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Abstract

Oryza sativa or Asian cultivated rice is one of the major cereal grass species domesticated for human food use during the
Neolithic. Domestication of this species from the wild grass Oryza rufipogon was accompanied by changes in several traits,
including seed shattering, percent seed set, tillering, grain weight, and flowering time. Quantitative trait locus (QTL)
mapping has identified three genomic regions in chromosome 3 that appear to be associated with these traits. We would
like to study whether these regions show signatures of selection and whether the same genetic basis underlies the
domestication of different rice varieties. Fragments of 88 genes spanning these three genomic regions were sequenced
from multiple accessions of two major varietal groups in O. sativa—indica and tropical japonica—as well as the ancestral
wild rice species O. rufipogon. In tropical japonica, the levels of nucleotide variation in these three QTL regions are
significantly lower compared to genome-wide levels, and coalescent simulations based on a complex demographic model
of rice domestication indicate that these patterns are consistent with selection. In contrast, there is no significant reduction
in nucleotide diversity in the homologous regions in indica rice. These results suggest that there are differences in the
genetic and selective basis for domestication between these two Asian rice varietal groups.
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Introduction

Crop domestication is the adaptive divergence of a plant species

as a result of selection and the initial evolutionary transition from

wild to human-associated cultivated environments [1,2]. Pheno-

typic comparisons identify numerous traits that differ between

domesticated species and their wild ancestors. In general, three

classes of traits that differentiate domesticated and wild ancestral

species can be defined [1]. First are domestication traits, which

evolve during the initial movement of species from natural to

cultivated environments. A second class is crop improvement

traits, which are further phenotypic changes that have occurred

after the initial domestication to human-associated cultivated

environments [3]. Finally, there are crop diversification traits,

which are associated with different crop varieties or cultivars

adapted to different cultures or agro-ecological environments.

All three types of traits are conceptually distinct, but all can

show up as differences between domesticated and wild ancestral

species. It should be noted that, in principle, crop improvement

traits can be difficult to separate from domestication traits. A few

traits, however, are widely recognized as true domestication

traits, including loss of seed shattering and change to annual life

cycle [1,2]. These traits are fixed in domesticated taxa – that is,

they are phenotypes shared by all members of a domesticated

crop species.

Identifying the genetic basis of domestication traits in several

plant species, most especially cereal grasses, has been a major

research area in the study of plant evolutionary biology [4,5].

There have been attempts in the last few years to determine the

molecular basis of cereal crop domestication, and study the nature

of selection as well as other evolutionary forces associated with

domestication events [4,1]. Mapping of quantitative trait loci

(QTL) associated with domestication has been a major approach

in studying the genetic architecture of domestication. QTL

analyses for domestication traits have been accomplished in maize

[6,7], wheat [8], pearl millet [9], foxtail millet [10] and rice

[11,12,13], which have provided crucial information on the

genetic basis of domestication. Many of these QTL studies have

led to the isolation of domestication genes in various cultivated

plant species [4], including the tb1 locus that accompanies shoot

architecture evolution in maize [14], and the sh4 and qSH1 loci

that lead to loss of seed shattering in rice [15,16].

Despite the identification of domestication trait QTLs, and in

some instances domestication genes, there remain several

unanswered questions surrounding the evolutionary genetics of

crop domestication. First, since the putative domestication QTLs
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were identified using linkage mapping, it is unknown whether

these mapped QTLs are indeed selected for and do not simply

represent natural variation of alleles maintained by genetic drift or

mutation/selection balance. Because domestication is a process of

selection and adaptive evolution of cultivated species from their

wild ancestor, demonstrating selection at putative domestication

QTLs is a prerequisite for defining them as true domestication loci

[1].

One unambiguous signature of positive selection is a ‘‘selective

sweep,’’ which is recognized in part as significantly reduced

nucleotide variation across a genomic region in proximity to a

selected gene [17]. The physical extent of a sweep (whether a few

hundred bp or several hundred kb) is governed by the strength of

selection, time since the sweep began, and effective recombination

rate between the selected site and the neighboring genomic

regions. Population bottlenecks also reduce nucleotide variation

levels, but this is manifested genome wide rather than the more

localized decrease in polymorphisms associated with selective

sweeps [18].

In several characterized domestication genes, such as maize tb1

[14,19], there is an unambiguous signature for positive selection,

including the presence of an extended selective sweep that results

in reduced nucleotide variation around the genetic target of

selection [17,1]. In other cases, however, selective sweeps have not

been identified at genes that encode for presumed domestication

traits. In the rice qSW5 gene, for example, which controls variation

in seed width associated with a QTL [20], population genetic

analysis is still needed to characterize whether a selective sweep

has indeed occurred at this gene.

