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Metamaterials are artificially engineered composites designed to have unusual properties. This paper will 

develop a new level set based topology optimization method for computational design of multimaterial 

metamaterials with exotic thermo1mechanical properties. In order to generate metamaterials consisting of 

arrays of microstructures under periodicity, the numerical homogenization method is used to evaluate the 

effective properties of the microstructure, and a multiphase level set model is used to evolve boundaries of 

the multi1material microstructure. The proposed method will produce material geometries with distinct 

interfaces and smoothed boundaries, which may facilitate the fabrication of the topologically optimized 

designs. Several numerical cases are used to demonstrate the effectiveness of the proposed method. 

 

 

 

 

��������		�Mechanical metamaterials; Topological shape optimization; Multiphase level set method. 
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Interest in designing new materials that exhibit exotic properties in engineering and science is increasing. In 

particular, metamaterials, a family of man1made composites with unconventional properties and ubiquitous 

applications, have recently been experiencing great popularity (Lakes 1987, 1996; Evan and Alderson 2000; 

Smith, Pendry and Wiltshire 2004). The unusual properties of metamaterials arises from specifically 

designed and configured micro1 and nanostructures rather than from their composition. In other words, the 

layout of the internal structural geometry plays an important role in determining the properties of 

metamaterials. Early revolutionary use of metamaterials was demonstrated by Veselage (Veselage 1968), 

who developed electromagnetic metamaterials exhibiting negative permittivity and permeability. Recently, 

the concept of electromagnetic metamaterials (Vegelago 1968; Smith, Pendry and Wiltshire 2004) has been 

applied with different parameters to design mechanical metamaterials. Several different types of mechanical 

metamaterials have been developed, e.g. acoustic metamaterials (Chen and Chan 2007), negative Poisson’s 

ratio (NPR) metamaterials (known as auxetics) (Lake 1987; Evan and Alderson 2000; Milton 1992), and 

negative compressibility metamaterials (Nicolaou and Motter 2012). 

 

Poisson’s ratio is usually defined as the ratio of transverse contraction strain to longitudinal extension strain 

under uniaxial tension, and is a fundamental property of elastic materials. In contrast to conventional 

materials with positive Poisson’s ratios, materials with negative Poisson’s ratios expand laterally when 

stretched and contract laterally when compressed. Since the work of (Lakes 1987), NPR metamaterials 

(auxetics) have attracted much attention. So far, several intuitional and heuristic methods have been 

developed to design NPR metamaterials (Yang et al. 2004). However, when auxetic materials are subjected 

to temperature variations, the thermal properties will also cause contraction and extension of structures and 

hence affect the properties. The thermoelastic property (co1efficient of expansion) is normally positive for 

most conventional materials. The additional effects of thermal properties on deformation makes the 

intuitional and heuristic methods even more ineffective and inefficient.  

 

Multifunctional metamaterials with both controlled thermal expansion and deformation have already found, 

and should continue to find, interesting and novel engineering applications. For example, in aerospace 

aviation, a deployable antenna for deep1space missions was enhanced by exploiting the unique properties of 

auxetics (Scarpa and Tomlinson 2000). However, these structures must operate in an extremely cold 

environment at cryogenic temperatures. Even in such a harsh environment, the deployable devices with 

auxetics are required to expand and contract as intended. Other applications, such as blast curtains, are 

required to open small holes when expanded so as to only let the air through but capture all flying shards of 

different sizes. These curtains, with filtering and protection functions that must operate when subjected to 

Page 2 of 22

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview
 O

nly

 3

large changes in surrounding temperature, can be designed with multifunctional mechanical metamaterials 

to exploit their auxetic behavior.. Hence, it is desirable to design multifunctional metamaterials with controls 

of both NPR and zero thermal expansion (ZTE) in these circumstances. Topology optimization can be used 

to design these mechanical metamaterials with desired multi1functional properties and this is an application 

seldom studied in the field of topology optimization. 

 

In order to exploit the unique properties of metamaterials in engineering applications it is necessary to 

design them to have the expected properties. Topology optimization is considered to be a promising tool to 

achieve this. Numerically, topology optimization (Bensøe and Sigmund 2003) is an iterative process to 

determine the best structural layout by re1distributing a prescribed amount of material within a fixed 

reference domain, until the objective function is minimized under constraints. Topology optimization has 

experienced considerable development leading to several different methods (Bensøe and Kikuchi 1988; 

Bensøe and Sigmund 1999; Zhou and Rozvany 1991; Xie and Steven 1993; Sethian and Wiegman 2000; 

Wang, Wang, and Guo 2003; Allaire, Jouve, and Toader 2004; Kang and Wang 2011; Luo et al. 2013). 

However, a new systematic design method is required for more effectively engineering metamaterials with 

unusual thermo1mechanical properties. Firstly, a new topological description model is essential for topology 

optimization of multi1phase metamaterials (Tavakoli and Mohseni 2014) since most existing methods are 

only applicable to single phase materials. A representation model should indicate each phase in the design 

domain distinctly without overlap and/or voids and an explicit formulation is required for sensitivity analysis. 

