and is defined by

put oz et
plz) =
u- e,
The domain Q™ represents the inhomogeneity of the conducting medium. That is, if Q= = (), then

we have a homogeneously conducting medium. We assume that 2~ is the finite union of simply
connected open sets in 2. Their boundary I' represents the interface between the two open domains



Q" and Q. It is assumed to be the union of closed C2 curves. Let () be the region of observation
defined by R
Q={zeQ: dist (z,00) < .2},

on which data of the potential function u are assumed to be available. We further assume that the
interface I is strictly contained in 2.

o0

Exact shape

Initial Guess I'y

Figure 1: A diagram of the inverse problem of identifying the unknown shape from observed data
taken from the shaded area.

We consider the inverse problem of identifying the unknown interface I' from the observation z
of u on €. Given the interface I' let u(T') € H(Q)/R denote the solution to the boundary value
problem (2.2), (2.3). We formulate the least squares problem

1
min J(T') = / 3 |u(T) — 2> dx + e/ 1ds overI' € Quq, (2.4)
O r

where Qg is an admissible class of the interfaces and € > 0.

Our numerical tests will be carried out for the case y~ = 0o and thus, in case 2~ consists only
of one connected component, the boundary value problem (2.2), (2.3) reduces to

~Au=0 in ze€Qt, (2.5)
with boundary conditions
u=0 onI and % =g on 09, (2.6)
v

where I" describes the shape that we are looking for. Note that (2.5), (2.6) is meaningful without
the assumption that {2~ consists of only one connected component.



Next we consider the shape derivative of u(I') and J(I') with respect to I'. First we discuss the
shape derivative for the problem (2.5), (2.6). Let I' € Quq be fixed and, for |¢| sufficiently small,
let Q; = F;(Q1) be the image of QT obtained by the mapping F; : R? — R? defined as

Fy(x1,29) = (z1,22) + t h(x1, x2).

For ¢ € HY(QF) and ¢, € H'(;) the material derivative of ¢ for the field h € H!(QT)? is given
by

forx € Q7. (2.7)
t—0 t

If ¢(x) has a regular extension to a neighborhood of €2, then
¢(x) = lim M = i(x) — h(x) - Vu(x), xe€Qt (2.8)

is called the shape derivative of u. These notions are standard in the theory of shape optimization,
we refer to [3], [11] and [14], for example.

It can be shown that the shape derivative u’ of the solution u to (2.5), (2.6) is given by
—Au' =0 (2.9)

with boundary conditions
ou ou’
/ _ . _= _— =
uw + oy (v-h)=0 onI and ey 0 on 0N0. (2.10)

For a proof we refer to the above mentioned references. For the convenience of the reader we also
provide a complete proof in the Appendix.

Let p € H'(QT) be the adjoint function satisfying

“Ap=(u- 2, (2.11)
with boundary condition
0
p=0on T and a_f —0 on 09, (2.12)

where X, is the indicator function of the domain Q). Then for e = 0

lim J(@y) = J(T) = / (u(x) — 2(x),u'(x)) dx
Q

t—0 t

= (—Ap,u) = /F(Vu Vp) (v - h(x)) ds,

where we used the fact that the tangential derivatives u, = p, = 0. Thus the steepest descent
direction V of J is given by

V(x) = —(Vu-Vp)r on T. (2.13)



Vo
Vol

Since for the normal direction we have —v =

for the level set function ¢ = ¢(t, x):
e+ V(t,x) [Ve| =0,
where V(¢,x) v is defined by
V(t,x)=Vu-Vp on T
and (u,p) € H(Q) x HY(Q}) satisfy
—Au=0 and —Ap=(u—2)Xg

with boundary conditions

ou Op

u=p=0only and — =g, — =0 on ON.

ov ov

at I', we obtain the Hamilton-Jacobi equation

(2.14)

(2.15)

(2.16)

In case € is positive the additive term ek has to be added to V, where k denotes the curvature

along I'.

3 Numerical algorithm

Given data on the domain Q, and g along 912, the algorithm to identify the unknown I" inside the

domain € is outlined below.

e Set an initial level set function (z,y) as initial guess of the envelope of the unknown shape

Lo = {p(z,y) = 0}.