A second set of issues is whether domestication within different

variety groups of a crop species (for example japonica and indica

rice, see below) proceeds by selection of the same genes, or

whether there is selection on different genes in these different

varietal groups. In recent years, it has become clear that several

cereal crops, including Asian domesticated rice (Oryza sativa L.) and

barley (Hordeum vulgare), appear to be comprised of genetically

distinct groups [21,22]. Comparative molecular genetic analysis of

domestication QTLs or genes allows us to determine whether the

same or distinct genes (or alleles) underlie evolution in these

genetically distinct groups.

A final set of issues is to understand how gene flow among

genetically distinct domesticated groups (japonica and indica) or even

between domesticated taxa and their progenitor species affects the

evolutionary dynamics of domestication. The mutant alleles of Rc

domestication gene that lead to white pericarp in rice, for

example, originated in one rice lineage and spread via introgres-

sion to another distinct O. sativa subspecies [23]. The importance

of introgression in the spread and fixation of domestication genes

during crop domestication has yet to be considered in the study of

rice domestication.

To address these issues, we examine the patterns of nucleotide

variation at several domestication trait QTLs in O. sativa,

determining whether molecular diversity at these QTLs is

consistent with the action of positive selection in this crop

species. O. sativa is the world’s most widely grown cereal crop

species and is now a key model system in plant biology [24]. Two

main rice varietal groups, indica and japonica, have been

recognized since ancient China and are the most widely grown

worldwide [25]. The two groups differ morphologically in grain

shape and leaf color, biochemically in amylose composition,

phenol reaction, and sensitivity to potassium chlorate, ecogeo-

graphically in growing environment and geographic distribution,

as well as genetically in various aspects [25,26,27]. The japonica

group itself is divided into the tropical japonica and the temperate

japonica, the former considered to be the product of direct

domestication, while the latter being a secondarily derived

varietal group [25].

It has been established that Oryza rufipogon Griff., a species native

to southeastern Asia, is the wild ancestor of domesticated rice

[25,21]. There have also been suggestions that another wild

species Oryza nivara is the ancestor of O. sativa [15], although there

is evidence that this species may simply be an annual ecotype of O.

rufipogon [25,28]. O. rufipogon is characterized by variable but

distinctly higher levels of out-crossing, while O. sativa is primarily a

self-fertilizing species [25]. Some genetic evidences suggest there

were two domestication events for rice, with possibly separate

origins for the indica and japonica groups [29,30,26,21,31], though

there are other models suggesting single origin of domesticated rice

[32,33]. Early hypotheses considered that domestication of tropical

japonica occurred in a mountainous region spanning Nepal, Assam,

northern regions of Myanmar, Laos, Thailand, and the Yunnan

province of southern China [21], while archaeological studies

indicate that this varietal group was domesticated in the Yangtze

Valley in China [34]. It was also thought that indica rice was

independently domesticated in Ganges region of the Indian

subcontinent [21], although there are suggestions that this major

varietal group may have arisen in part by extensive hybridization

of tropical japonica with either proto-indica or wild O. rufipogon [34].

In our study, we examine the molecular population genetics of

genomic regions in rice that contain QTLs associated with

domestication of this crop species and then compare these regions

with the genome-wide data. These QTLs were identified in a

large-scale mapping study between a tropical japonica variety

(Jefferson) and a Malaysian O. rufipogon (IRGC 195491) [12].

The O. rufipogon accession used in this QTL study has been

described as a weedy rice, although SSLP marker analysis clearly

indicates that it is related to wild O. rufipogon and O. nivara, and is

not a feral relative of domesticated rice [33].

Rice chromosome 3 was identified to contain several QTLs

associated with rice domestication [12], and we decided to make

this chromosome the focus of our study. Two regions at the

proximal (QTL 3A) and middle (QTL 3B) of the chromosome

were chosen because they were associated with loss-of-shattering, a

key domestication trait. These two regions harbor the QTLs sh3.1

and sh3.2, respectively [12] (see Fig. 1). The third region at the

distal end of the chromosome (QTL 3C) was chosen for analysis

because multiple traits associated with domestication were

localized in this one region. This region contains overlapping

QTLs underlying percent seed set (pss3.1), days to heading

(dth3.4), grain weight (gw3.2), the number of spikelets per panicle

(spp3.1), yield (yld3.2) and the number of grains per panicle

(gpp3.1) [12].

