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Abstract

Unit-root testing can be a preliminary step in model development, an
intermediate step, or an end in itself. Some researchers have questioned the
value of any unit-root and cointegration testing, arguing that restrictions based
on theory are at least as effective. Such confusion is unsatisfactory. Needed is
a set of principles that limit and define the role of the tacit knowledge of the
model builders. In a forecasting context, we enumerate the various possible
model selection strategies and, based on simulation and empirical evidence,
recommend using these tests to improve the specification of an initial general
vector autoregression model.

I. Introduction

What role, if any, should unit-root and cointegration testing have in a model-
development strategy designed for forecasting? Ideally, for a practitioner,
principles would be available, amounting to cook-book instructions, on how
such tests can best be used in model building. Dharmapala and McAleer (1996)
definemethodology, when applied tomodel building, as the ‘philosophical basis
for the validation and justification of econometric procedures’. Pagan (1987)
more explicitly argues that a methodology ‘should provide a set of principles
to guide work in all its facets’, where he interprets ‘methodology’ to mean a
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coherent collection of inter-related methods together with a philosophical basis 
for their justification and validation. He later complains that econometric model 
building is overly reliant, not just on the methodology adopted by the modellers, 
but also on the tacit understanding of its implications as well as personal 
knowledge and skills (Pagan, 1999, p. 374). If, within a particular methodo-
logical approach, principles were available, then such instructions would limit 
the requirement for the expert’s tacit (and personal) knowledge.

It proves to be quite challenging to state and defend a set of clear and 
operational principles for econometric modelling (Magnus and Morgan, 
1999a; Allen and Fildes, 2001; Kennedy, 2002 and the discussion therein), a 
reflection of the considerable ambiguity in the established literature, and there 
is certainly nothing that attains the completeness of a cook book, even within a 
particular model-building methodology. We examine here only a limited sub-
set of issues: those concerned with the utility of the fast-expanding literature 
on unit-root testing and cointegration analysis when the context is one 
of improving forecast accuracy. Other aspects of model specification are 
important and have been considered elsewhere. Choice of initial specification 
of a general model, data transforms and initial lag order determine the final 
model. Restricting the initial lag order based on appropriate tests is widely 
agreed to improve forecast accuracy (Allen and Fildes, 2001).

Not all econometric methodologies embrace unit-root and cointegration 
analysis with equal facility or enthusiasm. (See, e.g. Leamer’s, 1999, p. 150, 
dismissive remarks.) In fact, Darnell and Evans (1990) treat cointegration 
analysis as a separate methodology. However, the general-to-specific model-
ling approach that Pagan (1987) refers to as the LSE Methodology or LSEM 
(after the London School of Economics where much of the early thinking took 
place) naturally includes these concepts as potentially contributing to a final 
model specification.

The aim of this paper is to establish a set of operational principles helpful 
in model specification based on unit-root and cointegration tests. The 
modelling framework we adopt is the LSEM. We develop principles by 
comparing the recommendations from the literature as to how the results of 
the tests point to alternative model-simplification strategies. They will be 
based on the comparative empirical and simulation evidence on forecasting 
accuracy when alternative models are specified in levels, as error-correction 
models (ECMs) or in differences.

The structure of the paper is as follows. In section II we argue for the need 
for explicit rules of modelling that would seldom eliminate the need for 
modeller expertise but instead establish a core of agreed upon, empirically 
effective principles beyond which expert modellers could contribute. 
Section III describes potential strategies for building vector autoregressive 
(VAR) models within the LSEM framework, posing the question as to which



of the alternatives tend to produce the most accurate forecasts and under what
circumstances. References to the literature on econometric forecasting provide
no clear guidance on the choice of modelling strategy as the evidence
presented in section IV shows. Nevertheless various simulation studies point
to those situations where accuracy improvements may be found. Empirical
comparative forecasting-accuracy studies that report the performance of two
or more specifications are then shown to give qualified support to those
strategies that test for unit roots and cointegration (section V). Structural
breaks complicate the picture and represent an active area of research in that
the forecaster’s identification of such breaks, in the recent past and over the
forecast horizon, conditions the strategy to be adopted. The paper concludes
(section VI) by stating clear operational principles that have both theoretical
and empirical support in leading to improved forecasting accuracy. But
Pagan’s (1999) complaint still holds – the evidence we found is overly limited
and sometimes contradictory, which emphasizes the need for research centred
around establishing operational principles of econometric model building and
delineating the more limited role of tacit knowledge.

II. The need for principles in econometric forecasting

There are substantial disagreements between econometricians as to how an
appropriate model (with a specific purpose such as forecasting in mind) should
be developed. This would not matter if methodologies were well defined, and
therefore transmissible to others, and gave similar results. Such is not the case.
Different groups of econometricians, given a defined data set, following
different methodologies, are unlikely to come up with the same model. As
evidence, Magnus and Morgan (1999a) persuaded five groups of econometric
researchers to forecast the demand for food and obtained substantially
different results. Even within the same methodology, the models and
corresponding forecast results can differ substantially. Various reasons can
be suggested, including the theoretical framework selected and data pre-
processing, variability derived from the software and the competence (or
otherwise) with which it is employed. But a critical component, even when
research groups work within the same broad methodological framework, is the
extent to which tacit and personal knowledge affects the operational
deployment of the methods subsumed in the methodology (Magnus and
Morgan, 1999c, p. 302).

The limited consensus as to how to specify an econometric forecasting
model was underlined in a second experiment organized by Magnus and
Morgan (1999a) where a novice researcher attempted to develop three
different models using the principles embodied in Pagan’s three methodol-
ogies. This again demonstrated a heavy reliance on tacit knowledge (as well as



personal knowledge and skills) and a limited ability to follow the guidance 
given by the writings of the ‘masters’ in the particular methodologies. The 
conclusion we draw from the two prongs of Magnus and Morgan’s research is 
that econometric forecasts and, by implication, their comparative accuracy, are 
heavily influenced by the choice of methodology made by the research group, 
the explicit principles that define the methodology’s canon, the group’s 
expertise (by which we mean the transmissible and explicit knowledge base 
used) and their personal knowledge (which cannot be communicated).