For k=0, k=1, ---, do the following until the algorithm converges,

e Solve the Laplace equation (2.5)-(2.6) in € for u(I'y), where we use k to indicate the quan-

tities in the k-th step.

e Compute the difference of the computed solution with the observed data, i.e. (u(I'x) —2)xg-

e Solve the Poisson equation (2.11)-(2.12) in Q.

e Evaluate the normal velocity I'yusing weighted least squares interpolation to get

Vi = Vi - Vuy, + ex(Ty),

(3.17)

where € is a regularization parameter, and x(I'y) is the curvature of the boundary of the shape

Ty

e Extend the velocity Vj to a computational tube |*| < §, where § is the width of the tube.



e Update the level set function by solving the Hamilton-Jacobi equation ¢f + V3|V¢*| = 0 for

©F using

k+1 k
LA k
— +V = 3.18
where | V¥ | is evaluated using a WENO (weighted essential non-oscillatory) scheme, and At
is chosen as

h

At = ————.
2[[Villoo

(3.19)

e Check convergence. Options include repeating the process, stopping if convergence criteria
are satisfied, and starting from another initial level curve. Update Ty, = {¢*(z,y) = 0} and
Q.

Several issues of implementation of the algorithm are discussed in the following sections.

3.1 Fast immersed interface method for Poisson equations on irregular domains

A Poisson solver based on the fast immersed interface method (IIM) developed in [7] and modified
in [4] was used. The main idea of the IIM is to extend the Poisson equation from Q7 to the entire
rectangular domain. This procedure allows the use of fast Poisson solvers on a fixed Cartesian grid
independent of the shape of the irregular domain.

To briefly explain the procedure we extend the source term in the Poisson equation by zero
into 2~. We require the normal derivative of the solution 1 to be continuous across the immersed
boundary T' of the irregular part of the domain. The solution itself is allowed to have a finite
jump w. In the language of potential theory this requirement is equivalent to the introduction of
a double-layer source on I'. This extension leads to the following interface problem,

Av— { flayy) if (z,y) € QY
0 if (z,y) € Q7,
] =0, onT), (3.20)
Wl=w, onT,
oY

=g(z,y), on 042,
on

where [-] denotes the jump across I'. We choose w so that the solution 1 of (3.20) satisfies homo-
geneous Dirichlet boundary condition

YT =0, onT, (3.21)

where 1T is the limiting value of the solution on the boundary from within Q. Concerning the
well-posedness of (3.20) and (3.21) we refer to [2].

To numerically compute the solution of (3.20)—(3.21) for ¢ and v, we use the standard discrete
five point stencil plus a correction term at irregular grid points. Irregular grid points (z;,y;) are



those at which the level set function has a different sign from at least one pair of its neighbors. We
denote the vector of the discretized values of ¥ on €2 by W, and the vector of the discretized values
of the jump w at the projections of the irregular grid points that lie inside Q* by W. On an N x N
grid, the number of components Ny of ¥ is approximately N2, while the number of components
Nyw of W is on the order of N. Using the IIM [5, 6] to discretize the interface problem (3.20), we
get a system of Ny linear equations of the form

AU + BW = F, (3.22)

where A is the discrete Laplacian matrix, B is a sparse matrix, and the vector F} is a source term
depending on f and g and appropriately modified at the irregular grid points. Discretizing the
Dirichlet boundary condition in (3.20) and (3.21) on the immersed boundary I', we get a system of
Ny linear equations of the form

CV + DW = F,. (3.23)

Thus we obtain the following system of equations for the solution ¥ and the jump W on the
boundary,

A B v P
- . (3.24)
C D w Ey
The Schur complement of (3.24) is
(D-CA'BYW =@, (3.25)

where
G=F,—-CA'F.

Equation (3.25) for W is a much smaller system than equation (3.24) for (¥,W). An efficient
choice to solve (3.25) is the generalized minimum residue (GMRES) method. Each iteration of the
GMRES method involves one matrix-vector multiplication by A~!, which we compute by means
of a call to a fast Poisson solver for (3.22) with a specified jump W in the solution. Each iteration
also involves one call to the interpolation scheme to evaluate the residual R = CV + DW — Fj of
the boundary condition (3.23) for the iterate.