The traits that are associated with these QTLs have been

implicated in the domestication of rice. We should note,

however, that while QTL3A and 3B underlies a known

domestication trait (e.g., loss of seed shattering), the traits

associated with QTL 3C may also be considered crop

improvement or diversification traits. As we indicated, telling

these two types of traits apart can be difficult, and without a

clear archaeological history, we can never be certain whether

these traits are true domestication traits. For the purposes of this

study, however, we will consider them all as domestication

traits. Using re-sequencing data for gene fragments across these

three putative domestication QTL regions in rice, we examine

whether the levels and patterns of polymorphism in these three

regions are indeed consistent with the possibility that they have

experienced recent positive selection accompanying the evolu-

tion of this cultivated grass species.

Lineage-Specific Selection for Rice Domestication
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Results

Nucleotide variation and linkage disequilibrium in three
domestication QTLs
For QTL 3A, we analyzed an ,1.05 Mb region from the

proximal end of the chromosome, and in QTL 3B, we studied

,1.9 Mb region from position 11.988 Mb to 13.863 Mb. In QTL

3C, we examined an ,2.31 Mb region from position 32.893 Mb

to 35.203 Mb. We sequenced a total of 88 gene fragments in these

three QTL regions, each with an average length of 509 bp and

spaced approximately 50 kb apart, totaling 44.8 kb of genomic

sequence. The spacing was chosen based on previous work that

indicated that linkage disequilibrium in the major rice groups

extend to ,75–150 kb [35], and that the one good example of a

selective sweep in rice (in the Waxy gene, see [36]) is ,260 kb in

length.

Previous work using genome-wide sequence tagged site (STS)

data provided an indication of the genetic relationships and

population structure between rice varietal groups [31]. STRUC-

TURE analysis using the DNA sequence data from the three

domestication QTL regions is consistent with that observed using

genome-wide data [31] (see Fig. 2).

In total, we detected 833 single nucleotide polymorphisms

(SNPs) in O. sativa and O. rufipogon, of which 767 are silent site

polymorphisms. The levels of silent site nucleotide variation at

each of the gene fragments as well as each of the three

domestication QTLs were calculated and reported for O. rufipogon

and the two major O. sativa groups – tropical japonica and indica,

which represent the two major domestication events in O. sativa

(see Figure 3 and Table 1, respectively). In the domesticated rice

varietal group indica, there are a total of 288 SNPs, with 276 at

silent sites. In tropical japonica, there are only 37 SNPs, of which all

but one are silent site changes. Mean silent site nucleotide diversity

(p) across all sampled loci in O. sativa is approximately 0.0008 while

the silent-site level of polymorphism in the wild rice species, O.

rufipogon, is six-fold higher (p=0.0049) (see Table 1).

We calculated linkage disequilibrium between SNPs whose

minor frequencies are greater than 10 percent within and

between all three QTL regions. In the wild out-crossing species

O. rufipogon, some linked sites within each QTL show strong

disequilibrium while almost no disequilibrium is observed at sites

between the three genomic regions (see Fig. 4). SNP sites in indica

show stronger disequilibrium, compared to O. rufipogon, within the

QTL regions (see Fig. 4). However, there are too few segregating

sites remaining in tropical japonica to make a meaningful

comparison, which suggests the selection in tropical japonica in

these QTL regions were even stronger to have eliminated most of

the polymorphism in O. rufipogon. The increase in LD in the

domesticated rice groups have been observed in a genome-wide

study [35], and is likely due to the bottleneck associated with rice

domestication as well as the reduction in effective recombination

in domesticated rice associated with the transition to selfing in

this species.

Levels of nucleotide variation are significantly reduced in
domestication QTLs in tropical japonica but not indica
The general loss of genetic variation we observe in the three

QTL regions in domesticated rice (see Table 1) is consistent with

previous reports [31,35], but the patterns of polymorphism

reduction differ between the two major rice varietal groups.

While the nucleotide diversity levels in indica at the three QTL

regions are comparable to those reported previously for the

genome-wide STS data [31], those in tropical japonica are much

lower. In particular, the mean level of molecular variation in

tropical japonica is one order of magnitude lower in the three

domestication QTL regions compared to the mean genome-wide

level of nucleotide diversity reported in [31].

