
Programming R. Morris
Techniques Editor

Levels of
Language for
Portable Software
P. J. Brown
University of Kent at Canterbury

An increasing amount of software is being
implemented in a portable form. A popular way of
accomplishing this is to encode the software in a
specially designed machine-independent language and
then to map this language, often using a macro
processor, into the assembly language of each desired
object machine. The design of the machine-independent
language is the key factor in this operation. This paper
discusses the relative merits of pitching this language
at a high level or a low level, and presents some
comparative results.

Key Words and Phrases: portable software, level of
language, machine independent, macro processor,
efficiency

CR Categories: 4.12, 4.21, 4.22

Copyright O 1972, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for Com-
puting Machinery.

Author's address: Computing Laboratory, University of Kent
at Canterbury, Canterbury, Kent, England.

1059

A commonly used way of implementing portable
software is to encode the software in a machine-
independent descriptive language and then to map this
descriptive language, normally using a macro processor,
into a number of different assembly languages. In
particular, the STAGE2 [1] and ML/I [2] macro processors
have been used in this way to implement a number of
pieces of software, and the technique has also been used
in implementing wise [3] and SNOBOL4 [4]. (Poole and
Waite, who have been concerned with STAGE2, use the
term "abstract machine" in place of "descriptive
language," but this paper will use the latter term, partly
for reasons of consistency and partly because it is the
langugage aspect that is of interest here.)

Of these portability projects, the ones where ML/I
has been used to implement itself [5] and a symbolic
logic package [6] have been exceptional in that the
descriptive languages used have been set at a very high
level. The languages have more the flavor of, say, Algol
than an assembly language. For example, the following
is a typical piece of code in the descriptive language
used for ML/I itself. The language is called, simply, L.

/ / THE FOLLOWING IS CODE IN L / /
IF NTYPSW = 6 & IDPT + IDLEN GR SIZE THEN

SET DIFF = IND(SPT + 1)NM -- IDLEN + 1
STACK NTYPSW (SW) ON FSTACK
MOVE FROM IDPT TO STAKPT LENG 13

BACKWARDS
END

[LAB] CALL SCAN (IDPT)PT
SETSW NTYPSW = TYPSW & MASKSW
BACKSPACE ARGPT

It can be seen that L is a mixture of specialized
statements needed to implement ME/I, such as STACK,
MOVE, and BACKSPACE and familiar statements such as
IF, SET, and CALL. Even the latter, however, are specially
tailored to the needs of the software to be described;
this is the very purpose of a descriptive language.

Communications December 1972
of Volume 15
the ACM Number 12

The main purpose of this paper is to examine the
relative merits of using high-level descriptive languages
and to present some comparative results.

Implementing via High-Level Language

If a descriptive language is set at a high level it is
possible to implement it by mapping into a suitable high-
level language that is available on the object machine
instead of mapping it into an assembly language.

An early attempt was made to implement ML/I on
IBM System/360 by mapping L into PL/I. It was very
easy to write macros to map L into PL/I, but the resulting
implementation of ML/I on System/360 was so large
and slow that it was totally unusable. PL/I compilers
have improved since this implementation was per-
formed, but it is still true that using PL/I or any pre-
defined high-level language with similar capabilities
would be almost certain to produce an implementation
at least twice as slow as an assembly language one. The
very purpose of the use of descriptive languages is to
produce an efficient implementation--typically ML/I
implementations produced by mapping L are about
10 percent worse than a hand-coded implementation
would have been- -and hence mapping into a high-level
language loses the whole point of the exercise (except,
perhaps, where it is used as the first stage of a two-stage
bootstrapping operation). It is almost imperative that
to produce a production piece of software the object
language, i.e. the language that the descriptive language
is mapped into, should be an assembly language (or else
a language like PL360). This applies even when the
descriptive language is high level. Although the use of a
low-level descriptive language may have the apparent
disadvantage that it cuts out the use of a high-level
object language because the resultant inefficiencies are
very bad indeed, this is no great loss in practice.

It will be assumed in the rest of this paper that the
object language is an assembly language.

Machine-Independence

An encoding of a piece of software is completely
machine independent if it can be mapped into an
efficient implementation on all possible machines.
Clearly no software is absolutely machine independent,
but machine independence is a relative quality and some
encodings of software are more machine independent
than others.

It is obvious that encoding software in a high-level
descriptive language is more machine independent than
in a low-level descriptive language. Looking down from
on high it is possible to see over a wider area than when
one is close to the ground.

The difference in practice, however, is not as great
as it might appear. This is because successful machine

designs are usually conservative, largely because the
machine users are also conservative, and one machine
is much like another. Machines that are significantly
different, such as ILLIAC IV or CDC STAR, are often so
different that they even knock the machine independence
out of high-level languages.