 

A few models for describing multimaterial microstructures have been developed. For instance, Bendsøe and 

Sigmund (1999) proposed a mixture rule for a multi1material model using the SIMP (Solid Isotropic 

Material with Penalization) method. Several extended versions of SIMP have been applied to multimaterial 

designs (Sigmund 2001; Luo et al. 2010; Gao and Zhang 2011). The homogenization method (Bensøe and 

Kikuchi 1988; Allaire 2002) has also been used in the design of multi1phase composites (Cherkaev 2000; 

Sigmund and Torquato 1996, 1997; Gibiansky and Sigmund 2000). In addition, the phase field method, 

representing structural domains and interfaces as a whole by a set of field variables, has been applied to 

multi1material design problems (Zhou and Wang 2007; Tavakoli 2014). Other multi1material topology 

optimization models have been developed for multi1component structures (Zhu, Zhang and Beckers 2009; 

Buehler, Bettig and Parker 2004; Wang and Wang 2004). 

 

Since the work of (Sethian and Wiegmann 2000), several different level set methods (LSMs) (Wang, Wang, 

and Guo 2003; Allaire, Jouve, and Toader 2004; Wang and Wang 2004; Yamada et al. 2010) within the 

standard level set framework have been developed, including topology optimization of multi1material 

structures and metamaterials (Wang and Wang 2004; Mei and Wang 2004; Wang and Wang 2005; Allaire et 
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al. 2014; Zhou et al. 2011; Otomori et al. 2012; Lu et al. 2013). Recently, some alternative LSMs in 

parametric or equivalent forms have been developed to achieve topological shape design of structures 

(Belytscho, Xiao and Parimi 2003; Haber 2004; Luo et al. 2007; Luo et al. 2008; Luo et al. 2009; Wei and 

Wang 2009; Luo et al. 2012) in order to avoid the unfavorable numerical issues and improve computational 

efficiency in the standard LSMs (Dijk et al. 2013; Makhija and Maute 2014). In particular, the parametric 

level set method (PLSM) (Luo et al. 2007; Luo et al. 2008) has been demonstrated as one of the effective 

LSMs (Wang et al. 2014; Wang et al. 2015). The PLSM can not only retain the merits of most LSMs, but 

also overcome their numerical difficulties and enable the direct application of many gradient1based and 

more efficient optimization algorithms. 

 

This paper will present a new topology optimization method using the Multi1Material Level Set (MM1LS) 

model (Wang et al. 2015) for design of multiphase multifunctional microstructures, in geometry with 

smoothed boundaries and distinct interfaces that may benefit fabrication of the topologically optimized 

microstructures. In the topological description model, the level set surfaces implicitly represent the structural 

boundaries as zero level sets. The material properties at any point in the domain are calculated according to 

a combination rule of different level set functions. This model provides a unique description for each phase 

and guarantees any point inside the domain only denoting one phase without overlaps. A number of m level 

set functions are required to indicate m+1 distinct phases (m materials and 1 void phase). 

 

In the topological shape optimization method to be developed, the numerical homogenization method will 

be applied to evaluate the effective properties of microstructures, while the PLSM is utilized to evolve shape 

and topology of the microstructure. It is known that the extreme thermos1mechanical property can be 

achieved by combining more than two phases with conventional materials, such as metals or plastics, into 

new types of composites. Typical numerical cases are used to demonstrate the effectiveness of the proposed 

method to design metamaterials with NPR and ZTE, as well as NPR and NTE (negative thermal expansion). 

��� �����������������������
��������

�#��$���
���������������
����	�����������������������

In LSMs, the design boundary is embedded implicitly into a higher1dimensional level set function Φ(%) with 

Lipschitz continuity as its zero level set (Osher and Sethian 1988; Sethian 1999) as follows: 

 

( ) 0 \ (Solid)

( ) 0 (Boundary)

( ) 0 \ ( ) (Void)

I I I

I I

I I ID

Φ
Φ
Φ

 > ∀ ∈� ∂�


= ∀ ∈∂�
 < ∀ ∈ � ∪∂�

% %

% %

% %

    (1) 
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where D is the reference domain including all admissible shapes of the microstructure, I=1,…,m are the 

level set functions, and Φ
I
(%) is I

th
 the level set function. N

I
 is the domain having positive level set function 

values, ∂NI
 denotes the design boundary of the I

th 
level set function, and m is the total number of the level 

set functions. Equation (1) defines the solid, boundary and void regions respectively by using the positive 

values, zero values and negative values, with a combined representation of different level set functions, 

rather than the representation of a single level set function. 

 

Introducing pseudo1time t  to enable dynamic motion of the Φ(%, t), and differentiating both sides of Φ(%, t) 

with respect to t , will generate the Hamilton1Jacobi (H1J) equation (Sethian 1999; Osher and Fedkiw 2003) 

 
( ) ( ) ( )n

,
v , 0, 1, 2, ,

I

I I
t

t I m
t

Φ
Φ

∂
− ∇ = =

∂

%
% �  (2) 

where 
nv I  is the normal velocity of the I

th
 level set function. It is noted that only the normal component of 

the velocity contributes to the motion of the boundary. In the conventional level set methods, the details for 

getting numerical solution of the above H1J can be found in (Wang, Wang, and Guo 2003; Allaire, Jouve, 

and Toader 2004; Sethian 1999; Osher and Fedkiw 2003). 

 

In the PLSM (Luo et al. 2007; Luo et al. 2008), the compactly supported radial basis function (CS1RBF) 

(Wendland 2006) has usually been applied to interpolate the level set surfaces. The CS1RBFs have drawn 

much attention in multivariate interpolations of scattered data, due to the positive definiteness and 

sparseness of the interpolation matrices under certain conditions, as well as the desired continuity of the 

interpolant. These favorable features make them attractive in the level set1based methods. It is noted that the 

application of different CS1RBFs, e.g. CS1RBFs with C2, C4 and C6 continuities (Wendland 2006), to the 

level1set based topology optimization problems have previously been investigated in detail(Luo et al. 2007; 

Luo et al. 2008). The results show that at least the Wendland C2, C4 and C6 can give similar topological 

designs, although the sensitivity with respect to the compact support radius will increase along with the 

increase in the differentiability order. The CS1RBFs with C2 smoothness are used in this paper. 