Outcome feedback, whereby the results of different model-building 
processes (and the modellers behind them) can be measured and compared, 
has the potential of reducing researchers’ reliance on the tacit knowledge 
embodied in the application of a methodology. It has been little used in 
econometrics as it applies to forecasting. Instead researchers have used self-
referential, often asymptotic, statistical arguments as the sole justification for 
the procedures adopted. In contrast, time-series statisticians have employed 
so-called forecasting competitions (Fildes and Ord, 2002) to evaluate both the 
methods and the tacit knowledge of the statistician forecaster. For example, in 
the M-2 Competition, and in the comparisons of personalized autoregressive 
integrated moving average (ARIMA) identification procedures vs. automatic 
procedures, the value added by the forecaster’s personal knowledge has been 
appraised. The role of a principle where outcome feedback is available is 
therefore to define the added value that expertise brings to these different 
modelling approaches.

Undoubtedly, specifying principles in multivariate analysis will be more 
difficult than in univariate settings. The reason, Magnus and Morgan (1996b, 
p. 376) argue is that, in model specification, universal principles are hard to 
establish where a complex ‘combination of circumstances are involved so that 
no simple, single-circumstance, textbook rule’ can be invoked. Nevertheless, 
stating straightforward conditional principles is possible and these could still 
be enhanced by the tacit knowledge of the researcher.

Within the LSEM framework, testing for unit roots and cointegration is 
seen as making a major contribution to model specification. Unfortunately, as 
Pagan (1999) makes clear, in the context of the LSEM, the ‘art-to-science ratio 
is at an uncomfortable level’ and this makes it hard to learn from the writings 
of master practitioners who may of course disagree on the principles defin-
ing the methodology among themselves. This is further confused as the 
methodology develops over time. Thus, the practice of model building for the 
purposes of forecasting would benefit from an explicit set of principles that 
embody the accepted core of the methodology. In ideal form, these principles 
can be embedded in a model-selection computer algorithm in much the same 
way as personalized identification of ARIMA models has been replaced 
by programmed identification routines (Hoover and Perez, 1999; Hendry



and Krolzig, 2003a). The development of such programmes allows us to
benchmark master practice, identifying just where differences of operational
practices appear and therefore the effects (positive or negative) of personal
knowledge. The question is how far ‘tacit knowledge can be turned into
[principles] and how such rules can be integrated into practice’ (Magnus and
Morgan, 1999b, p. 375). Our hope (shared with Pagan, 1999, p. 374) is that,
the contribution of communicable explicit knowledge to the results of applied
work is high.

In our search for principles on how to use unit-root and cointegration tests,
the initial search started with an examination of the econometric texts, which
as we note, shows substantial disagreement as to the role of cointegration
and unit-root testing in model specification. To reconcile the disagreements,
we have then examined the empirical evidence for consistencies. We gave
greater credibility to some types of evidence over others. As our concern
is forecasting accuracy (measured out of sample), empirical evidence that
examines the comparative performance of alternative approaches to achieving
a final model specification are accorded the greatest weight. Simulation
evidence is also valued but of course usually begs the core question of the
relationship of the simulated world to the experienced world. Theoretical and
asymptotic arguments are discounted; while they are invaluable as signposts
towards establishing a tentative principle, they do not provide any evidence as
to operational effectiveness.

III. Model-building strategies

Within a broadly defined LSEM, the specification search starts with a general
model compatible with any theoretical model (of the system of interest)
deemed appropriate. In practice, given the usual data limitations, the starting
point is based on a slight amplification of a model acceptable to the researcher,
frequently drawn from the recent literature. This initial model contains
additional variables deemed relevant according to economic theory. It contains
lags of the variables based on the researcher’s judgment, for which economic
theory is usually no guide. Even then, this ‘local data generating process’ can
only approximate the complexities of the real economic system; theoretically
important variables may be unobservable, unique events may temporarily
dominate the stable economic processes being examined, etc. As Phillips
(2003) forcefully argues, the ‘true model’ or data generating process (DGP) is
both unknown and unknowable. However, a good local model should show
congruence within the sample data. Congruence requires that the model match
the data in all measurable respects (homoscedastic disturbances, weakly
exogenous conditioning variables, constant parameters, etc.; Hendry, 1995;
Clements and Hendry, 1998, p. 162).



Within the LSEM, the art of model specification is ‘to seek out models that
are valid parsimonious restrictions of the general model and that are not
redundant in the sense of having even more parsimonious models nested
within them that are also valid restrictions of the completely general model’
(Hoover and Perez, 1999). This approach to model specification is by no
means universally accepted, see, e.g. Kennedy (2002) or Keuzenkamp and
McAleer (1995; p. 16), who state: ‘Testing downwards is sensible if one
favors parsimony, but the theory of reduction does not offer satisfactory
principles of simplicity.’ However, here we focus on the LSEM with a view to
understanding the empirical consequences of alternative reduction strategies
within that particular methodology.

There are several strategies for building multivariate equations or systems
of equations. Some strategies use unit-root and cointegration tests at various
points, and others do not. One possible taxonomy of the strategies is
summarized in Figure 1. Unfortunately, where the use of unit roots and
cointegration is concerned ‘Experts differ in the advice offered for applied
work’ (Hamilton, 1994, p. 652). In fact, experts, at least those who write
books on the subject, seem unwilling to offer much explicit advice at all.
Hendry is an obvious exception (Hendry, 1995, 2002).

Difference each variable for stationarity then specify model

Yes

No

Perform cointegration test 
(requires set of variables only, not a model)

Unit root
pretest? 

Specify VAR in levels, test over
lag orders (“unrestricted”)

Test for lag restrictions
variable by variable 

Test for unit root and
cointegration restrictions

Use other means of specification (cointegration relations from theory), 
avoid specification tests

Specify VAR in differences

Specify an ECM

(1)

(2)

(1b)

(1a)

(3)

(4)

(4b)

(4a)

Figure 1. Model-building strategies



A general-to-specific approach usually starts with either a VAR system in
levels or a single autoregressive distributed-lag equation. Having started with
a consciously over-general model, simplification will need to rely heavily on
parameter restrictions, derived from both theory and the data. In addition, the
model builder must specify the functional form. Data transformations such
as forming ratios, powers, logarithms, or differences can all be thought of as
imposing parameter restrictions in models nonlinear in parameters. Adequacy
of the initial formulation may be assessed by mis-specification tests, but this
does not guarantee that the good causal model is nested within it if the initial
model is not sufficiently general. As Hendry (2002) has argued forcibly,
theory alone is an incomplete basis for achieving an operational data-
congruent model – such an approach, starting with a simple theory-based
model, usually has ad hoc statistical fixes forced upon it. For the general-to-
specific modelling strategy to be successful in balancing over-parameteriza-
tion with mis-specification, what is required is a reduction strategy that will
lead to a good forecasting model.