Hence i fa low-level descriptive language is used, very
few machines will be lost. There is, however, likely to be
some loss of efficiency on each implementation. Some
figures for this are given by an experiment using ML/I.

The Experiments

A low-level descriptive language called LOWL has
been designed. LOWL contains all the primitive facilities
needed in L and in the descriptive language for the
symbolic logic package. (These two high-level descrip-
tive languages are quite close to one another, and it was
easy to encompass them both within LOWL.) LOWL
basically looks like an assembly language for a machine
with two special registers, A and B. The former is the
accumulator, and the latter an index register. The
following statements give a flavor of LOWL. They are
encodings of the first two L statements shown in an
earlier example. The parenthesized comments to the
right of each statement give the meaning of the operation
code.
NB THE FOLLOWING IS CODE IN LOWL
LAV NTYPSW (Load A with Variable)
CAL 6 (Compare A with Literal)
GONE GL20,100 (GO if Not Equal)
LAV IDPT
AAV IDLEN (Add to A a Variable)
CAV SIZE (Compare A with Variable)
GOLE GL20,96 (GO if Less or Equal)
LBV SPT (Load B with Variable)
LAM 1 (Load A Modified)
SAV IDLEN (Subtract from A a Variable)
AAL 1 (Add to A a Literal)
STV DIFF,X (STore A in Variable;

X means A need not be preserved)

ML/I and the symbolic logic package have been
encoded in LOWL, and LOWL has been mapped into the
assembly languages of the three following machines:
1. ICE 4130 (a scientific machine with a large instruc-
tion repertoire, except for character manipulation).
2. 1aM System/360.
3. POP-11.
L has also been mapped into each of the three assembly
languages, and the purpose of the experiment was to
compare the results. The sizes of the logic of ML/I
(excluding hand-coded machine-dependent parts, which
should be identical whether the mapping was via L or
via LOWL) are shown in Table I. Comparative figures
for the symbolic logic package are only available for
the ICE 4130, and in this case the percentage overhead
for LOWL was 2.75 percent as against the 2.51 percent
above.

All in all, therefore, the inefficiencies introduced by

1060 Communications December 1972
of Volume I5
the ACM Number 12

Table I.
ICL 4130 System/360 PDP-11

Mapped via L 3672 words 14808 bytes 5343 words
Mapped via LOWL 3764 words 15484 bytes 5665 words
Percentage overhead 2.51% 4.57% 6.02%

for LOWL

the use of the low-level descriptive languages are very
small.

The following points are relevant in interpreting the
figures in the table.
a. The percentages in Table I relate to the increased
size of ML/I. The LOWL implementations of ML/I would
also be expected to run more slowly by the same per-
centage and tests on the ICE 4130 confirm this.
b. For the ICE 4130 and the PDP-I1, the form of data
areas and stacks is identical whether ML/I is mapped
via L or LOWL. On System/360 some data items (so-
called "switch" data in L) are stored in one byte on the
L mapping and in one word on the LOWL mapping.
This means that the LOWL version of ML/I is up to 5
percent wasteful in its use of work areas, as well as
being 4.57 percent larger itself.
c. The encoding of ML/I in L was mapped into a
LOWL encoding using ML/I itself, and the LOWL encoding
of the symbolic logic package was generated in a similar
way. A hand coding in LOWL might have been slightly
better, which means that the above figures are over-
estimates.

Each LOWL statement consists of a mnemonic opera-
tion code followed by a sequence of operands. Almost
all operators essentially need only one operand, but
extra information about the first operand is often given
by succeeding operands. On the GO operator, for
example, the first operand is the name of a label to be
gone to and the second operand gives the distance of
the label f rom the current statement. Thus

GO REPEAT, 26

means GO to label REPEAT which is 26 LOWL statements
ahead.

These redundant operands are a valuable feature of
LOWL, and they cost nothing to an implementor who
does not need them. The second operand on the GO
statements would be very useful in producing an im-
plementation for a computer with a special instruction
for short distance jumps.

As can be seen, the structure and format of LOWL
statements is simple and it should be possible to map it
into a desired assembly language using ML/I, STAC;E2 or
a powerful macro assembler on the object machine. In
the latter case some minor preprocessing might be
necessary to change statement formats. This property
of LOWL has been copied from the descriptive language
for SNOBOL4.

LOWL contains just over 50 different operation
mnemonics, though many are very similar to one
another. There are, for example, nine variants of the
load operator, and some of these may be the same on
some implementations of LOWL (e.g. load A, load B,
load numeric, load character). The number of funda-
mentally different operation mnemonics is less than
25.