 

The original level set function can be described by the interpolation of the CS1RBFs at their pre1specified 

knots over the whole design domain, as follows: 

 
1

( , ) ( ) ( ) ( ) ( )
N

I I I

i i

i

t t c tϕ
=

= ∑% % %c ====Φ ϕΦ ϕΦ ϕΦ ϕ  (I=1,…,m)    (3) 

with the vector of the shape functions defined as follows: 

 1 2( ) ( ), ( ), , ( ) N

Nϕ ϕ ϕ = ∈ℜ % % % %�ϕϕϕϕ     (4) 

and the expansion coefficient vector is given by 
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T

1 2( ) ( ), ( ), , ( )I I I I N

Nt c t c t c t = ∈ℜ �c     (5) 

where N is the total number of the CS1RBF knots in the design domain. φi(%) is the i
th

 CS1RBF (i=1,…N). 

 

Since the CS1RBF shape functions are spatial only, while their corresponding expansion coefficients are 

time dependent, the interpolation of the level set function by the CS1RBFs leads to a separation of space and 

time. Here the same set of CS1RBFs is employed to interpolate each implicit level set function. Thus, the 

decoupling of the time and space terms in the H1J PDE will result in 

 
n

d ( )
( ) ( ) ( ) 0

d

I
I It

t
t

− ∇ =% � %
c

cϕ ϕϕ ϕϕ ϕϕ ϕ     (6) 

The normal velocity n

I
�  is related to the time derivative of the expansion coefficients, given as follows: 

 n

( ) ( )

( ) ( )

I
I

I

t

t
=

∇

%
�

%

�c

c

ϕϕϕϕ
ϕϕϕϕ

, where 
d ( )

( )
d

I
I t

t
t

=�
c

c     (7) 

 

From the above velocity field after the interpolation, it can be seen that all the terms involved in the velocity 

vector are actually evaluated over the whole domain, which will lead to a natural extension of the normal 

velocity field from the boundary to the whole domain. 

 

The original level set equation is now parameterized into a system of algebraic equations. The only 

unknowns are the expansion coefficients of the CS1RBF interpolant, defined as the design variables, to be 

updated using appropriate optimization algorithms. Hence, the propagation of the boundaries at the zero 

level sets just requires iteratively updating the interpolant expansion coefficients. 

���������������������������������������������

The multi1material level set model of structures can be extended to the design of metamaterials (Wang et al. 

2015). Each material phase is represented by a combination of different level set functions. For instance, for 

a composite with one, two or three solid phases, the elastic stiffness C(%) at any point %�is given by 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1

2 1 2 1 1 2 2

3 1 2 1 1 2 3 2 1 2 3 3

, ( )

, ( ) 1 ( ) ( ) ( )

, ( ) 1 ( ) ( ) ( ) 1 ( ) ( ) ( ) ( )

...

H

H H H H

H H H H H H H H

Φ Φ

Φ Φ Φ Φ Φ

Φ Φ Φ Φ Φ Φ Φ Φ Φ

=

= − +

= − + − +

%

%

%

C C

C C C

C C C C

(8) 

where H(Φ
I
) is the Heaviside function corresponding to the m

th
 level set function. For a case with m solid 

phase materials, the elastic stiffness C(%) can be obtained in a similar way by following the above model. 

This definition is in line with the level set representation model given in Equation (1). 
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Since the thermal expansion coefficient ( )%αααα  is only related to the mixture of materials, it will have the 

form 

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

2 2 1 2 2

3 2 1 2 3 2 2 3 3

, ,

, 1 ( ) ( ) ,

, 1 ( ) ( ) 1 ( ) ( ) ( ) ,

...

H H

H H H H H

α Φ α

α Φ Φ α Φ α

α Φ Φ α Φ Φ α Φ Φ α

=

= − +

= − + − +

%

%

%

  (9) 

As illustrated by the above MM1LS model, a number of m+1 material phases can be represented by using a 

number of m level set functions. The distribution of multiple materials can be described in the design 

domain. As given in Figure 1, the level set function Φ
1
 is firstly used to distinguish the solid (blue, red and 

green regions Φ 1
>0) and the void phase (grey Φ

1
<0), Φ

2
 is then applied to determine the first material phase 

(blue region Φ
1
>0 and Φ

2
<0) from the material phases, and Φ

3
 is finally used to identify the second material 

phase (red region Φ
1
>0, Φ

2
>0 and Φ

3
<0) and the third material phase (green region Φ

1
>0, Φ

2
>0 andΦ

3
>0). 

It is noted that the MM1LS is actually a general model, which is applicable to more than 3 material phases. 

In this study, for simplicity but without loss of generality, we have only selected three phases. For the case 

with k (>=3) materials, the elastic stiffness C
(k)

(x) and the thermal expansion coefficient α
(k)

(x) can be 

obtained according to the similar rules given by Eqs. (8) and (9). 