This Poisson solver for irregular domains is second order accurate. The number of calls on the
rectangular domain is equal to the number of GMRES iterations, and is almost independent of the
mesh size, however, it may depend on the geometry of the domain.

In our implementation, the matrices and vectors are never explicitly formed. The fast solvers
with examples for Poisson/Helmholtz equations on irregular domains are available to the public
through anonymous ftp at ftp ftp.ncsu.edu under the directory /pub/math/zhilin/Packages.

3.2 Evaluation of gradient vectors at irregular points

In order to use the level set method, we need the normal velocity at all grid points in the compu-
tational tube given by |p| < §. In the computations we usually take § between 1.6h ~ 5h, where
h denotes the meshsize.



The approach that we take is to find the normal velocities at the irregular points and then to
extend them into the computational tube. To get robust and stable gradients at an irregular grid
point (zy,y;) where the level set function changes sign in the standard five point stencil, we use the
weighted least squares interpolation, for example,

e (T, 1) R Y Bij Uy 4 (3.26)
2

where the summation is taken over the set

2
i2 4+ 52 < {int (%)} , (Thtis Yi15) € QT (3.27)

The coefficients are the least squares solution of the following set of equations:

> B =0, > Bij(wryi — ) = 1,
0,J i,j
Zz,j:ﬁij(ywrj - yl) =0, §ﬂ13($k+l — xk)2/2 =0, (3.28)
> Bij(wrei — wx) (wie; — 1) =0, > By —w)?/2 =0.
2

i,J

The same interpolation scheme is also used to evaluate p, on the irregular grid points.

3.3 Extension of the velocity

After having evaluated the normal velocities at the irregular grid points they need to be extended
to all grid points inside the computational tube surrounding the boundary of the shape. This is
done through an upwind scheme along the normal direction away from the interface

Ve

Vi VV. 2 =
! Vol

0, (3.29)
where V' is the normal velocity, see [1, 8] and the references therein. The sign is determined from
the normal direction of the level set function. In Figure 2 (a) we give a plot of the normal velocity
at irregular grid points, while Figure 2 (b) depicts the normal velocity after extension, where I is
an ellipse.

Technically the motion of the free boundary is uniquely determined by the normal velocity of
the boundary. By constructing the normal velocity in a neighborhood of the interface, we can avoid
unnecessary numerical difficulties when updating the level set function. Therefore it seems that a
first order method is sufficient since the velocity at irregular grid points remains unchanged. The
velocity away from interface does not have much effect on the position of the interface rather the
behavior of the level set function. The level set function then is preconditioned every few steps
[1, 4] so that |[Vy| ~ 1 near the front by the re-initialization process. However, we should point
it out that there are alternative approaches such as the fast marching method [4] to extend the
velocity off the front.



Computed velocity at irregular grid points Extended Velocity

Figure 2: Velocity extension. (a): Computed velocity at irregular grid points. (b): Velocity field
in a tube after the extension.

3.4 Identifying several minima

For the minimization problem (2.4), the solution may not be unique. There can be several local
and global minima. Starting with an initial guess that contains all possible expected shapes, the
algorithm typically finds quickly an enwvelope of all shapes representing the minima. To determine
possible further minima inside of this envelope the following algorithm was successful in some
situations.

Denote the level set function of the first equilibrium, the envelope, by ¢.(z,y) and set Ypin =
min{y(z,y)}. Then the algorithm is repeated with the initial level set function obtained by shifting
©e(z,y). That is, given a step size dp = |@min|/L, we use the level set functions

o =@e+ kdp, k=12,L—1, (3.30)

as initial guesses to repeat the algorithm L — 1 times. In this way, we can search for possible
multiple local or global minima.

4 Numerical example

In this section, we provide some numerical examples. The domain is [—1, 1] x [—1, 1] unless specified
otherwise. The boundary condition is taken as g = 1 along z = —1 and y = —1 and g = —1 along
xz =1 and y = 1. The width of the observed data is 0.2. All the simulations were conducted using
Sun workstations. Most of simulations are done within hours depending on the mesh size.