We compared the distribution of nucleotide diversity at each

of these domestication QTLs with the genome-wide distribution

for the two major domesticated rice varietal groups, indica and

tropical japonica, as well as the wild rice O. rufipogon (see Fig. 5). At

QTL region 3A, the distribution of tropical japonica nucleotide

Figure 1. QTL map of domestication and diversification traits between O. sativa and O. rufipogon. The map is based on the study by
Thomson et al. [12], and the regions used in our study are indicated by the square brackets. Traits associated with the QTLs are: sh, seed shattering;
pss, percent seed set; dth, days to heading; gw, grain weight; spp, spikelets per panicle; yld, yield; gpp, grains per panicle.
doi:10.1371/journal.pone.0020670.g001

Lineage-Specific Selection for Rice Domestication
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Figure 2. Population structure of O. sativa and O. rufipogon. It was estimated from all the loci combined from the three QTL regions. The
analysis includes accessions of temperate japonica, aromatic and aus rices that were also sequenced for the same fragments (data not shown). The
highest likelihood is found at K = 5. Vertical bars along the horizontal axis represent individual Oryza accessions, the proportion of ancestry that can
be attributed to each cluster under K = 5 clusters is given by the length of each colored segment in a bar. The labels at the top indicate the original
variety/species designation for each accession based on Garris et al. [26].
doi:10.1371/journal.pone.0020670.g002

Figure 3. Nucleotide diversity (p) at silent sites for each gene fragment within the three QTL regions. Silent sites include both
synonymous sites and noncoding sequences. Data for the two major varieties of O. sativa (indica and tropical japonica), as well as O. rufipogon, are
shown.
doi:10.1371/journal.pone.0020670.g003

Lineage-Specific Selection for Rice Domestication
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diversity is significantly lower compared to the genome-wide

distribution (Mann-Whitney Test, p,0.007). A significant

reduction in nucleotide diversity at tropical japonica is also

observed in the other two domestication trait QTLs. There is

significantly lower nucleotide diversity at QTL 3B (Mann-

Whitney Test, p,0.0011) and QTL 3C (Mann-Whitney Test,

p,0.0101) compared to the genome-wide nucleotide diversity.

Interestingly, neither indica rice nor the wild ancestor O. rufipogon

shows any significant departure of nucleotide diversity distribu-

tion at all three domestication QTLs compared to the genome-

wide data.

Within the three domestication trait QTL regions, we also find

contiguous stretches of fragments of no polymorphism in tropical

japonica (see Figure 3). At QTL 3A in this varietal group, two sets of

large contiguous fragments of zero polymorphism are observed

spanning genomic regions of ,200 and ,400 kb, respectively.

Two extended runs of monomorphism in tropical japonica are also

observed in both QTL 3B (,400 and ,900 kb in size) and 3C

(,400 and ,350 kb in size). In contrast, the longest stretch of

monomorphism in indica across all three domestication QTL

regions is ,250 kb in QTL 3B, which overlaps slightly with one of

the monomorphic runs observed in tropical japonica. There are no

other long tracts of low nucleotide diversity in indica rice or the

wild rice O. rufipogon.

Coalescent simulations with rice demographic model
support selection in tropical japonica
In order to assess the statistical significance of reduced genetic

variation in the three QTL regions, we need to quantify: (1) the

expected levels of genetic diversity in each of the three regions

under a neutral model of evolution for each of the two main

subgroups (indica and japonica), and (2) the variability around this

expected value due to stochasticity. In order to accomplish these

two goals, we used coalescent simulations based on a complex

demographic model previously inferred from genome-wide

patterns of nucleotide variation [31], which considers bottlenecks

at the foundation of both indica and japonica as well as migration

involving O. rufipogon.

The low SNP levels in tropical japonica preclude our use of other

signatures of selection such as Tajima’s D or the classical site-

frequency spectrum. We thus examined the observed and

predicted SNP levels for each of the two domesticated rice groups,

the latter of which were calculated based on the demographic

model described in the Materials and Methods and in Figure 6 but

informed by the observed polymorphism level of O. rufipogon in

each QTL region. The neutral demographic model and genomic

patterns of sequence variation suggests that, on average, for the

number of samples drawn here (20 O. rufipogon, 20 indica, and 18

tropical japonica) the O. sativa indica sample ought to show

Table 1. Silent site nucleotide diversity in domesticated rice and O. rufipogon.