Strategy 1, referred to as ‘specify ‘‘unrestricted’’ VAR in levels’ in
Figure 1, is simply to reduce the lag order on all variables by 1 and test if the
restriction is binding (by a likelihood-ratio test). Repeat until the restriction is
binding. For a system with n variables, each reduction in lag order reduces the
number of parameters to be estimated by n2. Test that the final VAR is well
specified (based on tests on residuals). Empirical evidence supports this
practice (Allen and Fildes, 2001). This is a sequence of pretests each usually
conducted at the standard 5% significance level.

A continuation of the strategy, that usually represents a termination point,
is strategy 1a: a ‘restricted’ VAR in levels. This calls for reducing the lag order
on individual variables in an unrestricted VAR (e.g. by Hsiao’s method, brute
force search using Akaike information selection criterion, general-to-specific
modelling using PcGetsTM; Hendry and Krolzig, 2003b; Owen, 2003). Test
that the final restricted VAR is well specified (based on tests on residuals).

Not incompatiblewith strategy 1a, although usually performed instead of it is
strategy 1b: ‘post-testing’ for unit root and cointegration restrictions. Impose
parameter restrictions by performing unit-root and cointegration tests to
determine the number and specification of cointegrating vectors to add to each
equation in the system. AVAR in levels can be rearranged and reparameterized
into a generalized error-correction form with the same number of parameters
(an ECM with as many cointegrating vectors as variables).

If parameters on all the error-correction terms in the generalized error-
correction form are set equal to zero this corresponds to another strategy:
‘Estimate a VAR in differences’ (or DVAR, strategy 2 in Figure 1). In prac-
tice, difference all variables, then follow the procedure in strategies 1 and 1a.
Experts have been unwilling to recommend strategy 2, although Hamilton



(1994) suggested it as one among several possibilities, and Siegert (1999) (in
an attempt to apply the LSEM in modelling the demand for food) adopted this
automatically, much to Hendry’s disgust (Hendry, 1999). But Hendry (1997)
himself has noted that when there are structural breaks, a model that is robust
to breaks will tend to produce better forecasts. Differencing variables imparts
robustness, implying that there are conditions when strategy 2 will be the best.

Cointegration requires variables with unit roots. It also implies parameter
restrictions and these are usually across equations. Strategy 3, ‘no test,’ relies
on theory to suggest that variables should be cointegrated, and imposes that
specification initially. Similarly, if there are theoretical or historical grounds
for expecting a variable to be stationary, such as unemployment rate, there is
no reason to difference it and no reason to test for stationarity.

Harvey is one of the strongest proponents of strategy 3. He observes
(Harvey, 1997, p. 196): ‘[M]uch of the time, it [unit-root testing] is either
unnecessary or misleading, or both’. As well as doubting the value of unit-
root testing, Harvey has little enthusiasm for either vector autoregressions or
their modification to embody cointegration restrictions, in part because the
modelling strategies (1a, 1b) depend on tests with poor statistical properties.
He continues (p. 199):

However, casting these technical considerations aside, what have economists
learnt from fitting such models? The answer is very little. I cannot think of one
article which has come up with a co-integrating relationship which we did not
know already from economic theory. Furthermore, when there are two or more
co-integrating relationships, they can only be identified by drawing on
economic knowledge. All of this could be forgiven if the VECM provided a
sensible vehicle for modeling the short run, but it doesn’t because vector
autoregressions confound long run and short run effects.

Diebold (1998, p. 260) makes much the same point.
Probably the commonest strategy is strategy 4, ‘unit-root pretest,’ where 

the first step in the analysis is to learn something about the variables of interest 
by performing unit-root tests on the original variables. A testing strategy is 
required to determine whether drift (intercept) or deterministic trend or both or 
neither is present in the series, as the power of the test is reduced by including 
these terms when the process is not actually present and by omitting the terms 
when they are needed. The strategy is quite complex although a simpler 
procedure is available, utilizing prior knowledge about the series (Elder and 
Kennedy, 2001).

With the information gained in following strategy 4, the researcher can 
proceed to strategy 4a, ‘model with stationary variables’. Difference the non-
stationary variables and estimate a mixed VAR with all variables transformed 
to stationarity. A large number of experts appear to suggest this approach,



even though it is not widely practised (and never has been, as far as we can
tell).

What we might call ‘early Harvey’ (Harvey, 1990, p. 390) appears to
favour this strategy:

Before starting to build a model with explanatory variables, it is advisable to
fit a univariate model to the dependent variable. . . . it provides a description
of the salient features of the series, the ‘stylized facts’ . . . An initial analysis
of the potential explanatory variables may also prove helpful. . . . In
particular the order of integration of the variables will be known. It is not
difficult to see that, if the model is correctly specified, the order of integra-
tion of the dependent variable cannot be less than the order of integration
of any explanatory variable. This implies that certain explanatory variables
may need to be differenced prior to their inclusion in the model. A further
point is that if the order of integration of the dependent variable is greater
than that of each of the explanatory variables, a stochastic trend component
must be present.

Hamilton (1994, p. 652) also recommends it, as does Diebold (1998,
p. 254): ‘In light of the special properties of series with unit roots, it is
sometimes desirable to test for their presence, with an eye towards the
desirability of imposing them, by differencing the data, if they seem to be
present’. More recently, Stock and Watson (2003, pp. 466–467) conclude:

The most reliable way to handle a trend in a series is to transform the series so
that it does not have a trend. . . . Even though failure to reject the null
hypothesis of a unit root does not mean the series has a unit root, it still can be
reasonable to approximate the true autoregressive root as equaling one and
therefore to use differences of the series rather than its levels.

Probably the commonest strategy of all is strategy 4b, ‘unit root and
cointegration pretest’ where the variables found to be I(1) [and in some
studies, first differences of variables found to be I(2)] are subjected to
cointegration testing. Impose the parameter restrictions (if any) that follow
from the testing, and estimate the resulting ECM. If no cointegrating vectors
are detected, estimate a DVAR. This strategy is followed by ModelBuilder
(Kurcewicz, 2002). Holden appears to favour strategy 4b, if cointegration is
found to exist, otherwise strategy 4a (Holden, 1995, p. 164): ‘When the
variables are not stationary . . . [and if] they are not cointegrated the correct
approach is to transform the variables to become stationary . . . and then
estimate the VAR in the usual way.’