Sources of Inefficiency

Description of LOWL

LOWL itself has some features which may be of
interest. The two registers A and B are never used
simultaneously and they may correspond, in an im-
plementation of LOWL, to the same physical register.
This would apply on an object machine with no index
register and only one accumulator. The only way the
two registers interact is through the LAM statement,
which loads A with the address given by B modified by
a numerical operand. I f A and B are physically the same
the LAM statement might map into two or three instruc-
tions in the object assembly language, whereas if they
are different it might be accomplished in one.

There are two data types in LOWL: numerical and
character. On machines with inadequate character
manipulat ion instructions it is necessary to store one
character to a word and there is no need to differentiate
the data types.

An analysis of the inefficiencies of LOWL over L on
the three test cases shows a wide variety of causes. In
no case does one source account for more than one-
sixth of the total. Most of the inefficiencies are because
it is easier to make use of specialized instructions on the
object machine when mapping f rom a high-level
language.

An example of this is given by the lCL 4130, which
has an instruction, called DECS, that decreases a given
storage location by one. On the mapping f rom L it was
fairly easy, within the macro corresponding to the
assignment statement in L, to look for the special case

SET X = X -- 1

and use the OECS instruction when it occurred. On the

1061 Communications December 1972
of Volume 15
the ACM Number 12

mapping f rom LOWL it would have been necessary to
recognize sequences of statements of form

LAV X
SAL 1
STV X

Since three separate macro calls are straddled, this is
rather tedious to do so it was not done.

Implementation Time

The prime advantage of LOWL over L is that it is
much easier to write macros to map it into assembly
language. Consider, for example, the L statement

SET SIZE = IND(IDPT)NM -t- OFFSET -- 6

(where IND(IDPT)NM means the NuMber INDirectly
addressed by the pointer 1OPT). The mapping macro
for SET has to cater for an argument which may be any
arithmetic expression involving constants and variables,
possibly indirectly addressed, connected by addition
and subtraction operators.

The equivalent in LOWL is:

LAI IDPT (Load A Indirectly)
AAV OFFSET (Add to A a Variable)
SAL 6 (Subtract from A a Literal)
STV SIZE (STore A in Variable)

These represent calls of four simple LOWL macros.
It is hard to quantify how much easier it is to map

LOWL than L, but a factor of four in favor of LOWL is no
exaggeration. The actual computer time taken for the
ML/I macro processor to perform a mapping is certainly
measurably improved by a factor of four.

Compar ing an implementat ion via LOWL with one
via L, the LOWL implementor gains several weeks. I f he
has these weeks to spare, he can spend them optimizing
his generated code. Taking the ICE 4130 implementat ion
as an example, it would be possible to write macros to
recognize sequences of instructions that could be
mapped into a DECS instruction. Thus the LOWL im-
plementor should be able to wipe out all the inefficiencies
during the extra time the L implementor would take to
get his software working. I f a very large amount of t ime
was spent over an implementation, the L implementor
would always win, since some optimization can only be
performed at a high level. In most practical cases,
however, there is little difference in efficiency between
the two methods.

tive language would be the better choice for 9 out of 10
implementations.

An encoding of a piece of software in a high-level
descriptive language is, however, useful to have in
reserve. It gives a better chance of producing a good
implementation if an unusual object machine is en-
countered. A high-level description is also extremely
valuable as documentation.

There are, therefore, great merits in using a hier-
archy of descriptive languages, as suggested by Poole
[7].

A c k n o w l e d g m e n t . R.C. Saunders, working under a
Science Research Council grant, supplied the figures
quoted here for the PDP-I 1.

Received August 1971, revised December 1971

References

1. Waite, W.M. The mobile programming system: STAGE2.
Comm. A C M 13, 7 (July 1970), 415-421.
2. Brown, P.J. The ML/I macro processor. Comm. A C M 10,
10 (Oct. 1967), 618-623.
3. Wilkes, M.V. An experiment with a self-compiling compiler for
a simple list-processing language. In Annual Review in Automatic
Programming, Vol. 4, Pergammon Press, Oxford, England, 1964.
4. Griswold, R.E. A Guide to the Macro Implementation of
SNOBOIA. Bell Telephone Labs., Murray Hill, N.J., 1969.
5. Brown, P.J. Using a macro processor to aid software
implementation. Comput. J. 12, 4 (Nov. 1969), 327-331.
6. Brown, P.J., and Lowe, J.D. A computer program for symbolic
logic. Bulletin Inst. Maths. Applics. 7, 11 (Nov. 1971), 320-322.
7. Poole, P.C. Hierarchical abstract machines. Proc. Software
Engineering Conf., Culham, England, HMSO, London, 1971.

Conclusions

The advantages of high-level descriptive languages,
namely extra machine independence and efficiency, are
not in practice very great, and are usually outweighed
by the advantages of low-level descriptive languages in
getting something working quickly. A low-level descrip-

1062 Communications December 1972
of Volume 15
the ACM Number 12