Summary Statistics Genomic Region Species/Varietal group

O. sativa indica
O. sativa
tropical japonica O. rufipogon

hw QTL 3A 0.0013 0.00004 0.0049

QTL 3B 0.0008 0.00007 0.0035

QTL 3C 0.0031 0.0002 0.0064

STS 0.0018 0.0015 0.0050

p QTL 3A 0.0013 0.00007 0.0043

QTL 3B 0.0008 0.0001 0.0034

QTL 3C 0.0025 0.0005 0.0057

STS 0.0009 0.0014 0.0050

doi:10.1371/journal.pone.0020670.t001

Figure 4. Linkage disequilibrium within and between domestication trait QTL regions. LD is measured as pairwise r2 [55] between SNP
sites within each group, and the values are shown by different colors as indicated in the legend.
doi:10.1371/journal.pone.0020670.g004
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approximately 58% of the sequence variation of the wild rice

samples and the tropical japonica sample ought to show, on average,

41% of the variation seen in the wild ancestor. The magnitudes of

these expected reductions in diversity between wild species and

domesticated varietal groups are within 10% of the observed level

of nucleotide diversity empirically estimated from genome-wide

data [31].

Consistent with the results of the Mann-Whitney test for the

difference in polymorphism level between the three QTLs and the

genome-wide data, our simulation-based analysis (see Table 2)

suggests too little diversity for all three regions in tropical japonica

(p,0.001 for QTL 3A and 3B, and p,0.04 for QTL 3C). Across

the three regions, the observed SNP levels in tropical japonica are

,4–17 percent of the expected under the coalescent simulation. In

contrast, observed diversity in indica ranges from ,40–69 percent

of the expected diversity based on the coalescent simulation, and

do not show a significant reduction in diversity as compared to the

variation one expects from the coalescent process without

recombination (p,0.11 – 0.33). Given the number of multiple

comparisons conducted here, it is unlikely that the indica deviation
from expectation is biologically meaningful, while the reduced

level of diversity in tropical japonica clearly suggests these QTL

regions might have been selected in this varietal group.

Evolutionary relationships of domestication QTL regions
in cultivated and wild species
The low levels of nucleotide diversity suggest that selective

sweeps in all three QTL regions are present in tropical japonica but
not indica. To examine phylogenetic relationships at these

domestication QTLs, we constructed neighbor-joining trees for

each genomic region spanning these QTLs (see Fig. 7). Our results

show that tropical japonica alleles in each QTL region form a

monophyletic group with moderate to high bootstrap support (67

percent for QTL 3A, 83 percent for QTL 3B, and 87 percent for

QTL 3C). For QTL 3B and 3C, we find one O. rufipogon accession

that clusters close to the tropical japonica clade. In QTL 3A,

however, there are 11 wild rice strains that cluster with tropical

japonica haplotypes (see Fig. 7), and eight of them are from China,

consistent with an origin of this domesticated lineage in the

Yangtze Valley. In contrast, none of the domestication QTL

regions show the indica alleles forming a monophyletic clade (see

Fig. 7), which again is inconsistent with a selective sweep across

these genomic regions in indica.

Discussion

Domestication is characterized by selection [37], which leaves

its imprint on the levels and patterns of nucleotide polymorphisms

within the genome [1]. Studying these molecular signatures allows

us to infer the dynamics of selection as well as other evolutionary

forces associated with the origin and diversification of crop species.

In rice, QTL analyses indicate that domestication traits are

governed by various QTLs between O. sativa and O. rufipogon

[11,12,13]. For the purposes of this study, we define domestication

traits as either those previously shown to be associated with the

origin of the cultivated species [1] or any trait fixed between the

wild and domesticated species, regardless of whether this trait

evolved at the origin of the cultivated species or during a post-

domestication process. Most of our accessions are landraces,

however, which would rule out traits (and genes) that were fixed in

domesticated crop species exclusively as a result of modern

breeding.

We show that the levels and patterns of nucleotide variation at

three domestication trait QTLs in O. sativa are consistent with the

recent action of selection in tropical japonica, as would be expected

during the domestication process. The distributions of nucleotide

variation among gene fragments in these QTLs are significantly

different from those in a genome-wide data set, with a

preponderance of low polymorphism fragments at the QTL

regions (see Fig. 5). The levels of observed SNP variation are also

lower in domesticated rice at these QTL regions compared to the

expected values from coalescent simulations (see Table 2).

These results are similar to those observed in known selective

sweeps that have previously been studied in several crop genes

associated with domestication or diversification phenotypes. The

best example is the maize tb1 gene involved in the suppression of

auxiliary branch formation, which has a selective sweep spanning

,60–90-kb in length [14]. The maize Y1 gene, involved in the

yellow kernel phenotype, has a 600-kb selective sweep [38], while

the rice Waxy gene has a 260-kb sweep associated with low-

amylose rice in Northeast Asian cultivars [36]. In maize, a study

analyzed 774 loci and 2–4% showed reduced variation that

qualifies them as candidate domestication genes [18].