Considering the popularity of strategy 4b, the outright disregard of it
or lack of enthusiasm for it displayed by experts is rather surprising. For
example, Maddala and Kim (1998, p. 146) state:



[I]t is important to ask the question (rarely asked): why are we interested in
testing for unit roots? Much of this chapter (as is customary) is devoted to the
question ‘How do we use unit root tests?’ rather than ‘Why unit root tests?’
. . . One answer is that you need the unit root tests as a prelude to
cointegration analysis. . .

Figure 1 shows a number of strategies for reaching a model specification. 
Experts offer support for almost all of them. Readers familiar with the lack of 
consensus among econometricians will be unsurprised. The biggest surprise is 
that the most widely used strategy (4b) receives so little support.

IV. Theoretical justification and simulation evidence
In theory, when a restriction is true, it should be imposed, as one source of 
estimation error is removed. One question, and the source of a vast literature, 
is the ability of a unit-root test or cointegration test to reliably answer whether 
or not a proposed restriction is true.

Unit-root tests

Several Monte Carlo studies have compared the size and power of various 
unit-root tests. We are aware of only one that specifically addressed the 
question we pose here: whether unit-root tests are useful diagnostic tools for 
selecting forecasting models (Diebold and Kilian, 2000). Diebold and Kilian 
(2000) conclude that with a data generating process (DGP) that contains roots 
close to unity, and ‘close to’ probably means � 0.97, a unit-root pretest will 
signal the presence of a unit root and imposing a unit root will improve 
forecast accuracy. There are a number of caveats to this finding. The authors 
used the unit-root test as originally proposed by Dickey and Fuller (1979). 
They assumed the simplest possible process that contains both deterministic 
and stochastic trends:

yt � 7:3707 � 0:0065t ¼ qðyt�1 � 7:3707 � 0:0065ðt � 1ÞÞ þ et;

where et � N(0, 0.00992). The process was intended to mimic US quarterly 
real gross national product. When q ¼ 1 (unit root) this gives the random-
walk plus drift model, for q ¼ 0 gives the (deterministic) linear trend model, 
and for values between gives a mixture of the two models.

As Diebold and Kilian (2000) note, before practical recommendations can 
be drawn from their study, we need to know whether the results hold for other 
test procedures, for more complex processes, when lag order is unknown, in 
multivariate settings, with structural breaks. It is also unlikely that the 5%
level of significance is optimal under all situations for deciding when to 
impose a unit root.



Systems of equations with unit roots

Table 1 compares the theoretical arguments and simulation evidence
regarding the imposition of unit roots and the effect of forecast accuracy.

TABLE 1

Out-of-sample forecast accuracy results: Monte Carlo studies and theoretical expectations compared

Forecast error increases with horizon
Without limit To a ceiling

ECM vs. VAR is:
Always better
Improving TH coint, TH nonsta, LT4, LT5, RA, CH
Worsening
No pattern

Always worse
Improving
Worsening TH stat, LT1, LT2
No pattern

No pattern or varies
Improving EY
Worsening
No pattern LT3

DVAR vs. VAR is:
Always better
Improving TH nonsta, LT3, LT5
Worsening
No pattern

Always worse
Improving
Worsening TH stat, LT1, LT2
No pattern

No pattern or varies
Improving TH coint LT4, RA, CH
Worsening
No pattern

DVAR vs. ECM is:
Always better
Improving TH nonsta, LT3 LT5
Worsening
No pattern LL using HEGY test

Always worse
Improving LT4, RA, CH
Worsening TH coint TH stat, LT1, LT2
No pattern LL against true

No pattern or varies
Improving
Worsening
No pattern



Notes: VAR vector autoregression in levels, ECM unit-root restrictions imposed, DVAR unit-root 
restrictions imposed on all variables (first differenced).

Forecast accuracy usually measured as TMSFE, the trace of the mean squared forecast error. ‘Always 
better’ means that the forecast error from the first model is less than the forecast error from the second 
model for all horizons, opposite for ‘always worse’ and ‘no pattern or varies’ indicates either a single 
or multiple switches between better and worse. ‘Improving’ means that the forecast error from the 
first model consistently becomes smaller relative to the accuracy or the second model as the forecast 
horizon increases, ‘worsening’ means the opposite and ‘no pattern’ means no consistent direction of 
change.

TH is the theoretical expectation for each comparison, and it depends on whether the DGP is 
stationary, cointegrated, or non-stationary. With a stationary series, the forecast errors can be 
expected to increase with horizon towards some ceiling. With a non-stationary series, the forecast 
errors can be expected to increase without limit.

The Monte Carlo findings are indicated as follows: LTi is the ith model of Lin and Tsay (1996); 
models 1 to 3 are stationary with successively higher characteristic roots, model 3 would likely be 
identified as containing two unit roots in a standard unit-root test, model 4 contains two unit roots and 
two cointegrating vectors, model 5 contains four unit roots (and so is difference stationary); RA is the 
model of Reinsel and Ahn (1992) and except for parameterization is identical to Lin and Tsay’s model 
4; EY is the model of Engle and Yoo (1987), which is similarly identical to CH, the model of Clements 
and Hendry (1995), except that Engle and Yoo estimate VAR in levels and error-correction models 
only, while Clements and Hendry estimate all three; LL summarizes the overall results of Lyhagen and 
Löf (2003) over seven different DGP, who only report averages of 1–12 steps ahead so that pattern 
cannot be determined, ‘against true’ is accuracy of DVAR compared with forecasts from the true DGP 
and ‘using HEGY test’ compares DVAR forecasts against the model with cointegrating vectors 
detected by the HEGY test.

The pattern of forecast errors is divided into those that increase without limit
as the forecast horizon increases, the behaviour expected for non-stationary
series, and those that increase to a ceiling, the behaviour expected for
stationary series (Lin and Tsay, 1996). The category ‘always better’ indicates
that over the entire forecast horizon reported by the study, the first model
listed was always more accurate than the second model listed; for ‘always
worse’ the converse is true. The ‘no pattern or varies’ category usually
describes a series, the forecast errors of which switch from favouring one
model to favouring the other as the horizon increases, and the subclass
‘improving’ or ‘worsening’ shows the direction of change. The ‘no pattern’
subclass usually indicates a series where forecast errors are similar,
regardless of the model.