 

Figure 1: Representation of a multi1material design domain 

 

For the problem studied in this paper, the elasticity constant C and thermal strain coefficient α at any 

computational point %�inside the domain can be written as a function of the values of the Φ
1
 and Φ

2
: 

( )1 2 1 1 2 2
( , ) ( ) 1 ( ) ( ) ( )ijkl ijkl ijklC C CΦ Φ Φ Φ ΦΗ Η Η Η= − +%   (10) 

Page 7 of 22

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview
 O

nly

 8

( )2 1 2 2( , ) 1 ( ) ( )ij ij ijΦ Φ Φα Η α Η α= − +%   (11) 

where H is a smoothed Heaviside function, normally given as follows: 

3

3

x

3(1 ) (x) (x) 1
( (x)) ( ) x

4 3 2

1 x

Φ Φ
Φ

θ

θ θ
Η

< −�


− +
= − + −� ≤ < �

� �
≥ �

  (12) 

where θ is a small positive number to avoid numerical singularity, and T is the width for the Heaviside 

function. Here, the Heaviside function is smoothed to facilitate the calculation of the first1order derivatives 

of the objective function. 

 

It should be noted that the smoothed level set function will naturally smear the exact boundaries of level sets, 

and may impact the accurate representation of the original shape and distinct interface. So the validity of the 

constitutive equation may not exactly ensure accurate capture of the Hashin1Shtrikman bounds (Bensøe and 

Sigmund 2003). There have been some methods developed to overcome this issue, e.g. the multiphase 

piecewise constant level set method (Luo et al. 2009; Wei and Wang 2009). The MM1LS model employs 

continuous level set functions to describe each phase given in Eq. (8), and thus the advantages of the level 

set method can be retained. Hence, the MM1LS is different from the mixture model in the material density 

distribution methods, e.g. (Sigmund and Torquato 1997; Bensøe and Sigmund 1999). 

���������������������������������
������������������

The topological optimization will be performed in a unique cell Y  defined as the design domain. The 

effective elastic and thermoelastic properties can be evaluated by using the homogenization method as: 

 ( )( ) ( )( )H 0( ) * 0( ) *1
dij ij kl kl

ijkl pq pq pqrs rs rs
Y

C C Y
Y

ε ε χ ε ε χ= − −∫     (13) 

 ( ) ( )( )H * 0( ) *1
( ) dij ij

ij pq pq pqkl kl kl
Y

C Y
Y

β α ε ε ε χ= − Θ −∫     (14) 

 
H H 1 H( )ij ijkl klCα β−=

    (15) 

where H

ijklC  is the effective elasticity tensor, H

ijβ  is the effective thermal stress tensor, H

ijα is the effective 

thermal strain tensor, 
pqrsC  is the locally varying elasticity tensor, 

0ε is the unit test strain field (3 for 2D 

and 6 for 3D), | |Y  is the volume of the cell, pqα  is the locally varying thermal strain tensor corresponding to 

a unit strain caused by a unit thermal load, *( )klε χ  denote locally vary strain fields, and 
*( )ε Θ  are the strain 

field based on the displacement field for a unit thermal load. The displacement fields klχ  and Θ  can be 

obtained by solving the following equations: 

 ( )( )0( ) * ( )d 0kl kl

pq pq pqrs rs
Y

C Yε ε χ ε τ− =∫ , ( )U Yτ∀ ∈  (16) 
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 ( )( )* ( )d 0pq pq pqrs rs
Y

C Yα ε ε τ− Θ =∫ , ( )U Yτ∀ ∈  (17) 

where τ  is the virtual displacement field. 

 

This work aims to optimize the shape and topology of the microstructure to achieve the expected effective 

properties for both the thermal strain tensor 
Obj

ijα  and the elasticity tensor 
Obj

ijklC  under the constraint of a 

given amount of materials in the design domain (31phase). The symmetries, such as orthotropy, square 

symmetry or isotropy of the resulting materials, will also be considered in the optimization. 

 

The optimization problem with multiple materials is then formulated as: 

 ( ) ( )

1 2

H 2 H 2

, 1 , , , 1

ad

1 1 1

min max

Find :  ,  ( 1,2, , )

1 1
Minimize:   ( ) ( )

2 2

Subject to:  

                   , , , ,     

                   

        

i i

d d
Obj Obj

ij ij ij ijkl ijkl ijkl

i j i j k l

c c i N

f C C

a l U

V V V

ω α α η

ϕ ϕ

= =

=

= − + −

= ∀ ∈

≤ ≤

∑ ∑

�

u v v v

2 2 2

min max

1 1 1

min max

2 2 2

min max

           

                   

                   

i

i

V V V

c c c

c c c











 ≤ ≤


≤ ≤
 ≤ ≤

    (18) 

where 
ijω and 

ijklη  are the weighting factors associated with the corresponding thermal strain tensors and the 

elasticity tensor; u is the displacement field; v is the virtual displacement and Uad is the set of kinematically 

admissible displacements; 1

minV , 1

maxV , 2

minV  and 2

maxV  are lower and upper bounds to limit the volume fractions 

of solid phase 1 and solid phase 2 respectively; 1

minc , 1

maxc , 2

minc  and 2

maxc are the lower and upper bounds of 

the two sets of design variables.  