Interestingly, in our study selective sweeps are only observed in

the tropical japonica samples but not in indica. This may suggest that

selection at these QTL regions during domestication did not occur

in indica rice, but was specific to tropical japonica. Another possibility,

Figure 5. The distribution of nucleotide variation across gene fragments for three QTLs and genome-wide data. Orange, QTL 3A;
yellow, QTL 3B; blue, QTL 3C; and light blue, genome-wide STS data. Note that the scale of nucleotide diversity is different in the graphs for the three
different species or varietal groups.
doi:10.1371/journal.pone.0020670.g005

Lineage-Specific Selection for Rice Domestication
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however, is that the indica alleles may comprise a ‘‘soft selective

sweep.’’ Selective sweeps are usually considered to occur on newly

arisen mutation, but soft sweeps involve selecting for an old

mutation. In the case of indica, it may be that selection occurred on

mutations that were segregating as neutral mutations for a

prolonged period at appreciable frequency in the ancestral O.

rufipogon [39], leading to a soft sweep.

There are several lines of evidence to suggest that such a soft

sweep in indica is unlikely in this context. First, it is unclear why

tropical japonica would experience hard sweeps (selective sweeps

from newly-arisen mutations) in all 3 QTL regions and indica

only soft sweeps, unless the genetic basis and histories in the

QTL regions are markedly different. Second, the most likely

result of a soft sweep would be a series of separate partial sweeps

of related (but not necessarily identical) haplotypes in indica,

which we again do not observe. Depending, however, on the

specific evolutionary dynamics of such a soft sweep (e.g, a highly

segregating mutation recombined in several different haplotypes

coupled with widespread selection), other possible patterns of

relationships may be observable, although these alternative

Figure 6. A two-origin demographic model for rice domestication. In this model, described in Caicedo et al. [31], the ancestral O. rufipogon
has an ancestral population size NA. At t1 generations ago, a bottleneck occurred with severity n, giving rise to tropical japonica and indica. At tb
generations later, we get recovery of domesticated populations to a fraction u of the ancestral population size NA. The domesticated tropical japonica
and indica share migrants at rate MS, while both domesticated groups share migrants with O. rufipogon at rate MR. For pictorial simplicity, the
contemporary O. rufipogon population is not depicted. TJ and I indicate O. sativa tropical japonica and indica, respectively. Parameters for this model
were estimated based on the unfolded site-frequency spectrum of genome-wide data [31], and were used to generate expected numbers of SNPs for
each of our domestication trait QTL regions.
doi:10.1371/journal.pone.0020670.g006

Lineage-Specific Selection for Rice Domestication
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scenarios are even less likely. Finally, while there has been

discussion in the literature on the possibility of soft sweeps

during domestication [39], no unambiguous cases of soft

domestication sweeps have been identified, in contrast to hard

sweeps for which numerous examples are known in domesti-

cated plants and animals.

A major question in evolutionary biology is the extent to which

selection in genetically distinct groups acts on different or similar

genes in sculpting adaptive traits [40]. Previous studies suggest that

domestication among cereal crop species may be associated with

the same genes [41,42]. Domestication traits like reduced seed

shattering and increased yield have been selected in both indica and

japonica rice. However, our analyses provide evidence for selection

at molecular level in tropical japonica but not in indica, indicating that

the genetic basis for domestication in tropical japonica and indica may

differ and that separate genomic regions were subjected to

selection between these two varietal groups even for the same

domestication traits. This, however, is congruent with the fact that

the three domestication QTLs examined in this study were

identified in a mapping population between O. rufipogon and a

tropical japonica cultivar of O. sativa [12]. A similar pattern of

selection has been seen for the shattering gene qSH1, in which

there is evidence for selection on this gene in japonica but not indica

[43]. Furthermore, it appears that another gene associated with an

agronomically important trait – the white pericarp Rc gene – was

Table 2. Observed and expected numbers of SNPs at
domestication trait QTLs based on coalescent simulations.