We first summarize the findings shown in Table 1, before turning to
detailed comparisons of the simulation studies. Lin and Tsay’s (1996) study is
the most comprehensive non-seasonal analysis. Their simulations for clearly
stationary series (models 1 and 2 denoted by LT1 and LT2 respectively)
conform with theoretical expectations. Imposing any restrictions is a mis-
specification and more restrictions make accuracy worse.

Where there are groups of variables that cointegrate, restrictions that
specify one or more cointegrating vectors should give a better result than
either a VAR in differences or a VAR in levels. Imposing restrictions that are



not true, for example, estimating an ECM with one cointegrating vector when
there should be two or three, should give a worse result than estimating the
more general model. Lin and Tsay’s (1996) model with two cointegrating
vectors (LT4) supports this. Interestingly, all studies that assume a cointegrated
DGP find that estimation of a DVAR gives improving – though not better –
forecasts at longer horizons.

Failing to impose restrictions, and estimating a VAR in levels when the
DGP is cointegrated, should be less efficient, but harmless and so the VAR
in levels should give more accurate forecasts than the DVAR. This turns out
to be the case only at short horizons. According to Christoffersen and
Diebold (1998), the problem is that the ECM imposes both integration (unit
roots) and cointegration, while the VAR in levels imposes neither. When the
DGP contains unit roots (e.g. cointegrating vectors, differenced variables),
and a VAR in levels is estimated, the estimation errors amplify over time.
The VAR in levels is a poor forecaster because it fails to impose integration
(unit roots). Again, the simulations with cointegrated DGPs support this
theory.

If all variables are I(1) and there are no groups of variables that cointegrate,
estimation of a VAR in differences should give a better result and more
accurate forecasts than any less-restricted model. This is the DGP for Lin and
Tsay’s (1996) model 5 (LT5) and again simulation evidence supports the
theory. The interesting case is Lin and Tsay’s model 3 which is stationary but
contains two near-unit roots that a test would be unlikely to distinguish from
unit roots. There is little to choose between estimation of a VAR in levels and
estimation as an ECM, although Christoffersen and Diebold’s arguments
suggest that the ECM should be superior. Simulation studies where theory and
simulation evidence conflict are the pioneering study by Engle and Yoo (1987)
and the study with seasonal unit roots and cointegration (which lead to many
potential models) by Lyhagen and Löf (2003).

We turn now to a more detailed comparison of the studies. Sometimes, a
relatively minor difference in parameterization produces a different conclu-
sion, as with the first two studies considered. Engle and Yoo (1987) used a
two-variable VAR with one lag, no intercept and one cointegrating vector.
Imposing the cointegration restriction instead of estimation in levels gives
better forecasts, at long horizons, although not at shorter (up to six steps
ahead). Clements and Hendry (1995) repeated the experiment, though with
somewhat different parameter values that resulted in slower speed of
adjustment (or quantitatively less ‘error correcting’). Using the trace of the
mean squared forecast error (TMSFE), the same measure as in Engle and
Yoo (1987), they found that the Engle–Granger estimation of the VECM
was more accurate than estimation of the VAR in levels for all horizons
(h ¼ 1, 5, 10, 20). The superiority of the VECM over estimation in levels is



unchanged when using Clements and Hendry’s preferred measure, the 
determinant of the second-moment matrix of stacked forecast errors, GFESM. 
But the choice of accuracy criterion can matter. With their preferred measure, 
estimation of variables in differences is worst at all horizons. These results are 
entirely consistent with theory. They are subject to the same caveats about 
robustness under model complexity, unknown structure and structural breaks 
as for Diebold and Kilian (2000).

Reinsel and Ahn (1992) used a larger VAR, with four variables and two 
lags and imposed two unit roots. They established critical values for a 
likelihood-ratio test for the number of unit roots (or equivalently the number 
of cointegrating vectors) and found that the test had good size properties. They 
estimated models with one to four unit roots and obtained TMSFE for one- to 
25-step-ahead out-of-sample forecasts. Specifying fewer unit roots is harmless 
at short horizons (h ¼ 1, 2) and damaging at long ones, while imposing more 
unit roots has exactly the opposite effect. In fact, imposing three unit roots 
gives the lowest TMSFE for h > 12. The TMSFE increases by a factor of 100 
from one to 25 steps ahead.

Lin and Tsay (1996) used the same set-up as Reinsel and Ahn (1992) but 
considered more DGPs. These included: clearly stationary, with two near-unit 
roots, with two unit roots (and therefore two cointegrating vectors), and with 
four unit roots. With a slightly different parameterization, TMSFEs increased 
by a factor of 10 over the one- to 25-step-ahead horizons compared with a 
factor of 100 for Reinsel and Ahn’s corresponding DGP. Qualitatively, results 
were the same. Out-of-sample forecast horizons ranged from one to 60 steps 
ahead. For each DGP, Lin and Tsay (1996) also estimated models with zero 
to four unit roots. For the clearly stationary models, imposing any unit roots 
worsens the forecast at any horizon, although with characteristic roots of 
0.95, the damage is slight at short horizons and little affected by the number 
of unit roots imposed. When the largest characteristic roots are 0.99, 
imposing unit roots helps, with some benefit to imposing more rather than 
less. In the interesting middle case with two unit roots, most accurate 
forecasts result from imposing the correct number of unit roots. Specifying 
fewer unit roots is harmless at short horizons and damaging at long ones, 
while imposing more unit roots has exactly the opposite effect. When the 
DGP contains four unit roots, again, specifying fewer is harmless at short 
horizons and increasingly damaging at longer horizons. There is also 
progressively less accuracy as fewer unit roots are imposed. Overall, the 
recommendation seems to be: avoid imposing unit roots (i.e. estimate in 
levels) for horizons shorter than about six periods, otherwise, err on the side 
of extra unit roots. This finding is for a constant DGP, with large sample sizes 
(400) and so should not be affected by structural breaks or data-mining 
problems.



Similar results hold with seasonal data, where the possibilities for unit
roots and cointegrating vectors are more complicated. Lyhagen and Löf (2003)
examined seven different bivariate DGPs simulating quarterly data where one
of the variables contained various combinations of unit roots at the zero,
annual and biannual intervals. They concluded that in every case better out-
of-sample forecasts resulted from cointegration models where both variables
are transformed by annual differencing (imposing four unit roots) than by
following the results of seasonal unit-root tests. A VAR in annual differences
also forecasts more accurately than test-based cointegration models.