 

In this problem, the number of constraints is equal to the number of solid phases. The constraints impose a 

restriction on the overall usage of material, as well as the usage of each individual solid material, to achieve 

better convergence. In this case, the volume fraction of two solid phases can be expressed as 

 
1 11

( )d
Y

V Y
Y

ΦΗ= ∫  and 
2 1 21

( ) ( )d
Y

V Y
Y

Φ ΦΗ Η= ∫     (19) 

where the first constraint refers to the overall usage of solid phases 1 and 2, while the second, which is a 

nonlinear constraint, restricts the usage of the solid phase 2. The order of nonlinearity will increase when 

more solid phases are included which may cause oscillations of the constraint. In this case, additional 
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numerical techniques may be required to achieve a stable convergence. In addition, as aforementioned, the 

Heaviside function used here is smoothed, and thus the volume fractions calculated are approximate. 

 

Due to the interpolation of the level set function, only the expansion coefficients of the interpolant are 

required to be optimized using appropriate optimization algorithms such as the Method of Moving 

Asymptotes (MMA) (Svanberg 1987). The implementation of MMA requires the first1order derivatives of 

the objective function and constraints with respect to the design variables. Considering variation of the 

moving boundary due to the pseudo1time t, the sensitivity can be computed by the shape derivative analysis 

method and the adjoint method (Choi and Kim 2005). 

 

�� �!�����������������
��"����

The first1order derivative of the objective function with respect to the design variable c
I
 is obtained as 

 

H H

H H

. 1 . , , 1

( ) ( )  
d d

ij ijklObj Obj

ij ij ij ijkl ijkl ijklI I I
i j i j k l

Cdf
C C

d

α
ω α α η

= =

∂ ∂
= − + −

∂ ∂∑ ∑
c c c

  (20) 

In the above, in order to obtain both H I

ijklC∂ ∂c and H I

ijα∂ ∂c , we need to first calculate the derivative of 

H

ijklC  and 
H

ijβ  with respect to the pseudo time t. 

 

Let J(N) be a shape function of the domain N (Choi and Kim 2005), whose material derivative along a given 

direction can be defined, as follows  

 ( ) ( )
0

1
lim

t
t

dJ
J J

dt t→
= � − �    (21) 

 

The material derivatives of H

ijklC  are (Allaire, Jouve, and Toader 2004) and (Choi and Kim 2005): 

( )( ) ( )( ) ( )( ) ( )( )
H

0 * 0 * 0 * *

n n

1 2
d d

ijkl pqrsij kl I ij kl I

pq pq rs rs pq pq pqrs rsIY Y

dC C
v Y C v Y

dt Y YΦ
ε ε χ ε ε χ ε ε χ ε δχ

∂
= − − − −

∂∫ ∫  (22) 

( ) ( )( ) ( ) ( )

( )( )

H

* 0( ) * * *

n n

* 0( ) *

n

1 1
( ) d ( ) d

1
           ( ) d

ij pqrs ij ij I ij I

pq pq rs rs pq pq pqrs rsIY Y

ij ij I

pq pqrs rs rs
Y

d C
v Y C v Y

dt Y Y

C v Y
Y

Φ

β
α ε ε ε χ α ε ε δχ

ε δ ε ε χ

∂
= − Θ − − − Θ

∂

− Θ −

∫ ∫

∫
 (23) 

 

where vn is a velocity vector, denoting the perturbation direction of the domain boundaries, is the normal 

velocity of the I
th

 material boundary, which can be obtained by Eq. (7); I

pqrsC Φ∂ ∂  can be calculated from 

Eqs. (8) and (9). In the above equations, klδχ and δΘ  are the derivatives of klχ  and Θ  with respect to IΦ . 

Based on the derivative given in Eqs. (16) and (17) with respect to IΦ , we can obtain 
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 ( ) ( )( ) ( ) ( )( )* * * 0 *

n n

1 1
d d

pqrskl I kl I

pq pqrs rs pq rs rsIY Y

C
C v Y v Y

Y Y Φ
ε τ ε δχ ε τ ε ε χ

∂
= −

∂∫ ∫   (24) 

 ( ) ( ) ( )* * * *

n n

1 1
( ) d ( ) d

pqrsI I

pq pqrs rs pq pq rsIY Y

C
C v Y v Y

Y Y Φ
ε δ ε τ ε ε ε τ

∂
Θ = − Θ

∂∫ ∫   (25) 

 

Substituting Eqs. (24) and (25) into Eqs. (22) and (23) with an arbitrary t, we have 

 ( )( ) ( )( )
H

0 * 0 *

n

1
d

ijkl pqrsij kl I

pq pq rs rsIY

dC C
v Y

dt Y Φ
ε ε χ ε ε χ

∂
= − − −

∂∫   (26) 

 ( ) ( )( )
H

* 0( ) *

n

1
( ) d

ij pqrs ij ij I

pq pq rs rsIY

d C
v Y

dt Y Φ

β
α ε ε ε χ

∂
= − − Θ −

∂∫   (27) 

Then, subjecting the previously defined n

Iv  into the above Eqs. (26) and (27) will lead to 

 ( )( ) ( )( )
H

0 * 0 *1 ( ) d ( )
d

d
 

I
ijkl pqrsij kl

pq pq rs rsI IY

dC C t
Y

dt Y tΦ Φ
ε ε χ ε ε χ

∂
= − − −

∂ ∇∫
% cϕϕϕϕ

  (28) 

 ( ) ( )( )
H

* 0( ) *1 ( ) d ( )
( ) d

d

I
ij pqrs ij ij

pq pq rs rsI IY

d C t
Y

dt Y tΦ Φ

β
α ε ε ε χ

∂
= − − Θ −

∂ ∇∫
% cϕϕϕϕ

  (29) 

 