First we test our method for a single object in the domain. The exact shape is a skinny ellipse

5132

2
v
0.072  0.52
which is the solid line in Fig. 3 (a) and (b). Fig. 3 (a) gives the result based on a 80 by 80 grid and
Fig. 3 (b) depicts the result computed using a 160 by 160 grid.

—1, (4.31)



In Fig. 4, we plot the residual of the computed and exact potential defined as

E= > |tonij — Uil (4.32)

Z,],(Z,])EQh

The initial guess is a circle that surrounds the exact shape. The circle shrinks quickly in the radial
direction to a small circle, see the rapid decline of the residue in Fig. 4. Then it gradually extends
in the direction of the major axis and expands in the direction of the minor axis slowly, see also
Fig. 4 after about 100 steps. The average of number of GMRES iterations is between 4 and 10.
Each iteration requires 2 calls to the Poisson solver, one for the primal variable u, one for the
adjoint variable p.

We find the algorithm is very efficient for single objects in the domain.

4.1 Noise analysis

In practice, the observed data are corrupted by noise. We therefore also tested our algorithm with
data given by z;; = w(I'*); ; + 6; ;, where I'* denotes the "true” interface and 6; ; is chosen as
uniformly distributed random noise.

In the example that we present here the infinity norm of the perturbation in the case with high
noise is ||6]|cc = 48.8332 and the relative perturbation is ||0||cc/||ur+||cc = 0.6768. In Fig. 5 (a) we
show the unperturbed data, while Fig. 5 (b) gives the observed data with noise of 68%. Fig. 6 (b)
is the computed result using data with 68% noise. In Fig. 6 (a) we can compare to the case where
the noise level is only 17%. While ¢ was chosen to be 1079 in the noise free examples, we chose it
to be 107 in the cases containing noise. We can summarize that our method also works well in
the presence of noise.

1 T T T T T T T T T 1

0.8 9 08
= N initial
06t e j 06 Initial
0.4 0.4
0.2 02
i after 2500 steps 4 ol

_02} Aiter 5000 steps

_ L L L L L L L L L 4 L L L L L L L L L
-1 -08 -06 -04 -0.2 0 0.2 0.4 0.6 0.8 1 -1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 3: Computed shape with time step size At = %, € = 1075, The initial guess is the big circle
of radius 0.6 centered at the origin. (a) The result obtained using an 80 by 80 grid. (b) Result
obtained using a 160 by 160 grid.
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uniform noise level.
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Ugp = Ug, + 0.5 rand Ugp = Uy, + 2 rand
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Figure 6: Computed results with noise data. (a) With 17% uniformly distributed relative noise
level. (b) With 68% uniformly distributed relative noise level.

4.2 An example with two objects

Now we consider an example that has two objects in the domain. The exact shape is composed of
the following two closed curves:

(x +0.35)2 (y+0.35)2

0.252 0.3 =1 (433)
(x —0.35)2 (y—0.35)2
2T oz = 1L (4.34)

The algorithm soon produces an envelope of the two objects and it can be checked numerically
that the envelope is indeed a local minimum of the residual. Now we proceed as explained in
Section 3.4 and denote the level set function corresponding to this local minimum by @ep,. Then
we use

Cenv + kdp, k=1,2,--- (4.35)

as new initial guesses to see if we can find further local extrema. In our example, dp = 0.03. Fig. 7
gives the plot of the computed objects with different values for k. In Fig. 7 (a) the convergence
result to the envelope from an initial guess chosen as a circle with radius 0.7 centered at the origin is
given. For the result in Fig. 7 (b), the initial level set was perturbed by the quantity 0.06 resulting
in the smaller one of the two ellipses. The iterations of the algorithm were attracted back to the
envelope and it appears that the envelope is a stable local extremum. In Fig. 7 (c), the zero level
set was moved by the quantity 0.09, and the zero level set converges with reasonable accuracy to
the desired shape, consisting of two objects . In Fig. 7 (¢), the zero level set was moved by the
quantity 0.18 resulting in an initial level set consisting of two small closed curves. The zero level
curves produced by the algorithm again approach the envelope as shown in Fig. 7 (a).
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Figure 7: Computed results using automatic adjusting of the initial zero level set function with an
80 by 80 grid. (a) The initial guess is the circle r = 0.7. (b) The initial level set is ¢ = Yeny + 0.06,
where @en, is the level set corresponding to the envelope. (c) the initial level set is ¢ = @eny +0.09.
(d) initial level set is ¢ = peny + 0.18.