Results hold generally when the DGP is in logarithms and estimation is
done (incorrectly) using variables in natural numbers and vice versa. But
making the correct transformation (e.g. estimating with variables in logs when
DGP is in logs) has a much bigger impact on forecast accuracy than imposing
the correct number of unit roots. At least for the one-step ahead forecast they
considered, Chao, Corradi and Swanson (2001) found that estimation in
differences gives more accurate forecasts than estimation in levels (i.e.
imposing too many unit roots) when the DGP is in logs and estimation is in
natural numbers. To the extent that the DGP in logs mimics the non-linearities
and breaks found in real-world data, this finding supports the idea that over-
restricting the model gives it robustness.

There are some limitations to these Monte Carlo studies. The DGPs are
typically very simple. Both DGP and estimating equation have a fixed-
parameter structure (no time variation or structural breaks). And in many of
the studies correct lag order is assumed, not tested. Also, unit-root and
cointegration tests are not performed. The studies answer the question: ‘Given
a system with cointegrated variables, are more accurate forecasts achieved by
imposing more, the correct number, or fewer than the correct number of
restrictions?’ Except for Diebold and Kilian (2000) they do not directly
answer the question: Will unit root and cointegration tests reliably tell you the
correct specification?

V. Empirical evidence

Despite the voluminous literature on cointegration and unit-root testing
(growing steadily from 1983 and both peaking, at least temporarily, in 1999 in
the Econlit database at 135 and 106 items respectively) and the accolade of
the 2003 Nobel Prize, the empirical evidence of their utility is certainly not
voluminous. We focus on forecast performance, where utility is easier to
measure than, for example, in policy analysis. Table 2 includes only studies
that compare the out-of-sample performance of models, published in the years
1984–2003. Comparisons are mostly one-step-ahead forecasts; few studies are
available for longer horizons. They are further limited by the failure of most



T
A
B
L
E
2

N
um

be
r
of

se
ri
es

fo
r
w
hi
ch

on
e
st
ra
te
gy

is
be
tt
er

th
an

an
ot
he
r,
by

ou
t-
of
-s
am

pl
e
fo
re
ca
st
ac
cu
ra
cy

of
th
e
re
su
lt
in
g
m
od

el
s,
m
ea
su
re
d
as

R
M
SE

,
le
ad

ti
m
es

no
t
sp
ec
ifi
ed

bu
t
m
os
tl
y
on

e
st
ep

ah
ea
d

St
ra
te
gi
es

N
um

be
r
of

co
in
te
gr
at
in
g
ve
ct
or
s
fo
un

d
or

as
su
m
ed

0
1

2
3

To
ta
1
1–

3

F
ir
st

be
st

Se
co
nd

be
st

To
ta
l

F
ir
st

be
st

Se
co
nd

be
st

To
ta
l

F
ir
st

be
st

Se
co
nd

be
st

To
ta
l

F
ir
st

be
st

Se
co
nd

be
st

To
ta
l

F
ir
st

be
st

Se
co
nd

be
st

To
ta
l

U
nr
es
tr
ic
te
d
vs
.
re
st
ri
ct
ed

la
g
or
de
r
(1

vs
.
1a
)

7
27

35

L
ev
el
s
vs
.
di
ff
er
en
ce
s

(1
vs
.
2)

0
8

8
6

6
12

0
1

1
2

5
7

8
12

20

V
A
R

in
le
ve
ls
vs
.
E
C
M

fr
om

th
eo
ry

(1
vs
.
3)

1
5

6
1

5
6

U
nr
es
tr
ic
te
d
V
A
R
in

le
ve
ls

vs
.
pr
et
es
t
(1

vs
.
4b

)
2

1
5

18
7

26
1

6
7

3
8

11
22

21
44

R
es
tr
ic
te
d
V
A
R
in

le
ve
ls

vs
.
pr
et
es
t
(1
a
vs
.
4b

)
6

3
9

6
3

9

T
ot
al

1
vs
.
3
an
d
4

2
1

5
25

15
41

1
6

7
3

8
11

29
29

59

V
A
R

in
di
ff
er
en
ce
s
vs
.

E
C
M

fr
om

th
eo
ry

(2
vs
.
3)

2
4

6
12

31
43

14
35

49

V
A
R

in
di
ff
er
en
ce
s
vs
.

pr
et
es
t
(2

vs
.
4b

)
8

2
10

9
19

29
0

1
1

6
1

7
15

21
37

T
ot
al

2
vs
.
3
an
d
4

8
2

10
11

22
34

12
32

44
6

1
7

29
55

85

N
ot
e:
W
he
re
th
e
nu

m
be
r
in

th
e
‘t
ot
al
’
co
lu
m
n
ex
ce
ed
s
th
e
su
m

of
th
e
pr
ec
ed
in
g
pa
ir
of

co
lu
m
ns
,t
he

di
ff
er
en
ce

is
th
e
nu

m
be
r
of

se
ri
es

w
he
re
th
e
tw
o
st
ra
te
gi
es

ar
e
eq
ua
ll
y
ac
cu
ra
te
.

S
im

ul
at
io
n
ev
id
en
ce

ex
cl
ud

ed
.
T
he

st
ud

ie
s
th
at

co
m
pr
is
e
th
es
e
re
su
lt
s
an
d
th
ei
r
in
di
vi
du

al
co
di
ng

s
ar
e
li
st
ed

in
A
pp

en
di
x
A

av
ai
la
bl
e
at

ht
tp
:/
/w
w
w
.

um
as
s.
ed
u/
re
se
c/
al
le
n/
ob

es
ap
p.
pd

f.



studies to consider error measures beyond root mean squared error (RMSE),
whereas comparative model performance is known to depend on the error
measures used (e.g. Clements and Hendry, 1993). The table excludes com-
parisons with Bayesian VARs in levels or differences or Bayesian ECMs
as falling outside the LSEM methodological framework. A distinction is made
between unrestricted and restricted VARs since the difference does appear to
matter. ‘Unrestricted’ means that all variables in all equations have the same
lag length. The length is not necessarily chosen arbitrarily. In four of the seven
studies (23 of 35 series) likelihood-ratio tests were used to reduce the lag
lengths from the initial choice. Even so, as shown in the first line of Table 2,
further simplification leads to better forecasts, supporting strategy 1a.