QTL 3A QTL 3B QTL 3C

indica japonica indica japonica indica japonica

Observed 41 3 42 5 175 29

Expected 102.2 71.1 87.9 63.6 255.1 175.7

Observed/

Expected

0.4 0.04 0.48 0.08 0.69 0.17

p-value ,0.114 ,0.001*** ,0.198 ,0.001*** ,0.330 ,0.04*

*significant;
***extremely significant.
doi:10.1371/journal.pone.0020670.t002

Figure 7. Neighbor-joining trees of the wild and domesticated rice at the domestication trait QTL regions. The accession numbers are
indicated in the tree, which can be cross-referenced with Table S1.
doi:10.1371/journal.pone.0020670.g007
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originally selected upon in tropical japonica and the selected allele

was subsequently introgressed into indica [23]. Continued efforts to

study the genetic architecture of domestication in rice and to

examine the role of selection on genome variation and the origin

of this cultivated grass species will help unravel the nature of this

key evolutionary phenomenon. Moreover, since selective sweeps

are a clear signature of positive selection, they can be used to

identify genes associated with domestication. This novel mapping

approach, which scans the genome for the selection signature of

low variation across a localized genomic region [44], is known as

adaptive trait locus mapping [45], hitchhiking mapping [46], or

selective sweep mapping [47]. It has been successfully used in

identifying the warfarin resistance locus in rats [48], and several

selected loci in Drosophila [46] and humans [49,50], and there is

now growing interest in these methods for searching for

domestication genes.

Our results suggest that one can integrate two methods to

pursue these research goals - QTL mapping, which identifies

specific genomic regions that harbor genes associated with specific

domestication traits, and selective sweep mapping, which searches

the genome for signatures of positive selection referred to as

selective sweeps. By demonstrating that domestication trait QTLs

do indeed harbor molecular imprints consistent with selection, it

may be possible to utilize selective sweeps to further fine-map

domestication genes and dissect the mechanisms that led to the

origin of cultivated grass species.

Materials and Methods

Rice samples
The rice samples used in this study include three species:

O. sativa, O. rufipogon, and Oryza meridionalis (see Table S1). The

O. sativa accessions include 21 indica and 18 tropical japonica and are

mainly landrace accessions, but 3 are elite cultivars. One of the

indica accessions, POPOT-165 from Indonesia, was found by DNA

sequence data to be a hybrid between indica and tropical japonica and

excluded from the analyses. Most of the 20 O. rufipogon accessions

come from China and Nepal, and a single accession of O.

meridionalis is used as an outgroup for phylogenetic analysis.

Gene fragments sequenced
Three domestication QTL regions on rice chromosome 3 [12]

were selected in this study (see Fig. 1). The physical positions of

these three QTLs were defined by identifying the flanking markers

and their positions in Gramene (http://www.gramene.org).

Within each of these QTLs, gene fragments of ,500 bp in size

and located ,50 kb apart were sequenced. The sequenced

fragments comprise primarily intronic sequences, and were not

located in transposable elements or recent gene duplicates. A total

of 88 genes were analyzed, and the number of gene fragments and

associated genes within each domestication QTL are listed in

Table S2.

DNA sequencing and alignment
All primers (see Table S3) were designed using Primer3 [51]

based on the O. sativa Nipponbare genomic sequence [52]

available on Gramene. Whenever possible, the primers are

designed to reside in exonic regions flanking the intron to be

sequenced. All PCR primers were compared against the

Nipponbare sequence to ensure that each of them uniquely

recognizes the genic region to be amplified. PCR amplification

and direct DNA sequencing were conducted by Cogenics (New

Haven, CT, USA) as previously described [36,31,35]. The

sequencing error rate was assessed as previously described [31],

which revealed an error rate of less than 0.01%.

Base-pair calling, quality score assignment, and construction of

sequence contigs were carried out using the Phred and Phrap

programs (CodonCode), and sequence alignment and editing were

carried out with BioLign Version 4.0.5.1 (Tom Hall, North

Carolina State University, Raleigh, North Carolina). Single

nucleotide polymorphisms (SNPs) were identified as mutational

differences between sequenced alleles. Heterozygous sites and

insertion/deletions were identified with the aid of Polyphred

(Deborah Dickerson, University of Washington, Seattle, Wash-

ington) and manually confirmed by visually inspecting chromato-

grams. Primer sequences were removed from the alignments for

final analysis. All sequences are deposited in Genbank with

accession numbers FJ015311–FJ023534.

Analysis of nucleotide diversity
Population genetic structure at the three QTL regions was

assessed using STRUCTURE 2.2 [53]. Simulations were run with

a linkage model and allele frequencies being independent among

populations. Five replicates at each value of K (population

number, from 2–9) were carried out, and each run had a burn-

in length and a run length of 100,000 iterations.

Nucleotide diversity (p) and Watterson’s theta hW [54] were

calculated for individual domesticated rice varieties, as well as for

O. rufipogon. The average nucleotide diversity (p) in each QTL was

compared to genome-wide STS data [31] using a non-parametric

Mann-Whitney test. The ratio of hW for each domesticated rice

group and that for the wild O. rufipogon for each fragment was also

calculated and compared with nucleotide variation for gene

fragments across the genome [31].