5 Conclusions

In this paper we considered a model problem from electrical tomograpy in which it is required to
identify unknown conductivities from near-boundary measurements of the potential. It is assumed
that the value of the conductivity is known in subregions whose boundaries are unknown. The level
set function technique was shown to be succesfull to identify the unknown boundary shapes. It was
further established that the immersed interface method provides an efficient tool for computing the
state and the adjoint equations on domains which change during the course of the iterations, as
well as for accurate representation of the normal derivative along the boundary, which is required
for the computation of the shape derivative. The proposed algorithm was shown to be numerically
effective for single and two component shapes.
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7 Appendix

We provide a proof for the shape derivative of the solution to (2.5), (2.6) based on the method of
mappings. For ¢ € H'(Q) and ¢; € H(Q) let us define

(A1) @' = ;0 F.

Define
=det(DF;) and A; = (DF7Y)*(DE NI,

where * denotes the transpose of a matrix and DF; is the Jacobian of F;. It is then easy to verify
that

d d d _ "
ath 0= h, %(DFt)h:o = Dh, E(DF‘,‘, Y=o = —(Dh)
(A.2)

d
—It|t o=divh and —At|t o =divhI — ((Dh)* + Dh).
Moreover we have

Lemma A.1 Let
E; = / prdzy, @ € H ().
Q¢

Then

d

(A.3) E:d—Et|t 0:/ <,'0+<pdivhdac=/ ¢ + div (hy) dz.
t Q Q

Proof: Using Fubini’s theorem we obtain

Et:/ (,DtItdCL'.
Q

By differentiating E} with respect to t we obtain

/—Itcp —G—It gpdm

Since Ip =1 and —It|t o = div h, (A.3) follows by setting t = 0. O

Now we turn to (2.5), (2.6) and derive the shape derivative of u. Note that Vi, = (DF; )Vt
Thus, the boundary value problem
—Au=0 1in
with u =0 on I'; and 8—u = g on Iy can equivalently be written as: u' € H}(QT) satisfies
v

(A.9) (A VU', Vo) 1204y = (9, 8) r2(ry)

15



for ¢ € HL(QT), where HL(QT) = {p € HY(QT): ¢ =0o0nT}.

Since F}, A¢, I are continuously differentiable in ¢t and Lipschitz in x it follows from the implicit
function theory that for |¢| sufficiently small (A.4) has a unique solution u! € HE(QF) N H2(QF)

and
out—u
lim =1
t—0 t

exists in HE(QT). Note that
G Lf o Fiy Qlemo = (divh f, ) + (k- V) = (div (£ 1), §) = ~(f, - V).

d
Since EAt = A=divhI — ((Dh)* + Dh), it follows from (A.9) that @ satisfies

(A.10) (Vi, Vé) + (AVu, V) =0

for all ¢ € HL(QT).

Next we derive an equation for the shape derivative u’. Note that

(V(h-Vu), Vo) + (AVu, Vo) — (Au, h- Vo)

<( h2 902 - hl)ml _((hl)m + (h2)961) ) ( Uz, ) ( ¢$1 )
hl)wz ( )m) (hl)wl - (h2)$2 Ugy ’ ¢w2
( Zluml + hluﬂ?libl + (h2)931u962 + h2u901132 - hl(umlml + urzm) ) < ¢Il )>
"\ Pz

CRIVI
:I:Quztl + hluz‘lxg + (hQ):IIQU:EQ + h2ux2x2 - h’2(u$1w1 + u:I:QaL'Q)

= ((hotay = Patia, )ass d21) = ((hatiay — hitizs)ars @)
= (curl(hauy, — h1uy,), grad ¢) =0,
for ¢ € HL(QF), since ¢, = 0 on I'. Thus, from (A.10)—(A.11) we obtain
(Vu', Vo) =0 for ¢ € HE(QT)

with boundary conditions

/

W +h-Vu=0 on I‘and(Z—u:00n6(2.
v

Since u; = 0 on I' we have (2.9), (2.10).
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