A model with variables entered in first differences (strategy 2) tends to give
more accurate forecasts than the same model with the variables in levels
(strategy 1), 20 series vs. eight, supporting strategy 2 (always difference).
When there are no cointegrating vectors, estimation in differences is more
efficient than estimation in levels or as an ECM. In the presence of structural
breaks, estimation in differences is also likely to give more accurate forecasts
when there are cointegrating vectors.

Estimating a VAR in levels (strategy 1) vs. performing a unit-root pretest
and following its conclusion (usually to a cointegration test and an ECM)
appears to have little impact; the strategies are essentially tied – a surprising
result given the emphasis on simplification in the forecasting literature. Whilst
this could in principle be due to sample-size effects (as the unconstrained-
model estimates converge on the correctly specified ECM in large samples)
such an explanation is unlikely for the sample sizes used in empirical work.

For most economic data, the commonest test result is to find one
cointegrating vector. It is especially surprising that the derived ECM is less
accurate than the less restrictive VAR in levels, a finding in conflict with both
the principle of parsimony and results from Monte Carlo studies.

On the contrary, the bottom panel of Table 2 is much clearer in supporting
the view that specifying a VAR in differences (strategy 2) is a bad approach
compared with arriving at a (less restrictive) ECM either from theory or
through testing. The VAR in differences comes out best when it should: when
there are no cointegrating vectors, and rather surprisingly, in the less restrictive
case when there are three.

We also attempted to understand behaviour at longer horizons by taking all
the studies that reported out-of-sample forecasts for longer horizons and
noting how estimation methods compared. The resulting table, Table 3, is
directly comparable with Table 1. Empirical findings are, as expected, more
diverse than simulation results, although some confirmations are found.
Systems with no cointegrating vectors should be estimated as DVARs. The
major exception of 43 series where DVAR is always worse and worsening



TABLE 3

Out-of-sample forecast accuracy results from empirical studies

Forecast error increases
with horizon Total

Series by number of
cointegrating vectors

Without limit To a ceiling Series Studies 0 1 2 3

ECM vs. VAR is:
Always better

Improving 22 (3) 2 (1) 24 4 10 7 6 1
Worsening
No pattern 3 (2) 2 (2) 5 4 3 1 1

Always worse
Improving 1 (1) 1 1 1
Worsening 3 (2) 9 (1) 12 3 5 1 6
No pattern 2 (2) 2 2 1 1

No pattern or varies
Improving 4 (3) 1 (1) 5 4 2 3
Worsening 10 (3) 3 (2) 13 5 3 7 1 2
No pattern 3 (2) 3 2 1 3

DVAR vs. VAR is:
Always better

Improving 23 (4) 23 4 11 5 5 2
Worsening 1 (1) 1 1 1
No pattern 4 (2) 1 (1) 5 3 3 1 1

Always worse
Improving 1 (1) 3 (1) 4 2 4
Worsening 2 (2) 4 (1) 6 3 1 3
No pattern 1 (1) 1 1 1

No pattern or varies
Improving 3 (3) 3 3 1 2
Worsening 10 (4) 10 4 5 4 1
No pattern 1 (1) 1 1 1

DVAR vs. ECM is:
Always better

Improving 18 (7) 6 (3) 24 10 12 5 7
Worsening 1 (1) 1 (1) 2 2 2
No pattern 1 (1) 1 1 3

Always worse
Improving 2 (2) 1 (1) 3 3 2 1
Worsening 48 (3) 7 (2) 55 5 43 12
No pattern 2 (2) 55 (1) 57 3 2*

No pattern or varies
Improving 2 (2) 1 (1) 3 3 3
Worsening 8 (4) 1 (1) 9 5 2 6 1
No pattern 15 (6) 6 (2) 21 8 1 14 5 1

Notes: VAR vector autoregression in levels, ECM unit-root restrictions imposed, DVAR unit-root
restrictions imposed on all variables (first differenced).

Forecast accuracy usually measured as TMSFE, the trace of the mean squared forecast error.
‘Always better’ means that the forecast error from the first model is less than the forecast error from the

secondmodel for all horizons, opposite for ‘alwaysworse’ and ‘nopatternor varies’ indicates either a single
or multiple switches between better and worse. ‘Improving’ means that the forecast error from the first
model consistently becomes smaller relative to the accuracy or the second model as the forecast horizon
increases, ‘worsening’ means the opposite and ‘no pattern’ means no consistent direction of change.

�Number unknown for SS variables from one study.
Details are listed in Appendix A available at http://www.umass.edu/resec/allen/obesapp.pdf.



compared with ECM is from three studies, one of which reported an average
of 38 variables. That study found that employment, hourly wages and hours
worked per week were found to have zero cointegrating vectors in 38 of the 50
industries studied. Forecasts of each variable at each horizon were multiplied
together (to give ‘payroll’) and the 38-industry average reported at each
horizon for ECM and DVAR methods.

Results on series from systems where one cointegrating vector was
detected, which represents the commonest situation, are particularly diffuse.
When ECM and VAR models are compared, only seven of 22 series fall in the
anticipated ‘always better and improving’ category, and in the DVAR and
ECM comparison only 12 of 44 series fall in the anticipated ‘always worse
and worsening’ category. Series from systems where three cointegrating
vectors were detected are relatively unrestricted compared with the VAR in
levels and so the VAR might be expected to perform strongly. The number of
series falling in the anticipated ‘always worse and worsening’ is larger than
the number falling in other cells except for the DVAR and ECM comparison.

Examination of the number of observations within sample, or the length of
the most distant horizon, fails to show any pattern that explains the many
discrepancies. Different series from the same system (in the same study) show
up in a variety of categories. A substantial proportion of the comparisons
show up in the ‘no pattern or varies’ category. Given that the empirical results
are so scattered, it is hard to make a strong case for unit root and cointegration
testing compared with either assuming cointegration on theoretical grounds or
simply estimating a DVAR.

VI. Conclusions

Each of the strategies identified has advantages and disadvantages, either
theoretical or empirical. The differences arise from the benefits of imposing
restrictions when they hold true out of sample compared to the costs if they
fail.

Compared with other specifications, strategy 1, an ‘unrestricted VAR in
levels’ avoids throwing away information (Sims, 1980). Even if the true
model is a VAR in differences, hypothesis tests based on a VAR in levels will
have the same asymptotic distribution as if the correct model had been used.
However, it may be overparameterized and give correspondingly bad
forecasts.