To eliminate d ( ) dI t tc , the derivative of 
H

ijklC  and 
H

ijβ  with respect to t can also be given via the chain1rule: 

 

H H I
ijkl ijkl

I

dC C

dt t

∂ ∂
=

∂ ∂
c

c
; 

H H I
ij ij

I

d

dt t

β β∂ ∂
=

∂ ∂
c

c
 (30) 

By comparing the corresponding terms in Eq. (30) with that given in Eqs. (28) and (29) yields 

 ( )( ) ( )( )
H

0 * 0 *1 ( )
d

ijkl pqrsij kl

pq pq rs rsI I IY

C C
Y

Y Φ Φ
ε ε χ ε ε χ

∂ ∂
= − − −

∂ ∂ ∇∫
%

c

ϕϕϕϕ
  (31) 

 ( ) ( )( )
H

* 0( ) *1 ( )
d

ij pqrsC ij ij

pq pq rs rsI I IY

C
Y

Y Φ Φ

β
α ε ε ε χ

∂ ∂
= − − −

∂ ∂ ∇∫
%

c

ϕϕϕϕ
  (32) 

and recalling Eq. (15), we will have 

 

H H 1 H
H H 1

( )
( )

ij ijkl kl
kl ijklI I I

C
C

α β
β

−
−∂ ∂ ∂

= +
∂ ∂ ∂c c c

  (33) 

 

Similarly, the derivative of the volume constraints can also be obtained, as follows: 

1 2 2
1 1 2 1 2

1 1 2

1 1 1
( ) ( )d ; ( ) ( ) ( )d ( ) ( ) ( )d

Y Y Y

V V V
Y Y; Y

Y Y Y
Φ Φ Φ Φ Φδ δ Η Η δ

∂ ∂ ∂
= = =

∂ ∂ ∂∫ ∫ ∫% % %
c c c

ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ  (34) 

where the Dirac delta function ( ) ( )HΦ Φ Φδ = ∂ ∂ . 
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In Equation (34), the use of the Heaviside function will result in the use of its first1order derivatives, namely 

the Dirac delta function. Hence, the sensitivities will be infinity at the level set boundary while zero 

elsewhere. Since a smoothed Heaviside function has been used in the numerical implementation, it is still 

reasonable to use the delta function in the sensitivity analysis to enable the decrease of the objective. 

 

��� #���������$%�������

In the following examples, an ‘ersatz material’ model (Allaire, Jouve and Toader 2004) is used to 

approximate strains and material properties for those elements crossed by the moving level set boundary. A 

cell with periodic boundary conditions is regarded as the design domain. Geometric symmetries of the cell 

are also considered in order to achieve orthotropic or balanced orthotropic materials. The metamaterials 

designed in this paper are subject to the plane stress condition, and the geometric symmetries of the cell are 

limited to achieve plane orthotropic materials with cubic symmetry. For simplicity, the level set knots are 

assumed to be identical with the element nodes, resulting in 61×61 total design variables. The convergence 

criterion is that the difference of two successive objective function values is less than 0.0001, or the 

maximum iteration number is no more than 200 for the numerical cases in this paper. The radius of CS1RBF 

is set to 1.5 times of the average distance between CS1RBF knots because an appropriate radius of compact 

support is essential for an efficient trade1off between interpolation and computational efficiency. To obtain 

materials with extreme Poisson’s ratio and thermal expansion coefficient, different weighting factors will be 

used for different design requirements of the NPR and ZTE. By changing the weighting factors, we can 

obtain final material designs with different values of NPR and ZTE. 


����
��������������

In Case (1) we design an orthotropic material to achieve a NPR of 10.5 and ZTE. A total of two level set 

functions are used to denote the multi1material design domain. Note that the first level set function 

represents the overall solid phases rather than any single material phase. The two artificial solid materials 

are assumed to have Young’s moduli: E
1
=E

2
=1, Poisson’s ratios: ν

1
=ν

2
=0.3, and the thermal expansion 

coefficients α
1
=1 and α

2
=10. Horizontal and vertical geometric symmetries are included, the total material 

usage V
1
=0.35 and the material usage for solid phase 2 is in the range 0.15>=V

2
>=0.1. 

 

The initial parameters such as the weighting factors, expected objective values and effective properties to be 

achieved by the optimization are given in Table 1. The designs and the convergence are shown in Figs 2 and 

3, the level set contours are given in Fig. 4, and the two solid phases are shown in Fig. 5. It is noted that the 

different values given by Fig. 5 represent Ф
1(or 2)

>0, Ф
1(or 2)

=0 and Ф
1(or 2)

<0, respectively. In Fig. 5, the 

materials corresponding to the red regions labeled Solid 1denote the solid phase 1 (Ф
1
>0 & Ф

2
<0), while the 
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material in the blue regions labeled Solid 2 represent the solid phase 2 (Ф
1
>0 & Ф

2
>0). The above 

observations are exactly in line with the definition of multi1materials in the design domain (Fig.1). For 

instance, for three material phases, both Ф
1
>0 and Ф

2
>0 will determine the solid 2. 

 

In this example it seems that the optimized design is topologically equivalent to the initial design with 9 

holes, and the design appears to have only experienced shape changes. However, upon close observation of 

the intermediate designs shown in Figure 2, we find that new holes are indeed created and merged during the 

shape and topology optimization process. Hence, both the shape and topology of the initial microstructure 

have in fact experienced changes during the optimization. Based on the results, it can be seen that the 

topology of the optimized design is a kind of porous microstructure with re1entrant geometries. It is known 

that the effective elastic and thermal properties of the microstructure depend on both the internal structural 

layout of the cell and the manner of deformation to enable rotating effects when loaded. It has been 

demonstrated that the re1entrant features are essential for NPR materials (Evans and Alderson 2000). 