Pairwise SNP linkage disequilibrium within each QTL region

was assessed with r2 [55], implemented using the program

TASSEL (http://www.maizegenetics.net). All sites where the

minor allele frequency was ,10%, or where more than two

alleles at a SNP site were excluded. Accessions were also excluded

from the analyses if they have missing data or gaps in one or both

of the SNP sites. We treated heterozygous SNPs as previously

described [35]. Heterozygous sites are rare in O. sativa individuals,
but more frequent in O. rufipogon SNP genotypes. We excluded an

individual from analysis if it was heterozygous at both SNP sites in

a pair so that only unambiguous haplotypes were used in the

analysis. In O. rufipogon, the majority of the SNP pairs containing

individuals with double heterozygotes had only a single doubly

heterozygous individual to exclude. To generate a graphical

display of pairwise LD measurements, a script written by Shin et al.

[56] was run in R.

Coalescent simulations
Coalescent theory allows us to trace the evolution of alleles in a

population sample to a single ancestral copy, and provides a

framework to test whether SNP data from a sample is consistent

with neutral evolution [57]. We assessed the statistical significance

of reduced genetic variation in the three QTL regions using

coalescent simulations based on a demographic model previously

inferred from genome-wide patterns of nucleotide variation [31].

Maximum composite-likelihood parameters for this model had

been previously estimated using the joint site-frequency spectrum

for the genome-wide data [31].

The model has the following features: The ancestral species O.

rufipogon is assumed to have a constant population size, NA, which

is a reasonably good fit for the observed genome-wide site-

frequency spectrum. Based on a previous study [31], we assume

that indica and tropical japonica split simultaneously from O. rufipogon
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and formed separate populations 4*NA*0.1 generations ago with

each undergoing a bottleneck and then post-bottleneck growth.

The bottleneck model for the indica lineage is as follows (looking

back in time): from present to 4*NA*0.04 generations ago, we set

Ne for indica =0.27*NA to model post-bottleneck growth; from

4*NA*0.04 to 4*NA*0.1 generations ago, we set Ne = 0.0055*NA

corresponding to the domestication bottleneck; and prior to this

time, Ne=NA, to reflect common ancestry with O. rufipogon. For
tropical japonica, the corresponding parameters are as follow: from

present to 4*NA*0.038104 generations ago (post-bottleneck growth

in japonica), we set Ne = 0.12*NA; from 4*NA*0.038104 to

4*NA*0.1 generations ago (domestication bottleneck in japonica),
Ne = 0.0055*NA; and, prior to 0.01*4*NA, Ne for japonica = NA.

It is important to note that this model allows for migration among

the three populations. Specifically, in each generation, an average

of 7 migrants enter the O. rufipogon population (equally from the

other two populations), based on results from the previous study

[31]. Both indica and tropical japonica receive migrants at a rate

proportional to their relative population size at each generation

with 0.0385 migrants during the bottleneck, 1.89 and 0.84

migrants entering indica and tropical japonica, respectively, after the

bottleneck.

In the simulations we also accounted for the possible impact of

local variation in mutation rate scaled on population size.

Specifically, for each of the three QTL regions we estimated the

baseline mutation rate for each of the three QTL regions using the

O. rufipogon sequence. Previous work and the observed distribution

of variable nucleotide frequencies in the present study suggests that

O. rufipogon demography is accurately described by the standard

neutral model so that Watterson’s estimate of the mutation rate

(hW) is an appropriate summary statistic from which to estimate

this quantity [31]. We simulated 1,000 replicate data sets for each

QTL region separately using the demographic model described

above. In order to assess significance, we tallied the number of

simulated data sets that show as little as or less diversity than the

observed for each subgroup and for each QTL region.

Phylogenetic analysis
Fragments within each QTL region were concatenated, and

neighbor joining analyses using an improved algorithm [58] were

performed in PAUP v4.0 beta Win [59] on each concatenated

dataset with K2P distance correction and gamma setting. Negative

branch lengths were prohibited. Strict consensus trees were rooted

using the outgroup species O. meridionalis. Bootstrap (BS) support

values were obtained in PAUP using 500 replicates applying the NJ

search option. Tree files were viewed using the program of FigTree

v1.2.2 by A. Rambaut (http://tree.bio.ed.ac.uk/software/figtree/).

Supporting Information

Table S1 Rice accessions used in this study.

(XLS)

Table S2 Genes associated with sequenced fragments

at each QTL and their function.

(XLS)

Table S3 Primers used to amplify the gene fragments

used in this study.

(XLS)
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