But the initial unrestricted model, like all the alternative approaches to
model specification, is no more immune from failing mis-specification tests
(wrong choice of variables, poor autoregressive approximation to the true
DGP, etc.; Harvey, 1997). It also responds slowly to structural breaks.
Comparing the unrestricted VAR with its restricted cousin, the simpler model,



following similar conclusions from univariate comparisons (Fildes and Ord, 
2002), proves the more accurate as Table 2 shows.

The ‘restricted VAR in levels’ specification, strategy 1a, also may ignore 
data-congruent restrictions. These derive from long-run equilibrium relation-
ships (cointegration) that would lead to alternative, even simpler, model 
structures through ‘post-testing’ strategy 1b. We found no studies that 
compared strategies 1 and 1b directly, only comparisons of strategies 1 and 
‘pretesting’, 4b. But the empirical evidence of Table 2 offers little support 
for the view that this leads to a significant improvement in forecasting. 
However, the ‘post-testing’ strategy rarely leads to a VAR in differences, 
so this remains the preferred strategy as ECMs prove considerably better 
than VARs automatically specified in differences (strategy 2). Strategy 2 also 
suffers from the problem that if the variables are already stationary, 
differencing induces a moving average term into the equation (though how 
important such a mis-specification is when estimating the model is an 
empirical question). Although Monte Carlo studies have shown that an 
advantage of specifying a VAR in differences is that it is robust if there are 
structural breaks, we found no empirical evidence to support the simulation 
comparisons.

Strategy 3 relies on other means of model specification (such as 
cointegration relations imposed from theory). A general model that is 
theoretically consistent allows specification testing for nested special cases 
(e.g. a time-varying parameter model that allows for fixed parameters as 
special cases). To support his argument for this strategy (Harvey, 1997, 
p. 197), he focuses on the near impossibility of identifying the appropriate 
order of integration. Empirical evidence, summarized in Allen and Fildes 
(2001), suggests that time-varying parameter or state–space models developed 
with this strategy forecast better than models developed by other methods.

The final arm of Figure 1 relies on pre-tests. The use of unit root pre-tests 
to ensure a model specified in stationary variables has the single advantage of 
achieving a constrained model. But the tests have low power and might lead 
to erroneous conclusions about the existence of unit roots and cointegrating 
vectors, resulting in a misspecified over-constrained model. Nor are the 
constraints necessarily appropriate (consider an ECM model with one 
cointegrating vector).

Assembling the evidence presented so far suggests that the strategies of 
never testing for unit roots and cointegration (strategies 1–3) are inferior to 
testing (strategy 4), even though the tests have admittedly low power. It does 
not much matter whether unit-root and cointegration testing is conducted 
on the variables before a model is specified or as part of the reduction of an 
acceptable general model. What does matter is that the unit-root pretest not be 
used to establish a set of I(0) variables (by differencing where necessary) and



these variables be entered into a VAR (strategy 4a). This is a form of restricted
VAR that should have desirable properties, as all variables are in stationary
form, but fails to make use of the valuable information contained in a
cointegrating relationship.

Ideally, tests will give information on the correct number and form of
restrictions, so that unit-root and cointegration restrictions imposed on the
final model are those that best describe the DGP. According to simulation
evidence, imposing one more restriction than the correct number is harmless.
This finding is likely to hold with real data where structural breaks are
commonplace and imposing additional unit root restrictions will therefore
make the final model more robust to breaks.

To conclude, the primary aim of this paper has been to establish some clear
principles of model specification for the purposes of forecasting within the
LSE methodological framework. Empirical evidence we have collected shows
that test-based strategies to reduce the general model in levels to a constrained
model with either ECM or differenced variables are beneficial and lead to
improved forecasting accuracy. The results are generally in accord with the
predictions derived from cointegration theory. Within the LSE methodology
we can therefore claim to have established a principle that forecasters should
build into their modelling: start with a general model and use unit-root and
cointegration tests (strategies 1b and 4b). Other studies have established the
value of reducing the length of lag on all variables to a well specified reduced
model and because of the great reduction in number of parameters to estimate,
such reduction should occur first.

The principle just established is unambiguous but conflicts with much of
the advice given in the textbooks. Nor does it appear to be uniformly true.
Further investigation should therefore lead towards a clearer specification
of the conditions under which it holds. The empirical evidence is not
overwhelming and, in some circumstances, is in conflict with the theoretical
predictions, e.g. where an ECM is outperformed by a model specified in
levels, even though a cointegrating vector has been detected. Of course the
number of studies involved is small and the results stochastic. Structural
breaks we know to be a factor that leads to the better performance of
differenced model specifications and this may explain the observed results.
The principle is much in need of refinement; e.g. Phillips (2003) essentially
states a principle when he says that prediction from a model with misspecified
trend may not be that serious provided we make an effort to keep the model on
track by using intercept adjustments. As the evidence slowly accumulates on
these strategies, with more careful testing of structural breaks as an automatic
aspect of specification testing, both in and out of sample (and a more detailed
consideration of the resulting forecast error statistics), we can expect this
anomaly to be clarified.



A subsidiary aspect of the paper has been to examine the role of
algorithmic vs. tacit knowledge when specifying forecasting models. Kennedy
(2002) cites the complaints of several well-known econometricians: relevant
here is ‘we teach what we know, not the applied econometrics needed for
analysis of messy data’ and ‘writing down rules to guide data analysis (and
when to ignore them) is hard, because so much of data analysis is subjective,
subtle and a tacit skill’. This unsatisfactory state of affairs is changing,
if slowly. Computer algorithms, or expert systems, such as GETS and
ModelBuilder require explicit rules. Extending the computer code and
measuring the effect on outcomes shows the impact of well-defined rules.
Perhaps a parallel situation is in the estimation of ARIMA models. As
proposed by Box and Jenkins, considerable experience, judgment and time
were called for to identify, estimate and evaluate such models. Today,
computer algorithms routinely produce models as good as or better than the
experts, in a fraction of the time. Econometric analysis is considerably more
involved, but the same progression should be possible.

The analysis of a wide range of empirical evidence carefully coded has
shown its worth, when interpreted through econometric theory. Potential
anomalies have been identified suggesting areas of future research. Such an
approach has the potential for driving downward Pagan’s ‘uncomfortably high
art-to-science ratio’.
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