Sigmund and Torquato (1996, 1997) also showed that extreme thermoelastic properties can be obtained 

from composites of three material phases (2 solids and 1 void), where one of the two solids responds more to 

thermal load than the other. 

 

To demonstrate the deformation of the optimized structure, the displacements of the field nodes of a 3 by 3 

array of the optimized base cell are plotted in Fig. 5. In Fig. 5(a), the 3 by 3 array is subjected to a horizontal 

force uniformly distributed along the right edge, while the left edge is constrained in the horizontal direction 

and the bottom edge is constrained in the vertical direction as a symmetrical displacement boundary. The 

negative Poisson’s ratio effect can be seen in the structure with positive displacements in both horizontal and 

vertical directions (expanding). Fig. 5(b) shows the temperature change (thermal load) within the whole area, 

but almost no deformation can be seen in the plot due to the zero effective thermal expansion. 

 

 

Figure 2: Convergence histories of the objective function 
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Figure 3. Convergence of two volume constraints 

 

Table 1: Initial parameters and optimized results for Case (1) 
Case (ω11, ω22) (η1111, η2222, η1122) Objective properties Optimal effective properties 

(1) (0.20, 0.20) (0.05, 0.05, 1.00) 

1 0.5 0

0.1 0.5 1 0  

0 0 0

0

0

0

Obj

Obj

C

α

− 
 = − 
  

 
 =  
  

 
H

H

1 0.4616 0

0.0769 0.4616 1 0  

0 0 0.0637

0.0020

0.0020   

0

C

α

− 
 = − 
  

− 
 = − 
  

 

 

  �
Figure 4. (a) Contours of LSF1 (Φ

1
)  (b) Contours of LSF2 (Φ

2
) (c) Distribution of two solids: 

Solid 1 (Ф1>0 & Ф2<0, Red color online) and Solid 2 (Ф1>0 & Ф2>0, Blue color online) 

 

    
(a) Negative Poisson’s ratio    (b) Zero thermal expansion 

Figure 5. Displacement plots of field nodes 

Solid 1 

Solid 2 
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����
��������������

 

The objective function of Case (2) is to design a balanced orthotropic (square symmetrical) metamaterial to 

have negative Poisson’s ratio value 10.5 and zero thermal strain in both directions. The properties for two 

solid material phases and volume constraints are the same as that given in Case (1), but the initial designs 

are different. Other parameters are listed in Table 2. The convergence for the objective function and two 

constraints are given in Figs 6 and 7, the contours of two level set functions and the optimized design for 

solid phases are plotted in Fig. 8. 

 

From the optimal effective properties in Tables 1 and 2, it can be seen that the Poisson’s ratio and the 

thermal strain of the optimized design cannot exactly approach the expected property values. One of the 

possible reasons is that the effect of re1entrant structures is a key to enabling large rotating effects (rigid1

body rotations) for a loaded microstructure (Grima et al. 2012). However, the topological design is actually 

a structural optimization method for continuum structures, which can only make use of structural elastic 

deformation (strain energy) to mimic rather than implement the rigid1body rotations. Hence, it is difficult to 

allow the microstructure to generate the same rotating deformation effect as rigid1link mechanisms. This 

may explain the phenomenon that during the optimization process point1to1point hinges or structural 

disconnections may occur at some local positions of the re1entrant structure. From the optimization, it can be 

found that the integrated shape and topology optimization are able to generate boundaries with satisfied 

smoothness and distinct interfaces. Moreover, the results (Fig 8) show that although the initial design had 17 

holes, the optimized design has 13 holes, which shows that the proposed method can merge existing holes. 

 

Table 2: Initial parameters and corresponding optimal solutions for Case (2.0) 

Case (ω11, ω22) (η1111, η2222, η1122) Objective properties Optimal effective properties 

(2.0) (2.00, 2.00) (0.05, 0.05, 1.00) 

1 0.5 0

0.04 0.5 1 0  

0 0 0

0

0

0

Obj

Obj

C

α

− 
 = − 
  

 
 =  
  

 
H

H

1 0.4821 0

0.0616 0.4821 1 0  

0 0 0.06819

0.0821

 0.0821   

0

C

α

− 
 = − 
  

 
 =  
  

 

�

To study the relationship between Poisson’s ratio and thermal expansion coefficients, Case (2) is again used 

to design a balanced orthotropic metamaterial with the same negative Poisson’s ratio of 10.5 but with 

different thermal expansion coefficients. In Case (2.1) a negative thermal strain coefficient in both directions 

is desired and in Case (2.2) a positive thermal strain coefficient is desired. The parameters and designs are 

given in Table 3. The results in the three cases show that there is no inherent relationship between Poisson’s 

ratio and thermal expansion coefficients. The topologies for the total solid phases in Cases (2.0), (2.1) and 

(2.2) are similar, with very close Poisson’s ratio values. However, different configurations for each solid 

Page 15 of 22

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview
 O

nly

 16

material are generated, in order to achieve the different thermal expansion coefficients. The different 

responses to the same thermal load by the two different materials result in the deformation of the cellular 

structure when heated. Thus, how to configure solid materials is the main factor to determine the thermal 

expansion coefficients. 
�

�
Figure 6. Convergence of the objective function 

 

 
Figure 7. Convergence of two volume constraints 

 

� � �
Figure 8. (a) Contours of LSF1 (Φ

1
) (b) Contours of LSF2 (Φ

2
) (c) Distribution of two solids: 

Solid 1 (Ф1>0 & Ф2<0, Red color online) and Solid 2 (Ф1>0 & Ф2>0, Blue color online) 

 

Solid 1 

Solid 2 
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Table 3: Initial parameters and corresponding optimal solutions for Cases (2.1) and (2.2) 

Case Objective properties Optimal effective properties Two solids Repetetive cells 

(2.1) 

1 0.5 0

0.04 0.5 1 0  

0 0 0

0.6

0.6

0

Obj

Obj

C

α

− 
 = − 
  

− 
 = − 
  

 
H

H

1 0.4286 0

0.0378 0.4286 1 0  

0 0 0.0582

0.5837

 0.5837   

0

C

α

− 
 = − 
  

− 
 = − 
  

   

(2.2) 

1 0.5 0

0.04 0.5 1 0  

0 0 0

2

2

0

Obj

Obj

C

α

− 
 = − 
  

 
 =  
  

 

H

H

1 0.4455 0

0.0368 0.4455 1 0

0 0 0.0002

1.9794

 1.9794   

0

C

α

− 
 = − 
  

 
 =  
  

   

 


����
��������������

In Case (3), the objective is to design a balanced orthotropic (square symmetrical) metamaterial to achieve 

NPR and NTE simultaneously with two solid materials. The two artificial solid materials are assumed to 

have Young’s moduli: E
1
=1, E

2
=5, Poisson’s ratios: ν

1
=0.3, ν

2
=0.5, and thermal expansion coefficients α

1
=1 

and α
2
=10.  The desired negative Poisson’s ratio is 10.5 and negative thermal expansion is 11, in both 

directions. The horizontal and vertical geometric symmetries are included, and the volume constraints are V
 

1
=0.3 and 0.15>=V

 2
>=0.1, with other parameters given in Table 4. Optimization results are provided in Figs 

9112. The topologies obtained in Case (3) are similar to those in Cases (2.012.2), since the starting design 

was the same in all cases. However, different boundary shapes can be observed, and thinner bars and hinge1

like structures are generated in Case (3) to achieve smaller thermal strain than Cases (2.012.2). When 

selecting the parameters for initial design with two solid materials, the H1S bounds should be taken into 

account. It is known that the achieved effective properties are limited by the H1S bounds (Hashin and 

Shtrikman 1963).  

 

Table 4: Initial parameters and corresponding optimal solutions for Case (3) 

Case (ω11, ω22) (η1111, η2222, η1122) Objective properties Optimal effective properties 

(3) (2.00, 2.00) (0.05, 0.05, 1.00) 

1 0.5 0

0.04 0.5 1 0  

0 0 0

1

1

0

Obj

Obj

C

α

− 
 = − 
  

− 
 = − 
  

 
H

H

1 0.4345 0

0.0435 0.4345 1 0  

0 0 0.0575

0.9656

 0.9656   

0

C

α

− 
 = − 
  

− 
 = − 
  

 

 

In the optimized result given in Fig. 11(c), it can be seen that there is a small ratio of soft materials (Solid 2) 

distributed over the surfaces at the locations of four corners of the hard solid material (Solid 1). The 

appearance of the soft materials is reasonable and no additional regularization technique is required to 
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remove the small geometrical features. The soft materials around the four corners will facilitate the 

deformation and rotating effect of the microstructure. Although traditional manufacturing may not fabricate 

such microstructures, future developments in additive manufacturing may provide a way to resolve this issue. 

Methods to take advantage of additive manufacturing to fabricate such materials will be addressed in our 

ongoing research. 

 

�
Figure 9: Convergence of the objective function 

 

 
Figure 10. Convergence of two volume constraints 

 

� � �
Figure 11. (a) Contours of LSF1 (Φ

1
) (b) Contours of LSF2 (Φ

2
) (c) Distribution of two solids: 

Solid 1 (Ф1>0 & Ф2<0, Red color online) and Solid 2 (Blue Ф1>0 & Ф2>0, Blue color online) 

 

Solid 1 

Solid 2 

Page 18 of 22

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For P
eer R

eview
 O

nly

 19

   
(a)�Negative Poisson’s ratio   (b) Negative thermal expansion 

Figure 12. Displacement plots of field nodes 

 �� &�
������
��

This paper has proposed a computational design method for topology optimization of multifunctional 

mechanical metamaterials, in which the numerical homogenization method is used to evaluate the effective 

material properties, and a multiphase parametric level set method is applied to evolve shape and topology of 

the microstructure. The results of several numerical cases show the effectiveness of the proposed method for 

designing micro1structured metamaterials to have desired thermo1mechanical properties. This method may 

be extended to engineering other micro1 and even nanostructured metamaterials. Selection of initial 

parameters is essential to achieve the optimized designs and ensure the stability of the optimization. To 

extend the proposed method to problems with more solid phases, additional numerical schemes may be 

required to overcome instability due to nonlinearity of the volume constraints. 

 

Although there have as yet been not many particular applications for materials with both NPR and NTE, a 

mechanical metamaterial with double negative indexes is potentially useful. These kinds of multifunctional 

metamaterials exhibit thermoelastic behavior, which is impossible to obtain from conventional counterparts, 

which may provide opportunities for many novel and innovative material designs and applications. 
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